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Abstract 

The Green-function method is a well-known way to reduce the quantum mechanical problem 
of n electrons moving in the field of clamped nuclei to the problem of solving a one-electron 
Schrodinger equation (the quasi-particle equation) involving a pseudopotential (the self-energy). 
This method is widely used in solid-state, low-energy electron-molecule scattering, ionization, 
and electron attachment theory, and much work has focused on finding accurate self-energy ap- 
proximations. Unfortunately, the operator nature of the fundamental quantity (Green function) 
in the usual quasi-particle equation formalism significantly complicates the derivation of self- 
energy approximations, in turn significantly complicating applications to inelastic scattering and 
multiconfigurational bound-state problems. For these problems or wherever the operator ap- 
proach becomes inconvenient, we propose an alternative quasi-particle equation derived wholely 
within a configuration interaction wave-function formalism and intended to describe the same 
phenomenology as does the Green function quasi-particle equation. Our derivation refers spe- 
cifically to electron removal but is readily generalized to electron attachment and scattering. Al- 
though the Green function and wave-function quasi-particle equations are different, we empha- 
size the parallels by rederiving both equations within the equations-of-motion formalism and 
then producing a wave-function analog of the Green function two-particle-hole Tamm-Dancoff 
approximation. 

1. Introduction 

The Green-function method is a well-known way to reduce the quantum me- 
chanical problem of n electrons moving in the field of clamped nuclei to the 
problem of solving a one-electron Schrodinger equation (the quasi-particle equa- 
tion) [l] involving a pseudopotential (the self-energy.) This approach has been 
widely used in problems as diverse as the band structure of solids [2], molecular 
photoelectron spectra [3], and elastic-scattering of a slow electron with a 
molecule [4]. The eigenvalues of the quasi-particle equation (QPE) are ionization 
potentials and electron affinities, whereas the eigenfunctions provide scattering 
information. One advantage of the QPE is that it is more readily compared with 
other one-electron equations such as in the Kohn-Sham density functional for- 
malism [5,6]. However, the primary advantage of the Green function QPE ap- 
proach is that the most important many-body effects are concentrated in the 
self-energy, which may then be approximated. Particular Green function approxi- 
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mations are available from the functional derivative [7], equations-of-motion [S], 
and diagrammatic Green function [3] formalisms. Approximations are some- 
times facilitated by physical interpretations of the self-energy that arise directly 
from the one-particle picture [9]. Nevertheless, all approaches suffer from diffi- 
culties associated with the fact that the important fundamental quantity (the 
one-electron Green function) is an operator rather than a wave function. These 
difficulties arise in somewhat different ways for the uninitiated and the expert. 
The operator formalism significantly complicates Green function derivations 
[2,10,11] and would seem to make the method opaque to many potential users. 
Even for those who have succeeded in understanding the basic method, the oper- 
ator formalism still makes it difficult to extract a wave-function interpretation 
where such an interpretation is desirable (e.g., correlation and relaxation effects 
during ionization [12]) and even where it is essential (e.g., separation of closed 
and open channels in low-energy electron-molecule scattering [13,14]). Further- 
more, the introduction of a new (operator) metric leads to the need to calculate 
new types of matrix elements, often of very complicated types involving high- 
order reduced density matrices [15] and for which efficient wave-function meth- 
ods have yet to be adapted [16,17]. For these reasons, we propose an alternative 
configuration interaction (CI) wave-function QPE formalism that avoids the afore- 
mentioned difficulties of the usual Green function QPE by originating wholly 
within a wave-function formalism, but that shares many important properties 
with the Green function QPE. 

The spirit of the present work is most closely related to historical develop- 
ments in the theory of low-energy electron-molecule scattering that were moti- 
vated by the success of the phenomenological optical potential theory of 
scattering [18-201. The optical potential was soon identified with the Green 
function self-energy [21]. However, a “generalized optical potential” was derived 
within the framework of a wave-function formalism [13] at about the same time. 
This suggests the existence of a wave-function analog of the Green function QPE. 

The wave-function QPE is further developed in this paper to make it as similar as 
possible to the Green function QPE without sacrificing the basic advantages of a 
wave-function formalism. 

We will give an explicit answer to the question of the correspondence between 
our wave-function QPE and the Green function QPE only for the case of ioniza- 
tion, but it will be evident that only minor modifications are necessary to obtain 
the corresponding scattering equations. Second-quantized notation is used 
throughout, but the required level of sophistication can be obtained from the 
first chapter of any one of a number of books on many-body theory [lo, 11,221 or 
later chapters of first-year graduate texts in quantum mechanics (see, e.g., 
chap. 10 of [23]). Spin orbitals are used throughout, and certain infinitessimals 
that occur in detailed Green function and scattering theory work have been ig- 
nored (i.e., set to zero). Nevertheless, we are sure that the interested reader will 
be able to supply the missing infinitessimals (if need be) by comparison with ap- 
propriate related Green function or scattering theory work. 

Commutators and anticommutators will be denoted by 

[2 ,k ]  z 2s - k2 (1.1) 
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and 

respectively. 
The remainder of this paper is organized as follows: We seek a wave-function 

QPE whose eigenvalues and eigenfunctions agree as closely as possible with the 
usual Green function QPE. Hence, we begin (in Section 2) with a review of the 
Green function QPE that also serves to introduce some notation and to review of 
some of the applications of QPES. The more difficult aspects of the Green func- 
tion formalism have been avoided as much as possible, consistent with our objec- 
tive of deriving a QPE within the conceptually simpler wave-function formalism. 
Our objective, the CI QPE, is obtained in Section 3 using the Green function QPE 

as a guide. The remainder of the paper consists in clarifying the relationship be- 
tween these twd QPES. This is first accomplished in Section 4 by rederiving them 
both within a single formalism (i.e., using the equations-of-motion method) and 
is accomplished again at a more practical level in Section 5 by deriving a wave- 
function analog of the Green function two-particle-hole Tamm-Dancoff approxi- 
mation. Our conclusions are given in Section 6. Three appendices have also 
been included where necessary to make the paper self-contained (Appendices A 
and B) or as a technical aside (Appendix C). 

2. Green Function Quasi-Particle Equation 

The Green function quasi-particle equation (QPE) 

$i a Hartree-Fock-like equation involving the Fock operator k and the self-energy 
5‘‘ (w) ,  which will be described in more detail in later sections. The primary ob- 
jective of the present section is to discuss the QPE eigenvalues and eigenvectors as 
a prelude to deriving a wave-function QPE in Section 3 with closely related eigen- 
values and eigenvectors. 

The Green function QPE describes the physics of vertical ionization 

and vertical electron attachment 

(2.3) 

in terms of “particles” and “holes.” In particular, the QPE eigenvalues and eigen- 
functions are the energies and wave functions for one extra or one less electron. 
For convenience, we will talk about the “parent neutral,” “cation,” and “anion” 
states, although this terminology suggests a prticular application of the general 
formalism. Superscripts in parentheses indicate particle number. Capital Latin 
subscripts are indices labeling many-electron states. 
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Second-quantized notation is convenient for describing the QPE solutions (and 
for our subsequent manipulations) because the electronic Hamiltonian 

is independent of particle number. The matrices h and v are constructed in the 
usual way from one-electron (i.e., kinetic energy and nuclear attraction) and two- 

is the annihilation operator for spin orbital 4r. For simplicity, we will assume 
that the spin orbitals are orthonormal: 

electron (i.e., electron repulsion) operators, respectively ( v ~ , , , ~  = - v ~ ~ , ~ , ) ,  and Ci, 

Thus, the Hamiltonian is equally well the electronic Hamiltonian for the neutral 

the cation. 

and the anion 

The parent wave function P,,(n) will be referred to as the "target." 

ues are 
The QPE solutions are of two types. The ionization potential (IP) QPE eigenval- 

7 (2.9) = EF) - EP-1) 

whereas the electron affinity (EA) QPE eigenvalues are 

= ElHf1) - E t ) .  (2.10) 

These are simply orbital energies in the independent electron approximation. 
More generally, they are the negative of the IPS and EAS. In the solid-state limit, 
the excitation energies of the solid with one more or one less electron may be ex- 
pressed in terms of these electron addition and removal energies and the chemi- 
cal potential ([22], p. 75). 

The eigenfunctions of the QPE are "generalized overlaps." They may be 
thought of as the wave functions for particle and hole states. Such states are 
clearly canonical spin orbitals in the independent electron model. The proper 
definition for interacting electrons is as follows: We can always write (using the 
numeral j to stand for the space and spin coordinates of the j th  electron) 
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so that the Ith cation generalized overlap 

x1(1) = %‘%I WP-”*(2,3,. . . , n ) q f ) ( l ,  2,. . . , n) d2 d3. .  . dn 

(2.12) 

is %‘% times the probability amplitude for the remaining electron when (n - 1) 
electrons are detected in the Ith cation electronic state. The Ith anion general- 
ized overlap is similarly defined as 

x~ ( l )  = ./..I1 9!)*(2,3,. . . , n + l ) V ~ + ’ ) ( l ,  2,. . . , n + 1)d2d3. .  .d(n + 1) 

= 2 (T(y)121pPP+1))41(l) . (2.13) 

Although the “close-coupling” expansion of Eq. (2.11) is convenient for inter- 
pretational purposes, the coupling between the cation states makes it unsuitable 
for deriving a quasi-particle equation that does not explicitly involve final states. 
Instead, we will use the configuration interaction (CI) expansion, 

1 

where we have assumed 

for all values of i and I ,  and 

(2.16) 

for all values of I and J, for the sake of simplicity. Hence, the expansion coeffi- 
cient of the generalized overlap in the spin orbital basis set is 

u (n-1) I (n-1) 
(a1 1r.I ) = a/,./ 

where 

y1,] = (T(y2;6LlT(y) (2.18) 

is the (one-electron reduced) density matrix. 
(Equation 2.17 implies that all the components of the generalized overlaps are 

zero along the unoccupied natural spin orbitals of the parent. An easy way to 
verify this is to choose the underlying spin orbital basis to be the spin orbitals 
that diagonalize the density matrix [i.e., the natural spin orbitals]. It then follows 
that 

(2.19) 

so that nonzero components of the generalized overlap are only allowed for natu- 
ral spin orbitals with nonzero occupation number Y ~ , ~ . )  

I x l y  = I ( T ( n - 1 ) 1 2 1 p p )  12 I (T~)~2~21~T~))(~(~-l)~T(~-l)) = yl,l , 
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The corresponding anion equations are 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

The solutions to the QPE give spectroscopic information. The eigenvalues are 
IPS and EAS, whereas the generalized overlaps give scattering information. More 
specifically, the magnitudes of the I P  generalized overlaps (called “spectroscopic 
factors”) are used to estimate relative intensities in photoelectron binding energy 
spectra [3] and the spherically averaged momentum distributions of I P  general- 
ized overlaps are proportional to the triple differential cross sections for high- 
energy high-momentum-transfer symmetric binary (e, 2e) scattering (also 
referred to as “electron momentum spectroscopy”) [24]. Summation conditions 
may be used to calculate the density matrix 

and total energy 

(2.25) 

(2.26) 

of the target state (Appendix A). 
The EA generalized overlaps are stationary-state solutions for the low-energy 

electron-molecule scattering problem [13]. We therefore anticipate that the QPE 

will reflect the dynamics of scattering electrons. More specifically, the Hamilto- 
nian should be the sum of the kinetic energy of the electron, a nuclear attraction 
term, Coulomb and exchange terms, and a self-energy term describing many- 
body effects such as correlation and relaxation (or polarization). Similar expecta- 
tions apply to the IP generalized overlaps, provided we agree to regard them as 
solutions of the problem of a “hole” scattering with a molecule. 

3. Wave-Function Quasi-Particle Equation 

The derivation of the wave-function quasi-particle equation (QPE) proceeds 
from the groundwork laid in Section 2 by forming a matrix equation and then 
applying standard partitioning techniques (Appendix B). We identify the config- 
uration interaction (CI) self-energy by analogy with the Green function QPE. The 



CI QUASI-PARTICLE EQUATION 231 

clarification of the precise relationship of this wave-function QPE with the usual 
Green function QPE will be delayed until Section 4. 

We must begin with an equation whose eigenvalues are minus the ionization 
potentials. Because of the complex conjugate relationship between the coeffi- 
cients of the cation wave function and its generalized overlap, we begin with 

( 3 4  (q(n- l ) l (Et)  - fi) = o(W(n-’) I .  
We chose a basis that is partitioned into functions spanning a primary space ( P )  
and a secondary space (Q): 

P - {6,*t)} 
Q - {EP-’)}. 

Right multiplication of Eq. (3.1) gives 

where 

and 

(3.3) 

(3.8) [KRp + KPQ(,~Q.Q - KQ2Q)-1~Q.f‘Icp = w y c p ,  

whose eigenvalues 

(3.9) 

are minus the ionization potentials of the parent and whose eigenvectors give the 
corresponding generalized overlaps: 

x = ycp. (3.10) 

= ,Z$) - E(fl-1) 
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This QPE may be interpreted as follows: It is the matrix form of a one-electron 
Schrodinger equation consisting of a “zero-order” part KP. and what we will call 
the “(particle-hole) conjugate Feshbach optical potential” in analogy with [13]: 

V ( I P I ( ~ )  = ~ f ‘ c ‘ ( ~ 1 Q . Q  - KQ.U))-IKQ.P (3.11) 

The zero-order part is (the adjoint of) the Hamiltonian in the so-called extended 
Koopmans’ theorem method [25-291. It accounts for (some) correlation but no 
relaxation effects by describing the cation wave function as the parent wave 
function with an unrelaxed “hole” in the space of occupied natural spin orbitals. 
Hence, the conjugate Feshbach optical potential describes relaxation effects (in- 
cluding changes in correlation due to relaxation). 

Since both correlation and relaxation are normally relegated to the Green 
function self-energy and in analogy with the Green function QPE, we rewrite the 
wave-function QPE as 

[F + c“(ci~)]c‘ = wcp,  (3.12) 

where 

is a generalized Fock operator and 

(3.13) 

(3.14) 

is the “self-energy.” By construction, the first term in the self-energy accounts 
for relaxation effects (including correlation changes due to relaxation), whereas 
the remaining terms account for correlation effects. The second term comes 
from applying Eq. (2.24). 

The primary advantage of the QPE (3.12) over the QPE (3.8) is simple. It is only 
necessary to approximate the self-energy, because the primary many-body ef- 
fects have been relegated to the self-energy. Those many-body effects that do ap- 
pear in the generalized Fock operator are in the density matrix and so may be 
treated through the self-consistency condition given in Eq. (2.25), in analogy 
with ordinary Hartree-Fock. 

4. Equations-of-Motion Derivation 

The best way to understand the relationship between the proposed wave func- 
tion and traditional Green function quasi-particle equations (QPES) is to derive 
them both within a single formalism. We will do this using the equations-of- 
motion (EOM) formalism. 

Briefly, the EOM formalism [S, 301 solves the EOM 

(4.1) 
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(i is the Liouvillian superoperator) as a matrix problem by introducing an opera- 
tor basis set and the metric 

(a+ I i t )  = ( W ( y  {a, k+} IT:;"'). (4.2) 

(4.3) 

(4.4) 

The solutions 

61 = l q ( n + 1 ) ) ( q / ; ) l ;  = E ( ~ + I )  - E!;"j 

and 

61 = IT:;)) ( q ( r l - i ) l ;  = E:;) - E(n-1) 

will be obtained for an "EOM complete" basis set [8] of (composite) particle 
creation operators. (Note that the Fock space inner products (T@+')ITt)) = 
(q(n-')lq{:)) = 0.) The canonical choice of basis set consists of combinations of 
creation and annihilation operators [31,32] (e.g., 6; and 6:6:6,), but combinations 
of creation operators and ket-bra "state-transfer operators" (e.g., 6,?lU PI) (q{:)l) 
have also been used [33]. 

The solution of the matrix EOM need not be equivalent to solving the matrix 
versions of the (n t 1)-electron Schrodinger equations (2.7) and (2.8) when the 
target wave function is exact but the operator basis set is incomplete. However, 
we prove an original theorem in Appendix C providing conditions on the opera- 
tor basis set for which the EOM method becomes equivalent to the wave-function 
met hod. 

QPES whose eigenvalues are minus the ionization potentials and electron affini- 
ties may be derived from the EOM for operator basis sets that partition as 

The partitioned EOM is 

Lv. ' LL'd 

with the generalized Fock operator k defined by Eq. (3.13) and 

s y  = (6: I AJ) = (S f / ) * ,  

Sf jQ = (A] 12s). 
Hence (Appendix B), 

[F + xt"M(m)]dp = wd'; 

(4.5) 

(4.7) 

In general, there is no simple relationship between d' and the coefficients x of 
the generalized overlap except for particular operator basis sets. One choice will 
yield the CI QPE and d' = c p  [see Eq. (3.10)], whereas another choice will yield the 
Green function QPE and d' = x. 
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The CI QPE is easily derived, knowing the conditions under which EOM and CI 

become equivalent. According to Appendix C, the solutions of the (n  ~ 1)-elec- 
tron CI equation (3.3) should be included among the solutions of the EOM (4.6) by 
the choice 

{a:} = {IT:"~)"l"-"~> u {fqTp)(Y{;)l}. (4.9) 

It is then easily verified that 

C'""(w) = X"(w) . (4.10) 

The Green function self-energy may be defined through the Dyson equation 

C"'(W) 0 - F - G - ' ( w ) ,  (4.11) 

where G ( w )  is the exact Green function. It can be shown [11] that 
XEOM(w) = X."'(w) for operator basis sets where Sp,Q = 0. This case is approached 
in the CI QPE derivation only when the orbital basis is restricted to natural spin 
orbitals with occupancy numbers near unity = 1 - y) .  Zeroing the off- 
diagonal blocks of the overlap matrix may, however, be achieved by the choice 

{a:} = { l Y y ) ( E y ) l }  u {I@+'))(T(q} (4.12) 

with orthonormality conditions given by Eqs. (2.15), (2.16), (2.21), and (2.22). 
With this choice, 

X"'(w) = zFoM(w) = VOPT(w) + V"P'(w), (4.13) 

where the conjugate Feshbach optical potential VoPr(w) was defined in Eq. (3.11) 
and the "Feshbach optical potential" 

VOPT(@) = K/'.Q(,lQQ - KQ,Q)- 1 K Q > P  (4.14) 

appears with 
- 
KpvQ i , J  = (W [&, k1 
K,f;' = (Ejn+')l [I?,;:] IT!)), 

(4.15) 

(4.16) 
- 

and 

Thus, relaxation effects are described by vopl(w) in both the X"(w) and C" ' (w)  but 
correlation effects are treated differently. 

It should be emphasized that the classic Green function approach uses a dif- 
ferent operator basis set than the one used above. The classic Green function ba- 
sis set is completely composed of combinations of creation and annihilation 
operators. We have taken a considerable step toward a wave-function treatment 
by introducing ket-bra operators to arrive at Eq. (4.13) for the self-energy. Such 
an approach is normally avoided in practical applications of the Green function 
method because of a delicate cancellation of errors that occurs when second- 
quantized operators are used. (More specifically, there is a reduction in the order 
of the reduced density matrices entering into the EOM when second-quantized 
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operators are used [30].) Indeed, the Green function self-energy given in 
Eq. (4.13) has no obvious computational advantage over the simpler CI self-energy. 

To summarize, we have shown more precisely the sense in which the CI self- 
energy is a self-energy; that is, C " ( w )  plays the same role in the partitioning of 
the EOM as does C"' (w) .  They are, however, not identical because they refer to 
different operator basis sets and lead to different eigenfunctions. 

5. Self-Energy Approximations 

Practical quasi-particle equation (QPE) calculations involve approximate self- 
energies, and the wave-function formalism is no different from the Green func- 
tion formalism in this respect. In principle, approximating the CI self-energy is 
just a matter of choosing an approximate wave function and a suitable set of 
cation basis functions. However, the Green function QPE formalism is well devel- 
oped for conventional closed-shell bound-state ionization potential calculations 
and can be used as a guide in constructing self-energy approximations for use in 
the CI QPE. We illustrate the basic idea by deriving a wave-function analog of the 
Green function two-particle-hole Tamm-Dancoff approximation ( 2 p h - ~ ~ ~ )  [34]. 
This should also help to further clarify the relationship between the CI and 
Green function quasi-particle equations. 

We will assume that the self-energy calculation has been preceded by a 
Hartree-Fock (HF) calculation on the parent. This yields a ground-state wave 
function @r) and sets of occupied and virtual spin orbitals whose energies we 
shall denote by E ,  for orbital r. The index convention 

{a, b,. . . , g, h} - virtual spin orbitals 

{i, j ,  . . . , m, n} - occupied spin orbitals 

{o ,p ,  . . . , y ,  z }  - either type of spin orbital (5.1) 

will be adhered to throughout this section. 
The ~ P ~ - T D A  results from the equations-of-motion formalism when [35] (1) the 

exact target wave function is replaced by the HF ground state, and (2) the opera- 
tor basis set consists of 2-hole/l-particle operators {6]2,'6a} and l-hole/2-particle 
operators {6L6161} in addition to the usual 1-hole {i?]} and 1-particle {i?:} opera- 
tors. The resultant self-energy is given by Eq. (4.13), 

and 

in the Bk approximation (Appendix B). 
An obvious approach [34] to approximating the CI self-energy is once again to 

approximate the target wave function by the HF wave function @t) and to treat 
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the ion as a linear combination of 1-hole states {Li,(D,(j”J} and 2-hole/l-particle 
states {&?,2f@r)}. This gives 

(5.4) 
1 Vka, l j v ! j 3  la c%4 = - c, 
2 [ , ] , a  w + &a - - ~1 - vp 1“ - vw,,, + v i j , f j  

in the Bk approximation; that is, C “ ( w )  coincides with the occupied orbital block 
of v”” (w)  as given in Eq. (5.2) and the other terms in the self-energy equation 
(3.14) are zero. 

However, this (‘I self-energy must contain error terms that are second-order in 
Moller-Plesset perturbation theory (MPPT) [36] since it would otherwise lead to 
errors in the second-order expressions for the ionization potentials and for the 
generalized overlaps [12,37]. The errors may be corrected by introducing the 
first-order wave function 

into the correlation term and gathering the parts that are second-order in the 
fluctuation potential. We obtain 

The first sum is the second-order part of the Feshbach optical potential. The sec- 
ond sum cancels with the second-order part of 

The sum of Eqs. (5.4), (5.6),  and (5.7) constitutes a 2 p h - ~ o ~ - l i k e  approximation 
for the CI self-energy that we expect to be similar in quality to the ~ P ~ - T D A  when 
used in the diagonal approximation (Appendix B) to calculate inner and outer 
valence ionization energy spectra. 

The foregoing analysis is not meant to imply that a higher-quality target wave 
function should always be used to calculate the “correlation terms” than is used 
to calculate the “relaxation term” (conjugate Feshbach optical potential) in the CI 

self-energy. However, the use of different targets for the two terms would be 
consistent with the spirit of “frozen orbital” [38] or “unrelaxed’ [8] CI where the 
reference (target) wave function in the ion CI expansion is of lower quality than 
is the parent CI wave function. 

6. Conclusion 

The Green function method is a traditional way to reformulate an n-electron 
problem as a one-electron quasi-particle equation (QPE) involving a pseudopoten- 
tial (the self-energy) that describes the principal many-body effects. Such an ap- 
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proach is desirable for comparison with other one-electron equations (e.g., in 
density functional theory), where the prior existence of a phenomenological one- 
electron equation may give insight into self-energy approximations (e.g., in solid- 
state and scattering applications) or simply because of computational advantages 
arising from working with a lower dimensional equation. However, difficulties 
arise in some applications of the QPE because the operator nature of Green func- 
tions makes it difficult to recover a wave-function formulation when this is 
needed or desired for interpretational reasons (e.g., to separate correlation and 
relaxation effects [12]) or computational convenience (e.g., to implement matrix 
element evaluation techniques originally developed for wave-function methods 
[16,17]) or both (e.g., to separate open and closed channels in low-energy electron- 
molecule scattering [13,14]). 

We have proposed a configuration interaction (CI) wave-function QPE as an al- 
ternative to the usual Green function QPE for applications where a clear connec- 
tion with an underlying wave-function formulation is desired. Our CI QPE may be 
regarded as an extension of historical developments in low-energy electron- 
molecule scattering. It differs from these historical treatments by maintaining a 
closer analogy with the Green function QPE. Thus, we have chosen to maintain 
the eigenvalue and eigenfunction character of the Green function QPE as much as 
possible in deriving the CI QPE. At the same time, the final CI QPE is not the same 
as the Green function QPE, and this point has been made clear by deriving the 
two QPES within the equations-of-motion formalism where they can be more 
readily compared. Although we have restricted our development to ionization, 
the modifications required to treat electron attachment and scattering calcula- 
tions are straightforward. 

Practical applications of either QPE require the use of self-energy approxima- 
tions. In principle, this is merely a matter of choosing an approximate target 
wave function and a suitable set of ion wave functions as a basis set. In practice, 
it may be desirable to use a different target wave function for the “relaxation” 
and “correlation” terms in the CI self-energy. We have emphasized similarities 
and differences between the Green function and CI QPES by deriving a ~ P ~ - T D A -  

like CI self-energy approximation that we expect to be useful for calculating in- 
ner and outer valence ionization spectra. 

However, the development of and investigation of practical CI self-energy ap- 
proximations was not the primary objective of the present paper. Instead, our ob- 
jective was show that a Green function-like QPE could be developed within a 
wave-function formalism. The further development of CI self-energy approxima- 
tions should help to make the CI OPE a useful alternative to the Green function 
QPE for one-electron reformulations of many-electron problems. 

Appendix A: Summation Conditions 
Proof of Eq. (2.2.5) 
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Proof of Eq. (2.26) 
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Appendix B: Partitioning Theory 

Lowdin partitioning [39] is a method that makes large matrix eigenvalue prob- 
lems more tractable by reducing their dimensionality. Consider a matrix eigen- 
value problem involving a "Hamiltonian" H, "overlap matrix" S, and eigenvector 
c ,  which has been partitioned into a blocks corresponding to primary ( P )  and 
secondary (Q) spaces: 

[ HQ.P HP3' Hp,Q] HQ,." (~6) = -[ :',' Q.P S p . y ]  s"." (~6) (B.1) 

Then, we can solve for the P-block of the c vector to obtain 

[H',:' + M(w)]cP = W S ~ , ~ C I - ' ;  

M ( ~ )  = (HP,Q - w s P L ? ) ( w s Q . Q  - HQ,Q)-~(HQ?.P - o s Q . P ) .  (B.2) 

The dimensionality of the original eigenvalue problem [Eq. (B.1)] has now been 
reduced to that of an eigenvalue problem in the primary space. Equation (B.2) 
must, however, be solved in either an iterative or "graphical" manner by repeat- 
edly constructing and then diagonalizing HpVp + M(w) for different values of w .  
Therefore, the relative value of solving Eq. (B.l) versus Eq. (B.2) depends on the 
number of solutions required and the quality of any initial estimates of w .  Once 
Eq. (B.2) is solved, proper normalization of c p  may be obtained from the deriva- 
tive of M(w) 

without first calculating cQ. 
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Several common useful approximations on the basic equation (B.2) have been 
made in the literature for the case when S = 1. We list these briefly along with 
any restrictions on their appropriateness. 

Diagonal Approximation 

When 
HP.'d' = w'd' 

is a good zero-order approximation to the complete solution of Eq. (B.l), then 

up + dPtM(w)d' = a. (B.5) 

Quasiparticle Approximation 

When w is far away from all solutions w g  of 
H"."d." = wgdd" , 

then 

M(w) = M(w'). 

Bk Approximation [40/ 

When HQsQ is nearly diagonal, 

HF? = H f ? S k , , .  

(Of course, this becomes an exact method when the basis of the secondary space 
is chosen to be that which diagonalizes HQ.O [41].) 

Appendix C: Equivalence of EOM and CI 

Theorem 

Suppose that (1) the target wave function T:;) is exact, (2) {if} is a finite basis 
set of operators for which the equations-of-motion  OM) metric matrix 

s/, J = (2: I 2s) (C.1) 
is invertible, and (3) the_basis set divides into two disjoint "ionization" {if} and 
"electron attachment" {Cf} subsets satisfying the closure conditions 

~ J I W , ~ " ' )  E span{QTl.:"')> for all J (C.2) 

(T~)@J E span{(qt)lif} for a11 J (C.3) 

and 

Then, every solution of the cation CI equation 
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or the anion CI equation 

2 ( T ~ ) ~ E ~ [ E ~ , E J I  1 ~ t ) ) c ~  = w c ( ~ t ) l E ~ E j l ~ t ) ) c ~  for all I 

corresponds to a unique solution of the equation-of-motion 

(c.5) 
J J 

Proof 

The proof is by construction. Let 

and consider solving the simultaneous equations 

and 

0 = 2 (*t)lAJdJ (C.9) 
J 

for the coefficients dJ .  These may be replaced by the equivalent equations 

(y’ p la,l w (n  + I ) )  = 2 (T !;”) \a,as ( w p ) d  J (C.10) 
J 

and 

0 = 2 (WplaJa/lw:.’)d, (C.11) 
J 

only because of the closure conditions. Adding Eqs. (C.lO) and (C.ll) then gives 

( w p l / i / l w ( n + 1 ) )  = 2 (qt)l{a/, a,} ITt’)dJ, (C.12) 
J 

which has a unique solution because the EOM metric matrix has been assumed to 
be invertible. It remains to show that this solution is also a solution of the EOM 

(C.6). Insertion into Eq. (C.6) and application of Eqs. (C.7), (C.8), and the “killer 
condition” Eq. (C.9) and gives 

2 ( ~ ~ : ) l / i r [ k ? , ~ J ]  /Wt’)cJ = w 2 ( ~ ~ ) l ~ r ? ~ \ ~ ~ ) ) c J  for all I ,  (C.13) 

which reduces to the anion CI Eq. (C.5) because of the closure condition (C.2). 
The argument is not significantly different when beginning with the cation CI 

Eq. (C.4). 

J J 
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Corollary 

Every solution of the EOM also corresponds to a solution of one of the two CI 

equations unless the two CI equations share a common eigenvalue. (Note that 
this is extremely unlikely since the stability condition AE > 0 for the reaction 
2M + M + + M -  leads to IP > EA for all ionization potentials IP and all electron 
affinities EA.) Hence, Eq. (C.8) holds for any solution of the EOM. 

Proof 

As long as the two CI equations have no eigenvalue in common, the EOM solu- 
tions generated in the proof of the theorem constitute a complete set of linearly 
independent solutions of the EOM. Each nondegenerate solution of the EOM comes 
from a nondegenerate solution of one or the other of the two CI equations. De- 
generate EOM solutions come from degenerate CI solutions. 
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