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The ionization potential and the other quasiparticle energies of electrons in molecules or solids are often
evaluated within the GW approximation. Though this approximation can be considered as a fantastic tradeoff
between accuracy and simplicity, there exist ionization potentials of simple molecules that are unacceptably
wrong. We derive here a working approximation to the density matrix that we name the GW density matrix.
This relatively light approximation improves several physical properties and, in particular, it yields excellent
electronic dipoles for the examined molecules. As a direct consequence, the ionization potentials are affected
through the change in the electrostatic potential and in the exchange operator. Benchmarking on a set of 34
molecules, we demonstrate that most of the error in the GW ionization potentials is indeed eliminated thanks to
this simple addition. This contribution is not a vertex correction, but nevertheless it is crucial when going beyond
the standard GW .
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Predicting the ionization potentials (IP) of electrons in a
solid or a molecule is a common goal for both physicists and
chemists. These calculated quasiparticle energies correspond
to the peaks observed in solid-phase or gas-phase photoemis-
sion spectroscopy [1]. Calculating the IP is highly nontrivial
since it requires in principle the solution of the many-electron
Schrödinger equation for ground and excited states. Fortu-
nately, these energies can be elegantly considered within the
framework of the many-body perturbation theory (MBPT) [2].
However, the choice of the practical approximations within
MBPT is a very delicate matter with no definitive answer as
of today.

As a clear sign for this situation, quantum chemists and
solid-state physicists have come up with different approxi-
mations, even though they all aim at solving the very same
electronic Schrödinger equation, The former, targeting atoms
and molecules, advocate for an order-by-order expansion with
respect to the Coulomb interaction v [3,4]. This gives rise
to second-order perturbation theory (PT2), third-order pertur-
bation theory (PT3), etc. The latter, having the purpose of
describing periodic and possibly metallic systems, have pro-
posed the so-called GW approximation to the self-energy [5],
which is an infinite summation over electron-hole pair terms
which are summed up in the so-called screened Coulomb
interaction W .

The physicists’ GW approximation has been recognized
for a few decades as a wonderful tool to calculate the elec-
tronic structure of materials, and in particular the band gaps
of semiconductors [6–9]. Recently, the GW self-energy has
been applied to molecules systematically with an unexpected
quality [10–23].

Despite its recent successes for molecular systems, the GW
approximation still shows surprisingly large errors for the IP
of the simplest molecules. As an example, the IP of N2 and
CO deviates by about 0.4 eV with respect to experimental
results. In general, we notice that the σp orbital quasiparticle
energies are always rather poor using the state-of-the-art GW

implementations. The error in the GW approximation is most
often ascribed to the higher order terms, the so-called vertex
corrections [24–28].

In this Rapid Communication, we propose to complement
the GW approximation to the self-energy with some se-
lected terms which are not vertex corrections, but rather self-
consistent Feynman diagrams. The additional terms contribute
only to the static part of the self-energy. These terms are
relatively light to calculate and are meant to simulate the ef-
fect of fully self-consistent GW calculations without actually
performing it. We will show that these contributions improve
(i) the electronic density, (ii) the electrostatic potentials and
exchange operators, and (iii) the final ionization potentials.
These last conclusions will be drawn from the calculation
of an extensive set of 34 reference molecular ionization
potentials.

In practice, besides a few exceptions for small molecular
systems [29,30], the GW self-energy is most generally not
obtained self-consistently. It is rather obtained from an input
Green’s function from a mean-field theory, such as Hartree-
Fock (HF) or generalized Kohn-Sham. This is the one-shot
procedure often coined G0W0. The best results for the ion-
ization potentials (IP) are typically obtained when choosing
an hybrid functional starting point for the Green’s function
[18,30–32]. An alternative procedure named eigenvalue-only
self-consistency (evGW ), which only updates the poles of the
Green’s function, has been proven to be very successful [33].
Note that this last procedure conserves the electronic density
and density matrix from the original underlying mean field.

When performing a strict order-by-order expansion based
on HF as chemists do, corrections to the density matrix
naturally appear starting with PT3. Indeed, when analyz-
ing the third-order self-energy diagrams in the expansion of
Cederbaum and coworkers [3,4], some static contributions are
present (the A terms in their notations). They correspond to
the Feynman diagrams in the upper part of Fig. 1. These dia-
grams account for the one-ring and the second-order exchange
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FIG. 1. Feynman diagrams for the static self-energy in PT3
(upper panel) and for the GW density matrix inclusions in the Hartree
potential and the exchange operator (lower panel). Green’s functions
are represented with a black arrow and Coulomb interactions with a
red dashed horizontal line. Entry and exit points in the self-energies
are symbolized with the blue arrows.

effect on the Hartree potential (first line) or on the exchange
operator (second line). In other words, these are second-order
corrections to the density matrix that appear in the third-order
self-energy.

Following the same spirit, one can obtain a GW approxi-
mation to the density matrix, which will enter the Hartree and
exchange terms as displayed in the lower part of Fig. 1. Let us
write down the corresponding formulas here. We start with the
Lehman representation of the dynamical part of the screened
Coulomb interaction in the state product basis,

(vχRPAv)rt
pq(ω)

=
∑

s

ws
pqw

s
rt

[
1

ω − �s + iη
− 1

ω + �s − iη

]
, (1)

where v is the Coulomb interaction, χRPA is the random-phase
approximation polarizability, �s is the neutral excitation en-
ergy for excitation s, ws

pq is the corresponding amplitude in
the state product basis, and p, q, r, and t are state indexes.
Real-valued wave functions have been assumed here for sim-
plicity. Such a representation can be obtained in practice by
diagonalization of the RPA matrix equation in the transition
state basis [14,34,35], which is similar to Casida’s equations
[36].

TABLE I. Dipole moment in Debye of diatomic molecules for
different density matrix approximations at the scGW bond length
(obtained from the earlier scGW calculations of Caruso et al. [29]).
Our work employs a cc-pVQZ basis set whereas Ref. [29] uses
another accurate basis set.

LiH HF LiF CO

scGW bond length [29] 1.579 0.919 1.586 1.118
scGW [29] 5.90 1.85 6.48 0.07
DGW 5.91 1.84 6.42 0.10
DPT2 5.90 1.80 6.33 0.41
HF 5.96 1.93 6.52 −0.22
CCSD 5.92 1.85 6.37 0.10

With this expression for the dynamical part of the screened
Coulomb interaction, one can adapt the PT2 density matrix
formula to obtain the GW density matrix in the state basis
DGW

pq (see the Supplemental Material [37] for more details).
The final expression in the spin-restricted case reads

DGW
i j = 2δi j − 2

∑
sa

ws
ia

εi − εa − �s

ws
ja

ε j − εa − �s
, (2a)

DGW
ab = 2

∑
si

ws
ia

εi − εa − �s

ws
ib

εi − εb − �s
, (2b)

DGW
ib = − 2

εi − εb

∑
s j

ws
b jw

s
i j

ε j − εb − �s

+ 2

εi − εb

∑
sa

ws
iaw

s
ba

εi − εa − �s
, (2c)

where i, j are occupied states and a, b are virtual states. These
states and their energies εi are obtained from HF. Equations
(2a)–(2c) are the different blocks in the state representation of
DGW : occupied-occupied, virtual-virtual, and occupied-virtual
blocks respectively. This expression is only valid for the HF
mean-field starting point, else the Brillouin theorem would
not hold and some additional ill-behaved contributions would
appear [38].

These equations have been introduced in the Gaussian ba-
sis code named MOLGW [39,40]. This code implements MBPT
for gas-phase molecular systems using or not the resolution-
of-the-identity approximation. The calculations presented in
this paper all use the large Dunning correlation consistent
basis set cc-pVQZ [41] with the corresponding auxiliary
basis [42]. Reference coupled-cluster calculations have been
performed with GAUSSIAN16 [43].

First of all, let us verify that this perturbative GW density
matrix is indeed capable of simulating the self-consistent GW
density matrix in practice. In Table I, we compare the dipole
moment of a few diatomic molecules at the fixed bond length
obtained within fully self-consistent GW (scGW ) by Caruso
and coworkers [29] and as obtained with the GW density
matrix expressed in Eqs. (2a)–(2c). The agreement is strik-
ingly good for all molecules but LiF. Furthermore, comparing
the DGW dipole moment to the high-level coupled-cluster
calculation (CCSD) with the same accurate basis set (cc-
pVQZ) demonstrates that the DGW electronic density yields
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FIG. 2. Fock operator expectation values in eV for different den-
sity matrices for the two highest occupied orbitals of CO evaluated in
between the highest occupied molecular orbital (HOMO) HF orbitals
(σp) and the two previous degenerate HF orbitals (πx and πy). The α

values in the x-axis labels stand for the fraction of exact exchange
included in a tuned PBE0 density matrix.

very precise dipoles, much better than the density matrix at
second order, DPT2, and much better than HF.

Then a corollary question arises: How significant are the
changes of density matrix on the electrostatic potential vH and
the exchange operator �x used for the quasiparticle energies?
To elucidate this, we propose to inspect the dependence of
diagonal expectation values of the Fock operator as a function
of the input density matrix D:

Fpp = 〈p| − 1
2∇2 + vext + vH [D] + �x[D]|p〉. (3)

Figure 2 shows this expectation value as a function of D
for the three highest occupied orbitals of carbon monoxide.
The expectation value is evaluated with fixed wave functions
within HF in the bra and ket so to isolate the sole effect of
D. The reference is given by a CCSD calculation. Figure 2
confirms that the dependence of the Fock operator expectation
values with respect to D is strong. For the σp orbital of CO,
there is a 0.6 eV variation when tuning the content of exact ex-
change in PBE0. Furthermore, no mean-field approximation
is able to capture the reference value for the Fock expectation
value, not HF nor any tuned version of PBE0, ranging from
0% to 100% of exact exchange. The PT2 density matrix
is already a good step toward the CCSD reference. Finally,
the GW density matrix yields almost perfect Fock operator
expectation values. Identical conclusions can be drawn from
the analysis of the πx and πy orbitals. Note that the evolution
of the πx and πy orbitals as a function of α in tuned PBE0 is
opposite as the one for the σp orbital. Only the MBPT density
matrices (PT2 and GW ) are able to describe properly all these
orbitals at the same time.

As the influence of the density matrix is large on the Fock
operator expectation value, it is to affect the quasiparticle
energies. Figure 3 presents the mean absolute error (the mean
signed error is given in the Supplemental Material [37]) for
the IP of 34 small molecules [12] as compared to CCSD(T)
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FIG. 3. Mean absolute error in eV for the benchmark of
Refs. [12,18] based on the IP of 34 small molecules as function of
the mean-field starting point (tuned PBE0 and HF). The dotted line
stands for the mean-field error, the solid lines for the one-shot GW
errors, and the dashed lines for the partially self-consistent evGW
errors. The vertical line emphasizes the best mean-field Green’s
function. The shaded area shows a reasonable target accuracy, set to
0.15 eV. Note that the error of the mean-field techniques is larger than
the maximum of the y axis for most of the values of α. A selection
of the data summarized in this plot is given in the Supplemental
Material [37].

references [18]. In practice, the CCSD(T) IP are obtained by
performing two separate total energy calculations, one for the
neutral molecule and another one for the positively charged
molecule. The 34 molecules consists of 11 different light
elements and their atomic coordinates are given in the Sup-
plemental Material [37]. This benchmark against theoretical
values avoids the difficulties due to experimental resolution,
zero-point motion, theoretical geometries, and basis sets. The
reported IP are the so-called vertical IP: They account for the
sudden removal of an electron from the molecule without any
structural relaxation. The difference between the vertical and
the adiabatic IP (including structural relaxation) can be sizable
in practice and the experimental vertical IP are not always
available in the literature. The CCSD(T) reference value for
P2 has been updated with respect to our previous work [18].
Care has been taken about the highest occupied orbital that
can change along with the choice of mean-field starting point
as noticed by Maggio and Kresse [23].

In regular one-shot GW calculations, it is well known that
the outcome strongly depends on the starting point. This is
blatant from the G0W0 results (pink solid line) of Fig. 3. The
G0W0 self-energy minimizes the error for functionals with
about 40–50% of exact exchange, which corresponds to input
mean-field Green’s functions that have a large error in the
IP (dotted brown line). Iterating the GW calculations with
an update of the quasiparticle energies only (evGW ) is often
prescribed [33]. Indeed, after the evGW approximate self-
consistency, the GW IP error is almost insensitive to the start-
ing point (purple dashed line). However, the corresponding
absolute error remains rather large, around 0.22 eV. This error
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precisely corresponds to the error for G0W0 based on the tuned
PBE0 functional that would minimize the IP error (∼70%
of exact exchange). Indeed, both approaches use a Green’s
function whose poles are the closest to the final quasiparticle
energy. This particular exact exchange content is symbolized
by a vertical line in Fig. 3.

Let us now complement the GW self-energy with better
density matrices that improve the Fock operator expectation
values. First, we start with the “almost exact” CCSD density
matrix and evaluate the corresponding “almost exact” Fock
operator. The subsequent one-shot GW results (solid blue
line), labeled G0W0 + F [DCCSD] in Fig. 3, present a minimal
error for input mean-field Green’s functions with about 60%
of exact exchange. This is close to the Green’s function
with the minimal error. As a direct consequence, applying
the approximate eigenvalue self-consistency preserves this
low error (evGW + F [DCCSD] with dashed light blue line).
Turning again to our example of the σp orbital of CO and N2,
the errors are then reduced to respectively 0.05 and 0.15 eV.

Of course, the almost exact CCSD density matrix is very
cumbersome to obtain and would be out of reach for larger
molecules. Let us consider now the effect of the cheaper GW
density matrix DGW . From Fig. 3, we observe that the G0W0 +
F [DGW ] results (dashed orange line) are very similar to those
obtained with the CCSD density matrix. The minimal error
is again obtained for the mean-field Green’s functions with
the lowest error (α ∼ 0.75). As a consequence, applying the
evGW procedure produces robust and very accurate results
(red dashed line). Whatever the starting Green’s function, the

mean average error is reduced down to 0.11 eV, which can be
considered as an outstanding value. The corresponding mean
signed error is as low as 0.05 eV [37].

In summary, in this Rapid Communication, we have iden-
tified that the error in the density matrix that permeates all
the way to the final IP can be unacceptably large (as large
as 0.6 eV). There are several routes to improve the density
matrix. Full self-consistency on the Green’s function is one of
these. However, this would imply very heavy calculations and
as the GW spectral functions have very strong satellite peaks
[44], it might not be practical to iterate them. Here we have
applied regular MBPT but within the GW approximation and
have derived an expression for the GW density matrix. The
obtained density matrices have a good accuracy together with
a reasonable computational cost. They are shown to reproduce
fully self-consistent GW dipole moments for four molecules
available in the literature and to approach higher level of the-
ory (CCSD dipole moments). With these density matrices and
the corresponding Hartree and exchange expectation values,
the IP of a series of 34 molecules is noticeably improved.

It would be instructive in the future to investigate the
performance of vertex corrections in combination with the
improved density matrices. The GW density matrix could be
also extended to periodic solids as well, with consequences
not only on band gaps but also on the electronic density
itself.

This work was performed using HPC resources from
GENCI-CCRT-TGCC (Grant No. 2018-096018).
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