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ABSTRACT: The accurate prediction of the optical signatures of cyanine derivatives
remains an important challenge in theoretical chemistry. Indeed, up to now, only the
most expensive quantum chemical methods (CAS-PT2, CC, DMC, etc.) yield
consistent and accurate data, impeding the applications on real-life molecules. Here,
we investigate the lowest lying singlet excitation energies of increasingly long cyanine
dyes within the GW and Bethe−Salpeter Green’s function many-body perturbation
theory. Our results are in remarkable agreement with available coupled-cluster
(exCC3) data, bringing these two single-reference perturbation techniques within a
0.05 eV maximum discrepancy. By comparison, available TD-DFT calculations with
various semilocal, global, or range-separated hybrid functionals, overshoot the
transition energies by a typical error of 0.3−0.6 eV. The obtained accuracy is achieved
with a parameter-free formalism that offers similar accuracy for metallic or insulating,
finite size or extended systems.

1. INTRODUCTION

Streptocyanines, the simplest subgroup of the large cyanine
family, are charged dyes constituted of a chain containing an
odd number of sp2 carbon atoms, capped at its extremities by
(dialkyl)amino groups. These relatively compact molecules
present a very sharp and intense absorption band.1 One of the
key features of the cyanine family is the so-called “vinyl shift”:
the observed λmax undergoes an exceptionally large redshift (ca.
100 nm), for each additional C2H2 unit cell added in the
conjugation path.1 These specific characteristics have made
cyanines and their derivatives (e.g., BODIPY) one of the most
experimentally explored classes of colored compounds.2,3 It is,
therefore, unsurprising that theoretical approaches have been
applied to model cyanines’ optical spectra. Interestingly, the
textbook electron in the box approach is able to successfully
restore the observed vinyl shift,4 but it does not allow to model
substituents effects in a nonempirical way. To go further, the
use of ab initio models is welcome, but the de facto standard for
excited-state simulations in quantum chemistry,5 namely Time-
Dependent Density Functional Theory (TD-DFT), or more
precisely the adiabatic approximation to Casida’s linear-
response approach of TD-DFT,6 cannot be considered as
satisfying for cyanines. Indeed, while the expected TD-DFT
accuracy is 0.2−0.3 eV, if an hybrid exchange-correlation
functional is applied,7,8 comparisons between TD-DFT vertical
transition energies and experimental λmax for cyanines leads to
disappointing results, that is, both huge theoretical over-

estimations of the transition energies (up to 1 eV) and
concomitant underestimations of the vinyl shift are obtained, a
fact recognized since the early 2000s.9,10

This is even more intriguing, as early CAS-PT2 calculations
did not reveal any significant multideterminantal character for
short and medium-sized cyanines.9 The well-known charge-
transfer (CT) problem of conventional TD-DFT11 is not more
suited for explaining the TD-DFT/cyanine difficulty as (i) the
first excited-state of cyanines are highly delocalized and do not
display significant electron transfer compared to the ground-
state (that is the HOMO and LUMO are overlapping); (ii) one
would expect predictions of too small rather than too large
transition energies if CT was the origin of the problem; (iii) the
use of range-separated hybrids does not improve (nor worsen)
the quality of TD-DFT predictions.12 Two main explanations
for the large TD-DFT error have been further proposed: an
incorrect description of the difference of electronic correlation
between the two states,13,14 and the nonverticality of the
process, making the straightforward comparison between
computed vertical energies and experimental λmax particularly
poor for streptocyanines.15,16 For the first aspect, Grimme and
Neese have shown that double hybrids which explicitly include
contributions from the virtual orbitals indeed provide more
accurate estimates than other exchange-correlation functionals,
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but the errors remain rather large (ca. 0.3 eV for long chains)
and the vinyl shift is not yet perfectly reproduced.13 For the
second aspect, Send, Valsson, and Filippi performed a series of
wave function calculations for model cyanines, including
Diffusion Monte Carlo (DMC) and highly accurate coupled-
cluster simulations (exCC3: extrapolated coupled cluster linear
response up to third approximate order), providing reliable
benchmark data.15 For the longest chain examined, containing
nine carbon atoms in the cyanine skeleton, the DMC, exCC3,
and CAS-PT2 (with IEPA shift) vertical energies are 2.62, 2.53,
and 2.46 eV, respectively.15 Taking these values as references, it
can be noted that modern exchange-correlation functionals,
such as M06-2X,17 M08-SO,17 or optimally tuned range-
separated hybrids,14 yield smaller, but far from negligible errors,
ca. 0.3−0.5 eV. All these results seriously impede accurate
comparisons with experimental values for “real-life” cyanines.
On the one hand, highly correlated approaches (e.g., exCC3 or
CAS-PT2) do not allow the calculations of the (important)
excited-state relaxation but for trivial molecules. On the other
hand, TD-DFT transition energies are systematically too large.
For instance, for BODIPY derivatives, which are constrained
cyanines, a systematic overestimation of the experimental 0−0
energies is noticed, even when geometrical and vibrational
relaxation effects are accounted for with a modern exchange-
correlation functional.18

In a series of recent papers,19−31 the gas phase optical
excitation energies of organic molecules have been studied by a
specific family of many-body Green’s functions techniques, the
so-called GW,32−38 and Bethe−Salpeter (BSE)39−45 formalism.
The BSE formalism allows to study optical excitations and was
initially tested at the ab initio level in the late 90s for extended
inorganic systems,43−45 demonstrating a remarkable accuracy in
the description of both localized Frenkel and extended Wannier
excitons. Such an ability to accurately model extended
electron−hole pairs, in which the two particles are on average
spatially separated, was also recently demonstrated for CT
excitations in a series of donor−acceptor molecules and dimers,
such as peptides,22,31 coumarins,29 or push−pull complexes of
interest for photovoltaic applications.26,28,46 In these studies, it
was shown that BSE provides an equivalent accuracy to TD-
DFT relying on optimized range-separated hybrid func-
tionals.47−51 While the BSE formalism preserves the advantage
of being a parameter-free approach valid for both finite and
extended, insulating and metallic compounds, there was, up to
now, no clear-cut indication that BSE might outperform the
best TD-DFT calculations using an adequately selected
functional.
In this contribution, we present a many-body GW and

Bethe−Salpeter perturbation theory study of the model
cyanines (see Scheme 1), which have been previously
investigated with several variational or perturbative ap-
proaches.12−15,17 We show in particular that the BSE lowest

singlet excitation energies come in excellent agreement with
coupled-cluster exCC3 values, with a remarkably small mean
absolute error of 0.03 eV and a maximum discrepancy of 0.05
eV. The Bethe−Salpeter and exCC3 techniques, both “single
reference” methods, are found to lie in between the results
provided by DMC and CAS-PT2 multireference techniques.15

In particular, the Bethe−Salpeter approach does not suffer from
the reported problem associated with TD-DFT calculations.
The present results indicate that the Bethe−Salpeter formalism,
relying on the use of the microscopic screened Coulomb
potential W(r,r′), allows to capture features of the correlation
contribution to the electron-hole matrix elements that are
difficult to describe with available global or range-separated
hybrids.

2. METHOD
We briefly introduce the self-energy formalism that provides a
rigorous framework for calculating quasi-particle energies,
namely occupied and virtual electronic energy levels. In such
an approach, the one-body (quasiparticle) eigenvalue equation
reads:
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where the self-energy Σ(r,r′;E) replaces the well-known
exchange-correlation potential of the density functional theory
or the exchange operator in the Hartree−Fock (HF) formalism.
The self-energy Σ is nonlocal, energy-dependent and non-
Hermitian in general. Derived initially within Schwinger’s
functional derivative approach to perturbation theory,52 the
GW approximation to the self-energy reads:
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where G and W are the time-ordered one-particle Green’s
function and the dynamically screened Coulomb potential,
respectively. The small positive infinitesimal δ = 0+ indicates
that the energy integration can be performed by closing the
contour in the upper half-plane. G and W can be expressed as
follows:
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in terms of the one-body (εn,ϕn) eigenstates, typically DFT
Kohn−Sham (KS) or Hartree−Fock solutions. We have also
introduced the dynamical independent-electron susceptibility
(χ0) and the occupation numbers ( f n). Several groups have
shown that excellent quasi-particle energies can be obtained for

Scheme 1. Sketch of the Investigated Cyanine Dyes
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gas phase organic molecules, in particular when self-consistently
“reinjecting” the calculated quasiparticle energies without
updating the wave functions.26,29,31,46,53−57 Such a partially
self-consistent approach, computationally very efficient, will be
labeled ev-GW@XX, where XX is the acronym of the ground
state method, e.g. XX = HF or XX = PBE, used to generate the
“frozen” input wave functions.
To study the remaining possible dependence on the starting

wave functions, a fully self-consistent approach, where both
energies and wave functions (εn,ϕn) are updated can be
performed within the so-called static Coulomb-hole plus
screened-exchange (COHSEX) approximation to the GW
self-energy. Namely, we perform GW calculations with partial
self-consistency on the eigenvalues, but starting from fully self-
consistent COHSEX eigenstates and eigenenergies. This
scheme has been shown to yield excellent results for transition
metal oxides,58,59 gold,60,61 or quaternary semiconductors,62 in
which the topology of the 3d-orbitals is too strongly affected by
self-interaction with standard semilocal functionals. Such a full
self-consistent approach, where the final results are independ-
ent of the starting input eigenstates, will be simply labeled GW
in the following. The Coulomb-hole (COH) and screened-
exchange (SEX) terms read:
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where the SEX terms, with summation over the occupied states
only, resembles the bare exchange Fock operator, replacing the
bare Coulomb potential by the (statically) screened one. The
COH term corresponds to the adiabatically built interaction of
an electron and its correlation hole.
From the knowledge of the quasiparticle energies and wave

functions, one can in a second step calculate the optical
excitation energies using the Bethe-Salpeter formalism, which
accounts for electron−hole interactions. The BSE equation
resembles Casida’s equation for TD-DFT in the product space
of the occupied and virtual single-particle states, that is, the
excitation energies are the eigenvalues of an electron−hole
Hamiltonian equation:
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where the indexes (i,j) and (a,b) indicate the occupied and
virtual orbitals, and (re,rh) the electron and hole positions,
respectively. In this block notation, the vector [ϕa(re)ϕi(rh)]
represents all excitations (e.g., ϕa(re) means that an electron is
placed into a virtual orbital), while the vector [ϕi(re)ϕa(rh)]
represents all disexcitations. The so-called resonant R part is
Hermitian and reads:
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with η = 1 for the singlet states studied here (η = 0 for triplets).
The quasiparticle energies εa,b,i,j

QP are the GW quasiparticle
energies, while the ϕa,b,i,j are the “frozen” KS, Hartree−Fock,
hybrid or the self-consistent COHSEX eigenfunctions, depend-
ing on the selected GW approach. One can observe that the
matrix elements involving the screened-Coulomb potential W
replace the matrix elements steming from the Fock exchange
operator in TD-DFT with hybrid functionals. Such matrix
elements are responsible, in particular, for the success of the
BSE formalism for CT excitations.47−51,53 Our formalism goes
beyond the Tamm−Dancoff approximation (TDA), allowing
the coupling between resonant (R) and antiresonant (R*)
transitions. TDA is known to yield significant upward shifts in
TD-DFT calculations of cyanines, for example, 0.6 eV with
PBE0.14,17 Consistently, the effect of the TDA on the GW@
BSE excitation energies was found to yield ca. 0.45 eV upward
shifts, the details can be found in the Supporting Information
(SI).
A convergence study of the GW/BSE excitation energy with

respect to correlation-consistent Dunning basis sets,63 displayed
in Table S−III in the SI, showed that augmentation (with the
addition of diffuse orbitals) is crucial and that a triple-ζ basis is
required to have an error smaller than 10 meV. On the other
hand, the oscillator strengths converged rather quickly.
Consequently, our calculations are performed with the all-
electron aug-cc-PVTZ atomic basis set63 using the Fiesta
package26,53 that implements the GW and BSE formalisms
using resolution of the identity techniques. The input (εn,ϕn)
eigenstates are provided by the NWChem package.64 The
needed Coulomb matrix elements are calculated with an even
tempered65 auxiliary basis and the resolution of the identity
technique with the Coulomb metric.66 This even-tempered
basis was found by converging the excitation energies and
oscillator strengths upon varying the number of Gaussians and
the maximum angular channel (see the SI). The minimum and
maximum Gaussian exponents per angular channel were
conservatively fixed to the minimum value of the Kohn−
Sham basis and the maximum value of the product basis (onsite
products of the Kohn−Sham basis). The resulting accuracy is
estimated to be ca. 30 meV. The frequency integral involved in
the evaluation of the dynamical correlations (see eq 2) are
calculated exactly using contour deformation techniques
without any plasmon−pole approximation. All the virtual states
are included in the summation for the calculation of the
susceptibility χ0 and for building the ϕi(re)ϕa(rh) product space
on which the Bethe−Salpeter Hamiltonian is acting. Full
convergence tests can be found in the SI. Within the present
resolution of the identity technique, the GW formalisms offers a
N4 scaling, while the cost of the Bethe−Salpeter calculations is
identical to that of TD-DFT within Casida’s formulation. For
the records, the self-consistent GW/BSE calculations on the
longer CN11 structure amounts to about three hours of CPU
time.67

3. RESULTS AND DISCUSSION
We adopt the PBE0/cc-pVQZ geometry used in the TD-DFT
studies of ref 17. Comparisons with the TD-DFT calculations
performed by Autschbach’s group on the MP2/cc-pVQZ
structures show that the influence of the geometry is
marginal.14 The studied structures are represented in Scheme
1 and given in the SI.
Our calculated BSE excitation energies are compared to

other calculations in Table 1 and in Figure 1. The present
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Bethe−Salpeter formalism, as it stands,68 is a single-reference
approach. Therefore, we have represented our results in Figure
1 as errors with respect to the exCC3 data,15 since it is the most
accurate single-reference technique that has been applied, so
far, to these systems. The variational multideterminental CAS-
PT2 and diffusion Monte Carlo (DMC) data of ref 15. are also
presented and there variation compared to exCC3 are rather
small (ca. 0.15 eV). A discussion of the differences between
these three refined methods is beyond our scope here.15

As indicated in Table 1 and in Figure 1, our BSE excitations
energies based on fully self-consistent GW eigenstates are in
almost perfect agreement with the exCC3 values, with a mean-

absolute error (MAE) of 0.03 eV and a maximum discrepancy
of 0.05 eV for CN11. These deviations are of the order of the
convergence criteria for the auxiliary basis. This is the key result
of the present investigation, since it demonstrates, for the first
time, that one can accurately restore cyanine transition energies
with an ab initio method computationally tractable for large
compounds. In particular, it appears that the BSE values are
significantly different from the TD-DFT results, which are
systematically too high (see the Introduction).
In order to directly compare with exCC3 calculations, which

are based on the HF wave function,69 BSE calculations based
on a partially self-consistent GW approach starting from the HF
wave function have been performed, updating (correcting) only
the quasi-particle energies. This scheme shares with the exCC3
approach the idea that one attempts to correct the excitation
energies without modifying the single-determinant wave
function on which the cluster operator, T for exCC3 or the
GW self-energy or BSE Hamiltonians, are acting. In Figure 1,
the resulting excitation energies (empty red squares) are shown
to agree extremely well with both the fully self-consistent GW/
BSE calculations and exCC3 data for the longest structures,
CN9 and CN11. The agreement remains excellent for CN7,
with a ca. 0.04 eV discrepancy. The largest difference occurs for
the compact CN5, where a ca. 0.10 eV difference can be
observed with respect to exCC3. It was previously noted that
the sensitivity of the excitation energies to correlation and other
wave function parameters is higher in small molecules.15

Besides this moderate difference for the CN5 molecule, the
present results, with a MAE of ca. 0.04 eV for the entire series,
confirm the excellent agreement between BSE and exCC3
approaches.
We now turn to the comparison with the double hybrid

B2PLYP approach by Grimme and Neese.13 This method
mixes standard generalized gradient approximations (GGA) for
exchange and correlation, with Hartree−Fock exchange (53%)
and a perturbative second-order correlation part (PT2) through
explicit summation over the occupied to virtual KS eigenstates.
For the excited-state calculations, B2PLYP includes on top of
the standard TD-DFT results, a CIS(D)-like correction that
allows a more accurate description of doubly excited-states, as
well as the differential correlation between the ground and
excited states. Clearly, the B2PLYP results (orange diamonds in
Figure 1) yield a significant improvement compared to
conventional TD-DFT calculations relying on global or
range-separated hybrids, at least, for the smaller cyanines.
Together with the exCC3 and BSE/GW results, the B2PLYP
results point out to the importance of nonlocal correlations in
cyanines.
Nevertheless, we notice that the B2PLYP transition energies

are located ca. 0.2−0.3 eV above the exCC3 and BSE data.
While several explanations are certainly plausible, including an
incomplete account of the double excitation contributions, we
note that the correlation contributions in B2PLYP were built
out of transitions from occupied to virtual Kohn−Sham
eigenstates, and not from HF or self-consistent GW ones.
Building on the observed differences between our BSE/GW
and BSE/ev-GW@HF results for the smallest CN5 cyanine, we
now start from the same HBLYP hybrid functional (containing
53% of exact-exchange and 73% of LYP correlation) used by
Grimme and Neese to build the nonlocal correlation
contribution to the excitation energies. Namely, we self-
consistently correct the HBLYP single-particle energies while
keeping the HBLYP wave functions frozen. The related BSE/

Table 1. GW Ionization Potentials (IP) and Electronic
Affinities (AE), Together with the GW/BSE Excitation
Energies (ΔE) and Oscillator Strengths ( f)a

CN5 CN7 CN9 CN11

BSE/GW Calculations
IP 13.39 11.78 10.67 9.91
AE 3.76 4.13 4.23 4.33
ΔE 4.80 3.63 2.96 2.48
f 0.48 0.74 1.00 1.24

Reference Calculations
exCC3 ΔE 4.84 3.65 2.96 2.53
DMC ΔE 5.03 3.83 3.09 2.62
CAS-PT2 ΔE 4.69 3.53 2.81 2.46

TD-DFT Calculations
PBE0 ΔE 5.33 4.18 3.50 3.03
B2PLYP ΔE 5.05 3.92 3.25 2.80
CAM-B3LYP ΔE 5.26 4.12 3.44 2.97
M06-2X ΔE 5.23 4.09 3.41 2.95

aEnergies are in eV. The available exCC3, DMC, and CASPT2 values
are from ref 15, and the same holds for TD-DFT but for the M06-2X
data taken in ref 17.

Figure 1. Lowest singlet excitation energies in cyanines as a function
of the number of carbon atoms in the chain. Several theoretical
frameworks are compared. Excitation energies are provided with
respect to the reference exCC3 data. Previous TD-DFT results from
ref 17 are provided with triangles. The double hybrid B2PLYP
calculations taken in ref 15 are indicated with orange diamonds.
Multideterminental CAS-PT2 and DMC data from ref 15 are indicated
by connected hatched and filled black circles, respectively. The shaded
area gathers all TD-DFT data.
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ev-GW@HBLYP data, represented in Figure 1, display a
degradation with respect to both exCC3 and BSE calculations
based on fully self-consistent GW eigenstates, while improving
the agreement with the B2PLYP data. This hints that the
B2PLYP data, with nonlocal correlations built from scaled
second-order perturbation theory, could, in principle, come in
even better agreement with exCC3 and BSE/GW calculations
with a “better” choice of the single-particle states used to build
the occupied to virtual transitions.
This points out again to the sensitivity of the various

perturbative (non self-consistent) correlation contributions to
the starting (zeroth-order) eigenstates. For the sake of
completeness, we provide in Figure 2a comparison between

various partially self-consistent BSE/ev-GW calculations
starting from selected semilocal (PBE) and global hybrid
(B3LYP) eigenstates, keeping the wave functions frozen. For
CN7 and larger cyanines, the discrepancy decreases with the
amount of exact exchange included in the functional used to
generate the zeroth-order eigenstates, while for CN5 the error
seems dominated by the correlation term. We emphasize
however that this “sensitivity” to the starting eigenstates, if one
does not perform fully self-consistent GW calculations, leads to
errors that are ca. 0.2 eV, that is, smaller than the typical TD-
DFT errors. Indeed, all BSE excitation energies lie below the
B2PLYP double hybrid data and are in better agreement with
CAS-PT2, DMC or exCC3 benchmarks.

4. CONCLUSIONS AND OUTLOOK
Using the GW and Bethe−Salpeter Green’s function many-
body perturbation theories, we have studied the lowest lying
singlet excitation energies of increasingly long cyanine dyes.
This family of molecules is one of the few series remaining
particularly challenging for TD-DFT. Indeed, semilocal, global,
or range-separated hybrids, have been shown to lead to
anomalous discrepancies with both experiments70 and accurate
wave function reference methods, such as DMC, CAS-PT2, and

EOM-CC.15 TD-DFT calculations constantly locate transition
energies of cyanines at too large energies, with discrepancies as
large as 0.3−0.6 eV when compared with the above-mentioned
methods. Our self-consistent GW and Bethe−Salpeter calcu-
lations lead to results in remarkable agreement with exCC3,
with a maximum discrepancy of 0.05 eV, landing 0.1−0.15 eV
above (below) the multiconfigurational CAS-PT2 (DMC)
values.
Several extra conclusions may be drawn from the present

study. First, since the GW and Bethe−Salpeter formalisms, as
they stand, cannot deal with multiple excitations, it is unlikely
that the relative failure of TD-DFT lies in the lack of multiple
excitations associated with the use of adiabatic kernels. Further,
one can emphasize that the GW and BSE approaches explicitly
construct a nonlocal correlation contribution to the electron−
hole interaction thanks to an explicit summation of occupied to
virtual transitions between GW quasiparticle orbitals. This may
corroborate the idea pushed forward by Grimme and Neese13

that double-hybrid functionals, namely an hybrid TD-DFT
calculation corrected by second-order perturbation theory for
adding the effect of nonlocal correlations, may improve TD-
DFT estimates for such compounds. Partially self-consistent
GW and BSE calculations based on the “frozen” KS HBLYP
eigenstates used by Grimme and Neese to build their
correlation contribution, leads to excitation energies in much
better agreement with both the DMC and the double-hybrid
TD-DFT calculations, and hence, worsening slightly the
agreement with the exCC3 values. Both the near perfect
agreement with the exCC3 values, and the lack of initial state
dependence, leads us to favor the fully self-consistent GW
approach. We observe, however, that this sensitivity to the
starting point mean-field eigenstates remains rather limited,
leaving all the perturbation techniques in close agreement
(within 0.2 eV), as compared to the discrepancy related to the
TD-DFT values.
As such, BSE stands as a very promising ab initio scheme that

is both accurate and practically applicable for predicting the
transition energies of cyanine derivatives, and applications to
industrially relevant molecules is under way in our teams.
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