\documentclass[aip,jcp,reprint,noshowkeys]{revtex4-1} \usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable,wrapfig,txfonts} \usepackage{natbib} \usepackage[extra]{tipa} \bibliographystyle{achemso} \AtBeginDocument{\nocite{achemso-control}} \usepackage{hyperref} \hypersetup{ colorlinks=true, linkcolor=blue, filecolor=blue, urlcolor=blue, citecolor=blue } \urlstyle{same} \newcommand{\alert}[1]{\textcolor{red}{#1}} \definecolor{darkgreen}{HTML}{009900} \usepackage[normalem]{ulem} \newcommand{\titou}[1]{\textcolor{red}{#1}} \newcommand{\jt}[1]{\textcolor{purple}{#1}} \newcommand{\manu}[1]{\textcolor{darkgreen}{#1}} \newcommand{\toto}[1]{\textcolor{brown}{#1}} \newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}} \newcommand{\trashJT}[1]{\textcolor{purple}{\sout{#1}}} \newcommand{\trashMG}[1]{\textcolor{darkgreen}{\sout{#1}}} \newcommand{\trashAS}[1]{\textcolor{brown}{\sout{#1}}} \newcommand{\MG}[1]{\manu{(\underline{\bf MG}: #1)}} \newcommand{\JT}[1]{\juju{(\underline{\bf JT}: #1)}} \newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}} \newcommand{\AS}[1]{\toto{(\underline{\bf AS}: #1)}} \usepackage{hyperref} \hypersetup{ colorlinks=true, linkcolor=blue, filecolor=blue, urlcolor=blue, citecolor=blue } \newcommand{\mc}{\multicolumn} \newcommand{\fnm}{\footnotemark} \newcommand{\fnt}{\footnotetext} \newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}} \newcommand{\SI}{\textcolor{blue}{supporting information}} \newcommand{\QP}{\textsc{quantum package}} % methods \newcommand{\evGW}{ev{\GW}} \newcommand{\qsGW}{qs{\GW}} \newcommand{\GOWO}{$G_0W_0$} \newcommand{\GW}{$GW$} \newcommand{\GnWn}[1]{$G_{#1}W_{#1}$} % operators \newcommand{\hH}{\Hat{H}} % energies \newcommand{\Ec}{E_\text{c}} \newcommand{\EHF}{E_\text{HF}} \newcommand{\EKS}{E_\text{KS}} \newcommand{\EcK}{E_\text{c}^\text{Klein}} \newcommand{\EcRPA}{E_\text{c}^\text{RPA}} \newcommand{\EcGM}{E_\text{c}^\text{GM}} \newcommand{\EcMP}{E_c^\text{MP2}} \newcommand{\Egap}{E_\text{gap}} \newcommand{\IP}{\text{IP}} \newcommand{\EA}{\text{EA}} \newcommand{\RH}{R_{\ce{H2}}} \newcommand{\RF}{R_{\ce{F2}}} \newcommand{\RBeO}{R_{\ce{BeO}}} \newcommand{\CBS}{\text{CBS}} \newcommand{\LDA}{\text{LDA}} \newcommand{\PBE}{\text{PBE}} % orbital energies \newcommand{\e}[1]{\epsilon_{#1}} \newcommand{\eHF}[1]{\epsilon^\text{HF}_{#1}} \newcommand{\eKS}[1]{\epsilon^\text{KS}_{#1}} \newcommand{\eQP}[1]{\epsilon^\text{QP}_{#1}} \newcommand{\eGOWO}[1]{\epsilon^\text{\GOWO}_{#1}} \newcommand{\beGOWO}[1]{\Bar{\epsilon}^\text{\GOWO}_{#1}} \newcommand{\eGW}[1]{\epsilon^\text{\GW}_{#1}} \newcommand{\eGnWn}[2]{\epsilon^\text{\GnWn{#2}}_{#1}} \newcommand{\de}[1]{\Delta\epsilon_{#1}} \newcommand{\deHF}[1]{\Delta\epsilon^\text{HF}_{#1}} \newcommand{\Om}[1]{\Omega_{#1}} \newcommand{\eHOMO}{\epsilon_\text{HOMO}} \newcommand{\eLUMO}{\epsilon_\text{LUMO}} \newcommand{\HOMO}{\text{HOMO}} \newcommand{\LUMO}{\text{LUMO}} % Matrix elements \newcommand{\A}[1]{A_{#1}} \newcommand{\B}[1]{B_{#1}} \newcommand{\G}[2]{G_{#1}^{#2}} \newcommand{\Gs}[1]{G_\text{s}^{#1}} \newcommand{\F}[2]{F_{#1}^{#2}} \newcommand{\Po}[2]{P_{#1}^{#2}} \newcommand{\W}[2]{W_{#1}^{#2}} \newcommand{\Wc}[1]{W_{#1}^\text{c}} \newcommand{\vc}[2]{\varv_{#1}^{#2}} \newcommand{\pot}[2]{v_{#1}^{#2}} \newcommand{\Pot}[2]{V_{#1}^{#2}} \newcommand{\bpot}[2]{\Bar{v}_{#1}^{#2}} \newcommand{\bPot}[2]{\Bar{V}_{#1}^{#2}} \newcommand{\Sig}[2]{\Sigma_{#1}^{#2}} \newcommand{\bSig}[2]{\Bar{\Sigma}_{#1}^{#2}} \newcommand{\Z}[1]{Z_{#1}} \newcommand{\Gam}[2]{\Gamma_{#1}^{#2}} % Matrices %\newcommand{\bG}{\boldsymbol{G}} %\newcommand{\bW}{\boldsymbol{W}} %\newcommand{\bvc}{\boldsymbol{v}} %\newcommand{\bSig}{\boldsymbol{\Sigma}} %\newcommand{\bSigX}{\boldsymbol{\Sigma}^\text{x}} %\newcommand{\bSigC}{\boldsymbol{\Sigma}^\text{c}} %\newcommand{\bSigGW}{\boldsymbol{\Sigma}^\text{\GW}} %\newcommand{\be}{\boldsymbol{\epsilon}} %\newcommand{\bDelta}{\boldsymbol{\Delta}} %\newcommand{\beHF}{\boldsymbol{\epsilon}^\text{HF}} %\newcommand{\beGW}{\boldsymbol{\epsilon}^\text{\GW}} %\newcommand{\beGnWn}[1]{\boldsymbol{\epsilon}^\text{\GnWn{#1}}} %\newcommand{\bdeGnWn}[1]{\Delta\boldsymbol{\epsilon}^\text{\GnWn{#1}}} %\newcommand{\bde}{\boldsymbol{\Delta\epsilon}} %\newcommand{\bdeHF}{\boldsymbol{\Delta\epsilon}^\text{HF}} %\newcommand{\bdeGW}{\boldsymbol{\Delta\epsilon}^\text{GW}} \newcommand{\bOm}{\boldsymbol{\Omega}} \newcommand{\bA}{\boldsymbol{A}} \newcommand{\bB}{\boldsymbol{B}} \newcommand{\bX}{\boldsymbol{X}} \newcommand{\bY}{\boldsymbol{Y}} \newcommand{\bZ}{\boldsymbol{Z}} \newcommand{\fc}{f_\text{c}} \newcommand{\Vc}{V_\text{c}} \newcommand{\MO}[1]{\phi_{#1}} % coordinates \renewcommand{\b}[1]{\mathbf{#1}} \renewcommand{\d}{\text{d}} % operators \newcommand{\hT}{\Hat{T}} \newcommand{\hWee}[1]{\Hat{W}_\text{ee}^{#1}} % coordinates \newcommand{\br}[1]{\mathbf{r}_{#1}} \newcommand{\dbr}[1]{d\br{#1}} \newcommand{\Bas}{\mathcal{B}} \newcommand{\cD}{\mathcal{D}} \newcommand{\Ne}{N} \newcommand{\vne}{v_\text{ne}} \newcommand{\n}[2]{n_{#1}^{#2}} \newcommand{\E}[2]{E_{#1}^{#2}} \newcommand{\DE}[2]{\Delta E_{#1}^{#2}} \newcommand{\bE}[2]{\Bar{E}_{#1}^{#2}} \newcommand{\DbE}[2]{\Delta \Bar{E}_{#1}^{#2}} \newcommand{\bEc}[1]{\Bar{E}_\text{c,md}^{#1}} %\newcommand{\e}[2]{\varepsilon_{#1}^{#2}} %\newcommand{\be}[2]{\Bar{\varepsilon}_{#1}^{#2}} \newcommand{\bec}[1]{\Bar{e}^{#1}} \newcommand{\wf}[2]{\Psi_{#1}^{#2}} %\newcommand{\W}[2]{W_{#1}^{#2}} \newcommand{\w}[2]{w_{#1}^{#2}} \newcommand{\hn}[2]{\Hat{n}_{#1}^{#2}} \newcommand{\rsmu}[2]{\mu_{#1}^{#2}} \newcommand{\V}[2]{V_{#1}^{#2}} \newcommand{\SO}[2]{\phi_{#1}(\br{#2})} \newcommand{\HF}{\text{HF}} \newcommand{\KS}{\text{KS}} \newcommand{\Hxc}{\text{Hxc}} \newcommand{\Hx}{\text{Hx}} \newcommand{\xc}{\text{xc}} % units \newcommand{\IneV}[1]{#1 eV} \newcommand{\InAU}[1]{#1 a.u.} \newcommand{\InAA}[1]{#1 \AA} \newcommand{\kcal}{kcal/mol} \newcommand{\ISCD}{Institut des Sciences du Calcul et des Donn\'ees, Sorbonne Universit\'e, Paris, France} \newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France} \newcommand{\LCT}{Laboratoire de Chimie Th\'eorique (UMR 7616), Sorbonne Universit\'e, CNRS, Paris, France} \begin{document} \title{A Density-Based Basis Set Correction for GW Methods} \author{Pierre-Fran\c{c}ois Loos} \email[Corresponding author: ]{loos@irsamc.ups-tlse.fr} \affiliation{\LCPQ} \author{Bath\'elemy Pradines} \affiliation{\LCT} \affiliation{\ISCD} \author{Anthony Scemama} \affiliation{\LCPQ} \author{Emmanuel Giner} \affiliation{\LCT} \author{Julien Toulouse} \email[Corresponding author: ]{toulouse@lct.jussieu.fr} \affiliation{\LCT} \begin{abstract} %\begin{wrapfigure}[13]{o}[-1.25cm]{0.5\linewidth} % \centering % \includegraphics[width=\linewidth]{TOC} %\end{wrapfigure} Similar to other electron correlation methods, many-body perturbation theory methods, such as the so-called $GW$ approximation, suffer from the usual slow convergence of energetic properties with respect to the size of the one-electron basis set. This displeasing feature is due to lack of explicit electron-electron terms modeling the infamous ``Kato'' cusp (at the electron-electron coalescence points) and the correlation Coulomb hole around it. Here, we propose a computationally efficient density-based basis set correction based on short-range correlation density functionals which significantly speed up the convergence of energetics towards the complete basis set limit. The performance of this density-based correction is illustrated by computing the ionization potentials of the twenty smallest atoms and molecules of the GW100 test set at the perturbative $GW$ (or $G_0W_0$) level using increasingly large basis sets. We also compute the ionization potentials of the five canonical nucleobase (adenine, cytosine, thymine, guanine and uracil) and show that, here again, a significant improvement is obtained. \end{abstract} \maketitle %%%%%%%%%%%%%%%%%%%%%%%% \section{Introduction} \label{sec:intro} %%%%%%%%%%%%%%%%%%%%%%%% The purpose of many-body perturbation theory (MBPT) is to solve the formidable many-body problem by adding the electron-electron Coulomb interaction perturbatively starting from an independent-particle model. \cite{MarReiCep-BOOK-16} In MBPT, the \textit{screening} of the Coulomb interaction is a central quantity, and is responsible for a rich variety of phenomena that would be otherwise absent (such as quasiparticle satellites and lifetimes). \cite{Aryasetiawan_1998, Onida_2002, Reining_2017} The so-called {\GW} approximation is the workhorse of MBPT and has a long and successful history in the calculation of the electronic structure of solids \cite{Aryasetiawan_1998, Onida_2002, Reining_2017} and is getting increasingly popular in molecular systems \cite{Blase_2011, Faber_2011, Bruneval_2012, Bruneval_2013, Bruneval_2015, Bruneval_2016, Bruneval_2016a, Boulanger_2014, Blase_2016, Li_2017, Hung_2016, Hung_2017, vanSetten_2015, vanSetten_2018, Ou_2016, Ou_2018, Faber_2014} thanks to efficient implementation relying on local basis functions. \cite{Blase_2011, Blase_2018, Bruneval_2016, vanSetten_2013, Kaplan_2015, Kaplan_2016, Krause_2017, Caruso_2012, Caruso_2013, Caruso_2013a, Caruso_2013b} The {\GW} approximation stems from the acclaimed Hedin's equations \cite{Hedin_1965} \begin{subequations} \begin{align} \label{eq:G} & \G{}{}(12) = \G{0}{}(12) + \int \G{0}{}(13) \Sig{}{}(34) \G{}{}(42) d(34), \\ \label{eq:Gamma} & \Gam{}{}(123) = \delta(12) \delta(13) \notag \\ & \qquad \qquad + \int \fdv{\Sig{}{}(12)}{\G{}{}(45)} \G{}{}(46) G(75) \Gam{}{}(673) d(4567), \\ \label{eq:P} & \Po{}{}(12) = - i \int G(13) \Gam{}{}(324) G(41) d(34), \\ \label{eq:W} & \W{}{}(12) = \vc{}{}(12) + \int \vc{}{}(13) \Po{}{}(34) \W{}{}(42) d(34), \\ \label{eq:Sig} & \Sig{}{}(12) = i \int \G{}{}(13) \W{}{}(14) \Gam{}{}(324) d(34), \end{align} \end{subequations} which connects the Green's function $\G{}{}$, its non-interacting version $\G{0}{}$, the irreducible vertex function $\Gam{}{}$, the irreducible polarizability $\Po{}{}$, the dynamically-screened Coulomb interaction $\W{}{}$ and the self-energy $\Sig{}{}$, where $\vc{}{}$ is the bare Coulomb interaction, $\delta(12)$ is Dirac's delta function \cite{NISTbook} and $(1)$ is a composite coordinate gathering spin, space and time variables $(\sigma_1,\br{1},t_1)$. Within the {\GW} approximation, one bypasses the calculation of the vertex corrections by setting \begin{equation} \label{eq:GW} \Gam{}{}(123) \stackrel{GW}{\approx} \delta(12) \delta(13). \end{equation} Depending on the degree of self-consistency one is willing to perform, there exists several types of {\GW} calculations. \cite{Loos_2018} The simplest and most popular variant of {\GW} is perturbative {\GW}, or {\GOWO}. \cite{Hybertsen_1985a, Hybertsen_1986} Although obviously starting-point dependent, it has been widely used in the literature to study solids, atoms and molecules. \cite{Bruneval_2012, Bruneval_2013, vanSetten_2015, vanSetten_2018} For finite systems such as atoms and molecules, partially \cite{Hybertsen_1986, Shishkin_2007, Blase_2011, Faber_2011} or fully self-consistent \cite{Caruso_2012, Caruso_2013, Caruso_2013a, Caruso_2013b} {\GW} methods have shown great promise. \cite{Ke_2011, Blase_2011, Faber_2011, Koval_2014, Hung_2016, Blase_2018, Jacquemin_2017} Similar to other electron correlation methods, MBPT methods suffer from the usual slow convergence of energetic properties with respect to the size of the one-electron basis set. This can be tracked down to the lack of explicit electron-electron terms modeling the infamous electron-electron coalescence point (also known as Kato cusp \cite{Kat-CPAM-57}) and, more specifically, the Coulomb correlation hole around it. Pioneered by Hylleraas \cite{Hyl-ZP-29} in the 1930's and popularized in the 1990's by Kutzelnigg and coworkers \cite{Kut-TCA-85, NogKut-JCP-94, KutKlo-JCP-91} (and subsequently others \cite{KonBisVal-CR-12, HatKloKohTew-CR-12, TenNog-WIREs-12, GruHirOhnTen-JCP-17}), the so-called F12 methods overcome this slow convergence by employing geminal basis functions that closely resemble the correlation holes in electronic wave functions. F12 methods are now routinely employed in computational chemistry and provide robust tools for electronic structure calculations where small basis sets may be used to obtain near complete basis set (CBS) limit accuracy. \cite{TewKloNeiHat-PCCP-07} The basis-set correction presented here follow a different avenue, and relies on the range-separated density-functional theory (RS-DFT) formalism to capture, thanks to a short-range correlation functional, the missing part of the short-range correlation effects. \cite{GinPraFerAssSavTou-JCP-18} As shown in recent studies on both ground- and excited-state properties, \cite{LooPraSceTouGin-JPCL-19, GinSceTouLoo-JCP-19} similar to F12 methods, it significantly speeds up the convergence of energetics towards the CBS limit while avoiding the usage of large auxiliary basis sets that are used in F12 methods to avoid the numerous three- and four-electron integrals. \cite{KonBisVal-CR-12, HatKloKohTew-CR-12, TenNog-WIREs-12, GruHirOhnTen-JCP-17, Barca_2018} Explicitly correlated F12 correction schemes have been derived for second-order Green's function methods (GF2) \cite{SzaboBook, Casida_1989, Casida_1991, Stefanucci_2013, Ortiz_2013, Phillips_2014, Phillips_2015, Rusakov_2014, Rusakov_2016, Hirata_2015, Hirata_2017, Loos_2018} by Ten-no and coworkers \cite{Ohnishi_2016, Johnson_2018} and Valeev and coworkers. \cite{Pavosevic_2017, Teke_2019} However, to the best of our knowledge, a F12-based correction for {\GW} has not been designed yet. In the present manuscript, we illustrate the performance of the density-based basis set correction developed in Refs.~\onlinecite{GinPraFerAssSavTou-JCP-18, LooPraSceTouGin-JPCL-19, GinSceTouLoo-JCP-19} on ionization potentials obtained within {\GOWO}. Note that the the present basis set correction can be straightforwardly applied to other properties (\textit{e.g.}, electron affinities and fundamental gap), as well as other flavours of (self-consistent) {\GW} or Green's function-based methods, such as GF2 (and its higher-order variants). Moreover, we are currently investigating the performances of the present approach for linear response theory, in order to speed up the convergence of excitation energies obtained within the random-phase approximation (RPA) \cite{Casida_1995, Dreuw_2005} and Bethe-Salpeter equation (BSE) formalism. \cite{Strinati_1988, Leng_2016, Blase_2018} The paper is organised as follows. In Sec.~\ref{sec:theory}, we provide details about the theory behind the present basis set correction and its adaptation to {\GW} methods. Results are reported and discussed in Sec.~\ref{sec:results}. Finally, we draw our conclusions in Sec.~\ref{sec:conclusion}. Unless otherwise stated, atomic units are used throughout. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Theory} \label{sec:theory} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{MBPT with DFT basis set correction} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Following Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we start by defining, for a $\Ne$-electron system with nuclei-electron potential $\vne(\b{r})$, the approximate ground-state energy for one-electron densities $\n{}{}$ which are ``representable'' in a finite basis set $\Bas$ \begin{equation} \E{0}{\Bas} = \min_{\n{}{} \in \cD^\Bas} \qty{ \F{}{}[n] + \int \vne(\br{}) \n{}{}(\br{}) \dbr{} }, \label{eq:E0B} \end{equation} where $\cD^\Bas$ is the set of $\Ne$-representable densities which can be extracted from a wave function $\Psi^\Bas$ expandable in the Hilbert space generated by $\Bas$. In this expression, \begin{equation} \F{}{}[n] = \min_{\Psi \rightsquigarrow \n{}{}} \mel*{\Psi}{\hT + \hWee{}}{\Psi} \end{equation} is the exact Levy-Lieb universal density functional, where the notation $\wf{}{} \rightsquigarrow \n{}{}$ in Eq.~\eqref{eq:E0B} states that $\wf{}{}$ yields the one-electron density $\n{}{}$. $\hT$ and $\hWee{}$ are the kinetic and electron-electron interaction operators, which is then decomposed as \begin{equation} \F{}{}[\n{}{}] = \F{}{\Bas}[\n{}{}] + \bE{}{\Bas}[\n{}{}], \label{eq:Fn} \end{equation} where $\F{}{\Bas}[\n{}{}]$ is the Levy-Lieb density functional \cite{Lev-PNAS-79, Lev-PRA-82, Lie-IJQC-83} with wave functions $\Psi^\Bas$ expandable in the Hilbert space generated by $\Bas$ \begin{equation} \F{}{\Bas}[\n{}{}] = \min_{\Psi^\Bas \rightsquigarrow \n{}{}} \mel*{\Psi^\Bas}{ \hT + \hWee{}}{\Psi^\Bas}, \end{equation} and $\bE{}{\Bas}[\n{}{}]$ is the complementary basis-correction density functional. \cite{GinPraFerAssSavTou-JCP-18} In the present work, instead of using wave-function methods for calculating $\F{}{\Bas}[\n{}{}]$, we re-express it with a constrained search over $\Ne$-representable one-electron Green's functions $\G{}{\Bas}(\br{},\br{}',\omega)$ representable in the basis set $\Bas$ \begin{equation} \F{}{\Bas}[\n{}{}] = \min_{\G{}{\Bas} \rightsquigarrow \n{}{}} \Omega^\Bas[\G{}{\Bas}], \label{eq:FBn} \end{equation} where $\Omega^\Bas[G]$ is chosen to be a Klein-like energy functional of the Green's function (see, \textit{e.g.}, Refs.~\onlinecite{SteLee-BOOK-13,MarReiCep-BOOK-16,DahLee-JCP-05,DahLeeBar-IJQC-05,DahLeeBar-PRA-06}) \begin{equation} \Omega^\Bas[\G{}{}] = \Tr[\ln( - \G{}{} ) ] - \Tr[ (\Gs{\Bas})^{-1} \G{}{} - 1 ] + \Phi_\Hxc^\Bas[\G{}{}], \label{eq:OmegaB} \end{equation} where $(\Gs{\Bas})^{-1}$ is the projection into $\Bas$ of the inverse free-particle Green's function \begin{equation} (\Gs{})^{-1}(\br{},\br{}',\omega)= \qty(\omega + \frac{\nabla^2_{\br{}}}{2} ) \delta(\br{}-\br{}'), \end{equation} and \begin{equation} \Tr[A B] = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} d\omega \, e^{i \omega 0^+} \iint A(\br{},\br{}',\omega) B(\br{}',\br{}{},\omega) \dbr{} \dbr{}'. \end{equation} In Eq.~\eqref{eq:OmegaB}, $\Phi_\Hxc^\Bas[\G{}{}]$ is a Hartree-exchange-correlation ($\Hxc$) functional of the Green's function such as its functional derivatives yields the Hxc self-energy in the basis \begin{equation} \fdv{\Phi_\Hxc^\Bas[\G{}{}]}{\G{}{}(\br{},\br{}',\omega)} = \Sig{\Hxc}{\Bas}[\G{}{}](\br{},\br{}',\omega). \end{equation} Inserting Eqs.~\eqref{eq:Fn} and \eqref{eq:FBn} into Eq.~\eqref{eq:E0B}, we finally arrive at \begin{equation} \E{0}{\Bas} = \min_{\G{}{\Bas}} \qty{ \Omega^\Bas[\G{}{\Bas}] + \int \vne(\br{}) \n{\G{}{\Bas}}{}(\br{}) \dbr{} + \bE{}{\Bas}[\n{\G{}{\Bas}}{}] }, \label{eq:E0BGB} \end{equation} where the minimization is over $\Ne$-representable one-electron Green's functions $\G{}{\Bas}(\br{},\br{}',\omega)$ representable in the basis set $\Bas$. The stationary condition from Eq.~\eqref{eq:E0BGB} gives the following Dyson equation \begin{equation} (\G{}{\Bas})^{-1} = (\G{0}{\Bas})^{-1}- \Sig{\Hxc}{\Bas}[\G{}{\Bas}]- \bSig{}{\Bas}[\n{\G{}{\Bas}}{}], \label{eq:Dyson} \end{equation} where $(\G{0}{\Bas})^{-1}$ is the basis projection of the inverse non-interacting Green's function with potential $\vne(\b{r})$ \begin{equation} (\G{0}{})^{-1}(\br{},\br{}',\omega)= \qty(\omega + \frac{\nabla_{\br{}}^2}{2} + \vne(\br{}) + \lambda) \delta(\br{}-\br{}') \end{equation} with the chemical potential $\lambda$, and $\bSig{}{\Bas}$ is a frequency-independent local self-energy coming from the functional derivative of the complementary basis-correction density functional \begin{equation} \bSig{}{\Bas}[\n{}{}](\br{},\br{}') = \bpot{}{\Bas}[\n{}{}](\br{}) \delta(\br{}-\br{}'), \end{equation} with $\bpot{}{\Bas}[\n{}{}](\br{}) = \delta \bE{}{\Bas}[\n{}{}] / \delta \n{}{}(\br{})$. The solution of the Dyson equation \eqref{eq:Dyson} gives the Green's function $\G{}{\Bas}(\br{},\br{}',\omega)$ which is not exact (even using the exact complementary basis-correction density functional $\bSig{}{\Bas}[\n{}{}]$) but should converge more rapidly with the basis set thanks to the presence of the basis-set correction $\bSig{}{\Bas}$. Of course, in the CBS limit, the basis-set correction vanishes and the Green's function becomes exact, \textit{i.e.}, \begin{align} \lim_{\Bas \to \CBS} \bSig{}{\Bas} & = 0, & \lim_{\Bas \to \CBS} \G{}{\Bas} & = \G{}{}. \end{align} The Dyson equation \eqref{eq:Dyson} can be written with an arbitrary reference \begin{equation} (\G{}{\Bas})^{-1} = (\G{\text{ref}}{\Bas})^{-1} - \qty( \Sig{\Hxc}{\Bas}[\G{}{\Bas}]- \Sig{\text{ref}}{\Bas} ) - \bSig{}{\Bas}[\n{\G{}{\Bas}}{}], \end{equation} where $(\G{\text{ref}}{\Bas})^{-1} = (\G{0}{\Bas})^{-1} - \Sig{\text{ref}}{\Bas}$. For example, if the reference is Hartree-Fock ($\HF$), $\Sig{\text{ref}}{\Bas}(\br{},\br{}') = \Sig{\Hx,\HF}{\Bas}(\br{},\br{}')$ is the $\HF$ nonlocal self-energy, and if the reference is Kohn-Sham ($\KS$), $\Sig{\text{ref}}{\Bas}(\br{},\br{}') = \pot{\Hxc}{\Bas}(\br{}) \delta(\br{}-\br{}')$ is the local $\Hxc$ potential. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{The {\GW} Approximation} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% In this section, we provide the minimal set of equations required to describe {\GOWO}. More details can be found, for example, in Refs.~\citenum{vanSetten_2013, Kaplan_2016, Bruneval_2016}. For sake of generality, we consider a $\KS$ reference. The one-electron energies $\e{p}$ and their corresponding orbitals $\MO{p}(\br{})$ (which defines our basis set $\Bas$) are then $\KS$ energies and orbitals. For a given (occupied or virtual) orbital $p$, the correlation part of the self-energy read, within the {\GW} approximation, \begin{equation} \label{eq:SigC} \begin{split} \Sig{\text{c},p}{\Bas}(\omega) & = \mel*{\MO{p}}{\Sig{\text{c}}{\Bas}(\omega)}{\MO{p}} \\ & = 2 \sum_{i}^\text{occ} \sum_{x} \frac{[pi|x]^2}{\omega - \e{i} + \Om{x} - i \eta} \\ & + 2 \sum_{a}^\text{virt} \sum_{x} \frac{[pa|x]^2}{\omega - \e{a} - \Om{x} + i \eta}, \end{split} \end{equation} where $\eta$ is a positive infinitesimal. The screened two-electron integrals \begin{equation} [pq|x] = \sum_{ia} (pq|ia) (\bX+\bY)_{ia}^{x} \end{equation} are obtained via the contraction of the bare two-electron integrals \cite{Gill_1994} \begin{equation} (pq|rs) = \iint \MO{p}(\br{}) \MO{q}(\br{}) \frac{1}{r_{12}} \MO{r}(\br{}') \MO{s}(\br{}') \dbr{} \dbr{}', \end{equation} and the transition densities $(\bX+\bY)_{ia}^{x}$ originating from a random phase approximation (RPA) calculation \cite{Casida_1995, Dreuw_2005} \begin{equation} \label{eq:LR} \begin{pmatrix} \bA & \bB \\ -\bB & -\bA \\ \end{pmatrix} \begin{pmatrix} \bX \\ \bY \\ \end{pmatrix} = \bOm \begin{pmatrix} \bX \\ \bY \\ \end{pmatrix}, \end{equation} with \begin{align} \label{eq:RPA} A_{ia,jb} & = \delta_{ij} \delta_{ab} (\e{a} - \e{i}) + 2 (ia|jb), & B_{ia,jb} & = 2 (ia|bj), \end{align} and $\delta_{pq}$ is the Kronecker delta. \cite{NISTbook} Equation \eqref{eq:LR} also provides the RPA neutral excitation energies $\Om{x}$ which are used to build the screened Coulomb potential $\W{}{}$. The {\GOWO} quasiparticle energies $\eGOWO{p}$ are provided by the solution of the (non-linear) quasiparticle equation \cite{Hybertsen_1985a, vanSetten_2013, Veril_2018} \begin{equation} \label{eq:QP-G0W0} \omega = \e{p} - \Pot{\xc,p}{\Bas} + \Sig{\text{x},p}{\Bas} + \Re[\Sig{\text{c},p}{\Bas}(\omega)]. \end{equation} with the largest renormalization weight (or factor) \begin{equation} \label{eq:Z} \Z{p} = \qty[ 1 - \left. \pdv{\Re[\Sig{\text{c},p}{\Bas}(\omega)]}{\omega} \right|_{\omega = \e{p}}]^{-1}. \end{equation} Because of sum rules, \cite{Martin_1959, Baym_1961, Baym_1962, vonBarth_1996} the other solutions, known as satellites, share the remaining weight. In Eq.~\eqref{eq:QP-G0W0}, $\Sig{\text{x},p}{\Bas} = \mel*{\MO{p}}{\Sig{\text{x}}{\Bas}}{\MO{p}}$ is the (static) exchange part of the self-energy and \begin{equation} \Pot{\xc}{\Bas} = \int \pot{\xc}{\Bas}(\br{}) \MO{p}(\br{})^2 \dbr{}. \end{equation} In particular, the ionization potential (IP) and electron affinity (EA) are defined as \cite{SzaboBook} \begin{align} \IP & = -\eGOWO{\HOMO}, & \EA & = -\eGOWO{\LUMO}, \end{align} where $\eGOWO{\HOMO}$ and $\eGOWO{\LUMO}$ are the HOMO and LUMO orbital energies, respectively. %%%%%%%%%%%%%%%%%%%%%%%% \subsection{Short-range correlation functionals} \label{sec:srDFT} %%%%%%%%%%%%%%%%%%%%%%%% The frequency-independent local self-energy $\bSig{}{\Bas}[\n{}{}](\br{},\br{}') = \bpot{}{\Bas}[\n{}{}](\br{}) \delta(\br{}-\br{}')$ originates from the functional derivative of complementary basis-correction density functionals $\bpot{}{\Bas}[\n{}{}](\br{}) = \delta \bE{}{\Bas}[\n{}{}] / \delta \n{}{}(\br{})$. Here, we employ two types of complementary, short-range correlation functionals $\bE{}{\Bas}[\n{}{}]$: a local-density approximation ($\LDA$) functional with multideterminant reference \cite{PazMorGorBac-PRB-06} and a Perdew-Burke-Ernzerhof ($\PBE$) inspired correlation functional \cite{FerGinTou-JCP-19} which interpolates between the usual PBE functional \cite{PerBurErn-PRL-96} at $\mu = 0$ and the exact large-$\mu$ behavior. \cite{TouColSav-PRA-04, GorSav-PRA-06, PazMorGorBac-PRB-06} Additionally to the one-electron density, these RS-DFT functionals requires a range-separation function $\rsmu{}{\Bas}(\br{})$ which automatically adapts to the spatial non-homogeneity of the basis-set incompleteness error. We refer the interested reader to Refs.~\onlinecite{GinPraFerAssSavTou-JCP-18, LooPraSceTouGin-JPCL-19, GinSceTouLoo-JCP-19} where our procedure is thoroughly detailed and the explicit expressions of these two short-range correlation functionals are provided. The basis set corrected {\GOWO} quasiparticle energies are thus given by \begin{equation} \beGOWO{p} = \eGOWO{p} + \bPot{}{\Bas} \label{eq:QP-corrected} \end{equation} with \begin{equation} \begin{split} \bPot{}{\Bas} & = \int \bSig{}{\Bas}[\n{}{}](\br{},\br{}') \MO{p}(\br{}) \MO{p}(\br{}') \dbr{} \dbr{}' \\ & = \int \bpot{}{\Bas}[\n{}{}](\br{}) \MO{p}(\br{})^2 \dbr{}. \end{split} \end{equation} As evidenced by Eq.~\eqref{eq:QP-corrected}, the present basis set correction is a non-self-consistent, \textit{post}-GW correction. Although outside the scope of this study, various other strategies can be potentially designed, for example, within linearized {\GOWO} or self-consistent GW calculations. %%%%%%%%%%%%%%%%%%%%%%%% \section{Computational details} \label{sec:compdetails} %%%%%%%%%%%%%%%%%%%%%%%% All the geometries have been extracted from the GW100 set. \cite{vanSetten_2015} Unless otherwise stated, all the {\GOWO} calculations have been performed with MOLGW developed by Bruneval and coworkers. \cite{Bruneval_2016a} The HF, PBE and PBE0 calculations as well as the srLDA and srPBE basis set corrections have been computed with Quantum Package, \cite{QP2} which by default uses the SG-2 quadrature grid for the numerical integrations. Frozen-core (FC) calculations are systematically performed. The FC density-based correction is used consistently with the FC approximation in the {\GOWO} calculations. The {\GOWO} quasiparticle energies have been obtained ``graphically'', \textit{i.e.}, by solving the non-linear, frequency-dependent quasiparticle equation (without linearization). Moreover, the infinitesimal $\eta$ has been set to zero. %%%%%%%%%%%%%%%%%%%%%%%% \section{Results and Discussion} \label{sec:results} %%%%%%%%%%%%%%%%%%%%%%%% In this section, we study a subset of atoms and molecules from the GW100 test set. In particular, we study the 20 smallest molecules of the GW100 set, a subset that we label as GW20. This subset has been recently considered by Lewis and Berkelbach to study the effect of vertex corrections to $\W{}{}$ on IPs of molecules. \cite{Lewis_2019a} Later in this section, we also study the five canonical nucleobases (adenine, cytosine, thymine, guanine and uracil) which are also part of the GW100 test set. The IPs of the GW20 obtained at the {\GOWO}@HF and {\GOWO}@PBE0 levels with increasingly larger Dunning's basis sets cc-pVXZ (X $=$ D, T, Q and 5) are reported in Tables \ref{tab:GW20_HF} and \ref{tab:GW20_PBE0}, respectively. The corresponding statistical deviations (with respect to the CBS values) are also reported: mean absolute deviation (MAD), root-mean-square deviation (RMSD), and maximum deviation (MAX). These reference CBS values have been obtained with the usual X$^{-3}$ extrapolation procedure using the three largest basis sets. \cite{Bruneval_2012} %%% TABLE I %%% \begin{squeezetable} \begin{table*} \caption{ IPs (in eV) of the 20 smallest molecules of the GW100 set computed at the {\GOWO}@HF level of theory with various basis sets and corrections. The mean absolute deviation (MAD), root-mean-square deviation (RMSD), and maximum deviation (MAX) with respect to the {\GOWO}@HF/CBS values are also reported. \label{tab:GW20_HF} } \begin{ruledtabular} \begin{tabular}{lccccccccccccc} & \mc{4}{c}{{\GOWO}@HF} & \mc{4}{c}{{\GOWO}@HF+srLDA} & \mc{4}{c}{{\GOWO}@HF+srPBE} & \mc{1}{c}{{\GOWO}@HF} \\ \cline{2-5} \cline{6-9} \cline{10-13} \cline{14-14} Mol. & cc-pVDZ & cc-pVTZ & cc-pVQZ & cc-pV5Z & cc-pVDZ & cc-pVTZ & cc-pVQZ & cc-pV5Z & cc-pVDZ & cc-pVTZ & cc-pVQZ & cc-pV5Z & CBS \\ \hline \ce{He} & 24.36 & 24.57 & 24.67 & 24.72 & 24.63 & 24.69 & 24.73 & 24.74 & 24.66 & 24.69 & 24.72 & 24.74 & 24.75 \\ \ce{Ne} & 20.87 & 21.39 & 21.63 & 21.73 & 21.38 & 21.67 & 21.80 & 21.84 & 21.56 & 21.73 & 21.81 & 21.83 & 21.82 \\ \ce{H2} & 16.25 & 16.48 & 16.56 & 16.58 & 16.42 & 16.54 & 16.58 & 16.60 & 16.42 & 16.53 & 16.58 & 16.60 & 16.61 \\ \ce{Li2} & 5.23 & 5.34 & 5.39 & 5.42 & 5.31 & 5.37 & 5.41 & 5.43 & 5.28 & 5.37 & 5.41 & 5.43 & 5.44 \\ \ce{LiH} & 7.96 & 8.16 & 8.25 & 8.28 & 8.13 & 8.23 & 8.28 & 8.30 & 8.10 & 8.21 & 8.27 & 8.30 & 8.31 \\ \ce{HF} & 15.54 & 16.16 & 16.42 & 16.52 & 16.01 & 16.41 & 16.57 & 16.61 & 16.15 & 16.45 & 16.57 & 16.61 & 16.62 \\ \ce{Ar} & 15.40 & 15.72 & 15.93 & 16.08 & 15.85 & 15.98 & 16.09 & 16.18 & 15.91 & 15.99 & 16.08 & 16.17 & 16.15 \\ \ce{H2O} & 12.16 & 12.79 & 13.04 & 13.14 & 12.58 & 13.01 & 13.16 & 13.21 & 12.68 & 13.03 & 13.16 & 13.20 & 13.23 \\ \ce{LiF} & 10.75 & 11.35 & 11.59 & 11.70 & 11.21 & 11.60 & 11.73 & 11.79 & 11.34 & 11.63 & 11.73 & 11.78 & 11.79 \\ \ce{HCl} & 12.40 & 12.77 & 12.96 & 13.05 & 12.79 & 12.99 & 13.10 & 13.13 & 12.83 & 12.99 & 13.09 & 13.12 & 13.12 \\ \ce{BeO} & 9.47 & 9.77 & 9.98 & 10.09 & 9.85 & 9.97 & 10.09 & 10.15 & 9.93 & 9.98 & 10.08 & 10.15 & 10.16 \\ \ce{CO} & 14.66 & 15.02 & 15.17 & 15.24 & 14.99 & 15.18 & 15.26 & 15.29 & 15.04 & 15.18 & 15.25 & 15.29 & 15.30 \\ \ce{N2} & 15.87 & 16.31 & 16.48 & 16.56 & 16.22 & 16.50 & 16.59 & 16.62 & 16.30 & 16.50 & 16.58 & 16.62 & 16.62 \\ \ce{CH4} & 14.43 & 14.74 & 14.86 & 14.90 & 14.69 & 14.85 & 14.91 & 14.93 & 14.73 & 14.85 & 14.90 & 14.93 & 14.95 \\ \ce{BH3} & 13.35 & 13.64 & 13.74 & 13.78 & 13.57 & 13.73 & 13.78 & 13.80 & 13.58 & 13.72 & 13.78 & 13.80 & 13.82 \\ \ce{NH3} & 10.59 & 11.13 & 11.32 & 11.40 & 10.93 & 11.30 & 11.41 & 11.45 & 10.99 & 11.30 & 11.41 & 11.44 & 11.47 \\ \ce{BF} & 11.08 & 11.30 & 11.38 & 11.42 & 11.29 & 11.40 & 11.43 & 11.45 & 11.29 & 11.38 & 11.42 & 11.45 & 11.45 \\ \ce{BN} & 11.35 & 11.69 & 11.85 & 11.92 & 11.67 & 11.85 & 11.94 & 11.98 & 11.72 & 11.85 & 11.93 & 11.97 & 11.98 \\ \ce{SH2} & 10.10 & 10.49 & 10.65 & 10.72 & 10.44 & 10.67 & 10.76 & 10.78 & 10.45 & 10.66 & 10.74 & 10.77 & 10.78 \\ \ce{F2} & 15.93 & 16.30 & 16.51 & 16.61 & 16.42 & 16.56 & 16.67 & 16.71 & 16.58 & 16.61 & 16.67 & 16.71 & 16.69 \\ \hline MAD & 0.66 & 0.30 & 0.13 & 0.06 & 0.33 & 0.13 & 0.04 & 0.01 & 0.27 & 0.12 & 0.04 & 0.01 \\ RMSD & 0.71 & 0.32 & 0.14 & 0.06 & 0.37 & 0.14 & 0.04 & 0.01 & 0.30 & 0.13 & 0.05 & 0.01 \\ MAX & 1.08 & 0.46 & 0.22 & 0.10 & 0.65 & 0.22 & 0.07 & 0.03 & 0.54 & 0.20 & 0.08 & 0.03 \\ \end{tabular} \end{ruledtabular} \end{table*} \end{squeezetable} %%% TABLE II %%% \begin{squeezetable} \begin{table*} \caption{ IPs (in eV) of the 20 smallest molecules of the GW100 set computed at the {\GOWO}@PBE0 level of theory with various basis sets and corrections. The mean absolute deviation (MAD), root-mean-square deviation (RMSD), and maximum deviation (MAX) with respect to the {\GOWO}@PBE0/CBS values are also reported. \label{tab:GW20_PBE0} } \begin{ruledtabular} \begin{tabular}{lccccccccccccc} & \mc{4}{c}{{\GOWO}@PBE0} & \mc{4}{c}{{\GOWO}@PBE0+srLDA} & \mc{4}{c}{{\GOWO}@PBE0+srPBE} & \mc{1}{c}{{\GOWO}@PBE0}\\ \cline{2-5} \cline{6-9} \cline{10-13} \cline{14-14} Mol. & cc-pVDZ & cc-pVTZ & cc-pVQZ & cc-pV5Z & cc-pVDZ & cc-pVTZ & cc-pVQZ & cc-pV5Z & cc-pVDZ & cc-pVTZ & cc-pVQZ & cc-pV5Z & CBS \\ \hline \ce{He} & 23.99 & 23.98 & 24.03 & 24.04 & 24.26 & 24.09 & 24.09 & 24.07 & 24.29 & 24.10 & 24.08 & 24.07 & 24.06 \\ \ce{Ne} & 20.35 & 20.88 & 21.05 & 21.05 & 20.86 & 21.16 & 21.22 & 21.16 & 21.05 & 21.22 & 21.23 & 21.15 & 21.12 \\ \ce{H2} & 15.98 & 16.13 & 16.19 & 16.21 & 16.16 & 16.20 & 16.22 & 16.22 & 16.16 & 16.19 & 16.22 & 16.22 & 16.23 \\ \ce{Li2} & 5.15 & 5.24 & 5.28 & 5.31 & 5.23 & 5.28 & 5.30 & 5.32 & 5.21 & 5.27 & 5.30 & 5.32 & 5.32 \\ \ce{LiH} & 7.32 & 7.49 & 7.56 & 7.59 & 7.48 & 7.55 & 7.59 & 7.61 & 7.45 & 7.54 & 7.58 & 7.61 & 7.62 \\ \ce{HF} & 14.95 & 15.61 & 15.82 & 15.85 & 15.41 & 15.85 & 15.97 & 15.94 & 15.56 & 15.89 & 15.97 & 15.93 & 15.94 \\ \ce{Ar} & 14.93 & 15.25 & 15.42 & 15.50 & 15.37 & 15.50 & 15.58 & 15.60 & 15.44 & 15.52 & 15.58 & 15.59 & 15.56 \\ \ce{H2O} & 11.53 & 12.21 & 12.43 & 12.47 & 11.95 & 12.43 & 12.55 & 12.54 & 12.05 & 12.45 & 12.55 & 12.54 & 12.56 \\ \ce{LiF} & 9.89 & 10.60 & 10.82 & 10.94 & 10.35 & 10.84 & 10.96 & 11.02 & 10.48 & 10.87 & 10.96 & 11.02 & 11.02 \\ \ce{HCl} & 11.96 & 12.34 & 12.50 & 12.57 & 12.35 & 12.56 & 12.64 & 12.65 & 12.39 & 12.56 & 12.63 & 12.64 & 12.63 \\ \ce{BeO} & 9.16 & 9.44 & 9.63 & 9.74 & 9.53 & 9.64 & 9.74 & 9.80 & 9.61 & 9.65 & 9.74 & 9.79 & 9.80 \\ \ce{CO} & 13.67 & 14.02 & 14.13 & 14.18 & 14.00 & 14.18 & 14.22 & 14.23 & 14.05 & 14.18 & 14.22 & 14.23 & 14.22 \\ \ce{N2} & 14.84 & 15.30 & 15.44 & 15.50 & 15.22 & 15.50 & 15.55 & 15.56 & 15.31 & 15.51 & 15.54 & 15.55 & 15.55 \\ \ce{CH4} & 13.85 & 14.15 & 14.27 & 14.30 & 14.11 & 14.27 & 14.32 & 14.33 & 14.15 & 14.27 & 14.32 & 14.33 & 14.35 \\ \ce{BH3} & 12.87 & 13.13 & 13.22 & 13.26 & 13.09 & 13.23 & 13.27 & 13.28 & 13.10 & 13.22 & 13.26 & 13.28 & 13.29 \\ \ce{NH3} & 9.96 & 10.56 & 10.73 & 10.75 & 10.31 & 10.72 & 10.82 & 10.80 & 10.37 & 10.72 & 10.81 & 10.79 & 10.82 \\ \ce{BF} & 10.66 & 10.87 & 10.92 & 10.94 & 10.88 & 10.96 & 10.97 & 10.97 & 10.88 & 10.95 & 10.96 & 10.97 & 10.96 \\ \ce{BN} & 11.07 & 11.40 & 11.54 & 11.60 & 11.40 & 11.56 & 11.63 & 11.65 & 11.45 & 11.56 & 11.62 & 11.65 & 11.65 \\ \ce{SH2} & 9.69 & 10.10 & 10.25 & 10.30 & 10.03 & 10.28 & 10.35 & 10.36 & 10.04 & 10.27 & 10.34 & 10.35 & 10.36 \\ \ce{F2} & 14.92 & 15.38 & 15.57 & 15.64 & 15.41 & 15.65 & 15.73 & 15.74 & 15.57 & 15.69 & 15.73 & 15.73 & 15.71 \\ \hline MAD & 0.60 & 0.24 & 0.10 & 0.05 & 0.29 & 0.07 & 0.02 & 0.01 & 0.23 & 0.07 & 0.03 & 0.01 \\ RMSD & 0.66 & 0.26 & 0.11 & 0.06 & 0.33 & 0.08 & 0.03 & 0.02 & 0.27 & 0.08 & 0.04 & 0.01 \\ MAX & 1.12 & 0.42 & 0.19 & 0.09 & 0.67 & 0.18 & 0.09 & 0.04 & 0.54 & 0.15 & 0.10 & 0.03 \\ \end{tabular} \end{ruledtabular} \end{table*} \end{squeezetable} The convergence of the IPs of the water molecule with respect to the size of the basis set are depicted in Fig.~\ref{fig:IP_G0W0_H2O}. This represents a typical example. Additional graphs reporting the convergence of the IPs of the GW20 subset with respect to the size of the basis set are reported in the {\SI}. %%% FIG 1 %%% \begin{figure*} \includegraphics[width=0.45\linewidth]{IP_G0W0HF_H2O} \hspace{1cm} \includegraphics[width=0.45\linewidth]{IP_G0W0PBE0_H2O} \caption{ IPs (in eV) of the water molecule computed at the {\GOWO} (black circles), {\GOWO}+srLDA (red squares) and {\GOWO}+srPBE (blue diamonds) levels of theory with increasingly large Dunning's basis sets (cc-pVDZ, cc-pVTZ, cc-pVQZ and cc-pV5Z) with two different starting points: HF (left) and PBE0 (right). The thick black line represents the CBS value obtained by extrapolation (see text for more details). \label{fig:IP_G0W0_H2O} } \end{figure*} The values of the IPs of the five canonical nucleobases computed at the {\GOWO}@PBE level of theory for various basis sets are reported in Table \ref{tab:DNA_IP}. Their error with respect to the {\GOWO}@PBE/def2-TQZVP extrapolated values are shown in Fig.~\ref{fig:DNA_IP}. %%% TABLE III %%% \begin{table*} \caption{ IPs (in eV) of the five canonical nucleobases computed at the {\GOWO}@PBE level of theory for various basis sets. The deviation with respect to the {\GOWO}@PBE/def2-TQZVP extrapolated values are reported in square brackets. The extrapolation error is reported in parenthesis. The CCSD(T)/def2-TZVPP and experimental results are reported for comparison purposes. \label{tab:DNA_IP} } \begin{ruledtabular} \begin{tabular}{llccccc} & & \mc{5}{c}{IPs of nucleobases (eV)} \\ \cline{3-7} Method & Basis & \tabc{Adenine} & \tabc{Cytosine} & \tabc{Guanine} & \tabc{Thymine} & \tabc{Uracil} \\ \hline {\GOWO}@PBE\fnm[1] & def2-SVP & 7.27[-0.88] & 7.53[-0.92] & 6.95[-0.92] & 8.02[-0.85] & 8.38[-1.00] \\ {\GOWO}@PBE+srLDA\fnm[1] & def2-SVP & 7.60[-0.55] & 7.95[-0.50] & 7.29[-0.59] & 8.36[-0.51] & 8.80[-0.58] \\ {\GOWO}@PBE+srPBE\fnm[1] & def2-SVP & 7.64[-0.51] & 8.06[-0.39] & 7.34[-0.54] & 8.41[-0.45] & 8.91[-0.47] \\ {\GOWO}@PBE\fnm[1] & def2-TZVP & 7.74[-0.41] & 8.06[-0.39] & 7.45[-0.42] & 8.48[-0.38] & 8.86[-0.52] \\ {\GOWO}@PBE+srLDA\fnm[1] & def2-TZVP & 7.92[-0.23] & 8.26[-0.19] & 7.64[-0.23] & 8.67[-0.20] & 9.25[-0.13] \\ {\GOWO}@PBE+srPBE\fnm[1] & def2-TZVP & 7.92[-0.23] & 8.27[-0.18] & 7.64[-0.23] & 8.68[-0.19] & 9.27[-0.11] \\ {\GOWO}@PBE\fnm[2] & def2-QZVP & 7.98[-0.18] & 8.29[-0.16] & 7.69[-0.18] & 8.71[-0.16] & 9.22[-0.16] \\ {\GOWO}@PBE\fnm[3] & def2-TQZVP & 8.16(1) & 8.44(1) & 7.87(1) & 8.87(1) & 9.38(1) \\ \hline CCSD(T)\fnm[4] & def2-TZVPP & 8.33 & 9.51 & 8.03 & 9.08 & 10.13 \\ Experiment\fnm[5] & & 8.48 & 8.94 & 8.24 & 9.20 & 9.68 \\ \end{tabular} \end{ruledtabular} \fnt[1]{This work.} \fnt[2]{Unpublished data taken from \url{https://gw100.wordpress.com} obtained with TURBOMOLE v7.0.} \fnt[3]{Extrapolated values obtained from the def2-TZVP and def2-QZVP values.} \fnt[4]{Reference \onlinecite{Krause_2015}.} \fnt[5]{Experimental values are taken from Ref.~\onlinecite{vanSetten_2015} and correspond to vertical ionization energies.} \end{table*} %%% TABLE IV %%% %\begin{table*} %\caption{ %EAs (in eV) of the five canonical nucleobases computed at the {\GOWO}@PBE level of theory for various basis sets. %The deviation with respect to the {\GOWO}@PBE/def2-TQZVP extrapolated values are reported in square brackets. %The extrapolation error is reported in parenthesis. %The experimental results are reported for comparison purposes. %\label{tab:DNA_EA} %} % \begin{ruledtabular} % \begin{tabular}{llccccc} % & & \mc{5}{c}{EAs of nucleobases (eV)} \\ % \cline{3-7} % Method & Basis & \tabc{Adenine} & \tabc{Cytosine} & \tabc{Guanine} & \tabc{Thymine} & \tabc{Uracil} \\ % \hline % {\GOWO}@PBE\fnm[1] & def2-SVP & -1.57[-] & -1.40[-] & -1.88[-] & -1.19[-] & -1.16[-] \\ % {\GOWO}@PBE+srLDA\fnm[1] & def2-SVP & [-] & [-] & [-] & [-] & [-] \\ % {\GOWO}@PBE+srPBE\fnm[1] & def2-SVP & [-] & [-] & [-] & [-] & [-] \\ % {\GOWO}@PBE\fnm[2] & def2-TZVP & -0.81[-] & -0.61[-] & -1.11[-] & -0.38[-] & -0.34[-] \\ % {\GOWO}@PBE+srLDA\fnm[1] & def2-TZVP & [-] & [-] & [-] & [-] & [-] \\ % {\GOWO}@PBE+srPBE\fnm[1] & def2-TZVP & [-] & [-] & [-] & [-] & [-] \\ % {\GOWO}@PBE\fnm[2] & def2-QZVP & -0.47[-] & -0.26[-] & -0.75[-] & -0.06[-] & -0.01[-] \\ % {\GOWO}@PBE\fnm[3] & def2-TQZVP & -0.21(1) & -0.01(1) & -0.46(2) & +0.18(1) & +0.25(1) \\ % \hline % Experiment\fnm[5] & & 0.54 & & & 0.29 & 0.22 \\ % \end{tabular} % \end{ruledtabular} % \fnt[1]{This work.} % \fnt[2]{Unpublished data taken from \url{https://gw100.wordpress.com} obtained with MOLGW 2.B.} % \fnt[3]{Extrapolated values obtained from the def2-TZVP and def2-QZVP values.} % \fnt[4]{Reference \onlinecite{Krause_2015}.} % \fnt[5]{Experimental values are taken from Ref.~\onlinecite{vanSetten_2015} and correspond to laser photoelectron spectroscopy values.} %\end{table*} %%% FIG 2 %%% \begin{figure*} \includegraphics[width=\linewidth]{DNA_IP} \caption{ Error (in eV) with respect to the {\GOWO}@PBE/def2-TQZVP extrapolated values for the IPs of the five canonical nucleobases (adenine, cytosine, thymine, guanine and uracil) computed at the {\GOWO}@PBE level of theory for various basis sets. \label{fig:DNA_IP} } \end{figure*} %%%%%%%%%%%%%%%%%%%%%%%% \section{Conclusion} \label{sec:conclusion} %%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%% \section*{Supporting Information Available} %%%%%%%%%%%%%%%%%%%%%%%% Additional graphs reporting the convergence of the ionization potentials of the GW20 subset with respect to the size of the basis set. %%%%%%%%%%%%%%%%%%%%%%%% \begin{acknowledgements} PFL would like to thank Fabien Bruneval for technical assistance. He also would like to thank Arjan Berger and Pina Romaniello for stimulating discussions. This work was performed using HPC resources from GENCI-TGCC (Grant No.~2018-A0040801738) and CALMIP (Toulouse) under allocation 2019-18005. Funding from the \textit{``Centre National de la Recherche Scientifique''} is acknowledged. This work has been supported through the EUR grant NanoX ANR-17-EURE-0009 in the framework of the \textit{``Programme des Investissements d'Avenir''}. \end{acknowledgements} %%%%%%%%%%%%%%%%%%%%%%%% \bibliography{GW-srDFT,GW-srDFT-control,biblio} \end{document}