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We present a new paradigm for the design of exchange-correlation functionals in density-functional
theory. Electron pairs are correlated explicitly by means of the recently developed second order Bethe-
Goldstone equation (BGE2) approach. Here we propose a screened BGE2 (sBGE2) variant that efficiently
regulates the coupling of a given electron pair. sBGE2 correctly dissociates H2 and Hþ

2 , a problem that
has been regarded as a great challenge in density-functional theory for a long time. The sBGE2 functional
is then taken as a building block for an orbital-dependent functional, termed ZRPS, which is a natural
extension of the PBE0 hybrid functional. While worsening the good performance of sBGE2 in H2 and H

þ
2 ,

ZRPS yields a remarkable and consistent improvement over other density functionals across various
chemical environments from weak to strong correlation.
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The popularity of density-functional theory in physics,
chemistry, and materials science stems from the favorable
balance between accuracy and computational efficiency
offered by semilocal or hybrid approximations to the
exchange-correlation (XC) functional. However, certain
well-documented failures such as the unsatisfactory pre-
diction of atomization energies, the significant underesti-
mation of weak interactions and reaction barriers, and the
inability to correctly describe strongly interacting scenarios
with pronounced multireference character, such as bond
dissociation [1–7], limit the predictive power of these
functionals in certain cases.
Density functionals that depend on the unoccupied as

well as the occupied Kohn-Sham orbitals stand on the fifth
and currently highest rung of the ladder [8] of density
functional approximations. The rapid growth of computa-
tional capacity has been boosting the development of
practical level-5 functionals over the past ten years. One
example is Görling-Levy perturbation theory at 2nd order
that corresponds to the exact XC functional for systems
with a linear adiabatic-connection path [4,9]. However, in
reality the adiabatic-connection path is not linear and
Görling-Levy perturbation theory fails for systems with
small energy gaps, where (near)-degeneracy correlation
(also known as static correlation) is dominant, as exem-
plified by molecular dissociation [5–7]. The random-phase
approximation (RPA) is another example of a level-5
functional. RPA sums up a sequence of “ring diagrams”
to infinite order [10] and is remarkably accurate for
reaction-barrier heights and weak interactions, but it
significantly underestimates atomization energies. It also

produces the correct H2 dissociation limit [11], but fails for
Hþ

2 dissociation due to appreciable self-correlation errors
[12,13]. Recently, much effort has been devoted to improve
the RPA from the perspective of either many-body pertur-
bation theory [6,7,14–18] or time-dependent density-
functional theory [5,19,20]. These RPA and beyond-RPA
methods (e.g., rPT2 [15]) are typically performed non-self-
consistently on top of PBE [21] or PBE0 [22] calculations.
With the exception of the exact-exchange-kernel-RPA
method of Heßelmann and Görling [5], they do not solve
the H2=H

þ
2 dissociation conundrum or work for bond

dissociation in general. There is, therefore, a need to
develop efficient XC functionals that are broadly appli-
cable, but also perform well in challenging situations, such
as bond dissociation.
Our strategy is as follows: First, we develop a level-5 (L5

or sBGE2) functional for the opposite-spin pair correlation
energy of any system. L5 is a simple Bethe-Goldstone-like
generalization of second-order perturbation theory in the
electron-electron interaction. It is accurate for the binding
energy curves of both H2 and Hþ

2 , even in the dissociation
limit for H2 in which a degeneracy develops between the
ground and first excited states of the unperturbed system.
We refer interested readers to Ref. [23] for the underlying
rationale and details of this approximation. Then, following
an adiabatic-connection approach used to construct the
PBE global hybrid functional PBE0 on level 4 [22], we
make and test a nonempirical level-5 global hybrid func-
tional (ZRPS) that mixes PBE semilocal exchange, exact
exchange, PBE semilocal correlation, and L5 correlation.
ZRPS loses some of the good performance of L5 or sBGE2
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for one- and two-electron ground states, which could,
however, be recovered in some future local hybrid.
Recently, we proposed a nonempirical level-5 correlation

functional that corresponds to the second-order Bethe-
Goldstone equation (BGE2) [23]

EBGE2
c ¼

Xocc
a<b

eab; with eab¼−
Xunocc
r<s

jhϕaϕbjjϕrϕsij2
Δϵrsab−eab

: ð1Þ

Here, atomic units are used, fϕig are Kohn-Sham orbitals,
and the subscripts (a, b) and (r, s) denote occupied and
unoccupied orbitals, respectively. hijjjkli¼hijjkli−hijjlki
represents an antisymmetrized two-electron Coulomb
integral. Δϵrsab ¼ ϵr þ ϵs − ϵa − ϵb is the energy difference
between these two pairs of orbitals. The electron-pair
correlation eab is defined in terms of itself, and must be
found self-consistently. The eab-coupling effect is the
essential difference of the BGE2 approximation from
standard PT2. The full BGE2 XC functional comprises
exact exchange and BGE2 correlation EBGE2

XC ¼EEX
x þ

EBGE2
c . As shown in Fig. 1, BGE2 provides a satisfactory

description of both H2 and Hþ
2 dissociation. This success

of BGE2 can be ascribed to the fact that the functional is
one-electron self-interaction-free due to the second-order
exchange term, which is essential for Hþ

2 dissociation.
Conversely, the eab-coupling effect properly describes two-
electron (near)-degeneracy correlation, which is important
for H2 dissociation. In our previous work [23] we dem-
onstrated that BGE2 can describe static correlation by
means of a level-shift expansion of the eab-coupling effect
and by showing that BGE2 gives an exact description of the
H2 dissociation limit in a minimal basis.
However, careful inspection of Fig. 1 reveals a slightly

repulsive bump in the H2 dissociation curve, indicating that
BGE2 does not fully capture the two-electron correlations
in the crossover region from the equilibrium bond distance
to the dissociation regime. Moreover, we note that BGE2 is

an electron-pair approximation and, thus, by construction,
does not include correlations involving more than two
electrons, which would be needed to make the method
usefully accurate for larger systems. In the following
we will, therefore, focus on the question: Can the
two-electron correlation be improved and multielectron
correlation be included into our XC functional without
having to resort to more complex ingredients?
Let us first focus on the two-electron correlation. To

derive a simple approximation, we return to Eq. (1). The
sum-over-states expression of BGE2 indicates that
the electron-pair correlation terms eab that appear in the
denominator are key for a correct H2 dissociation limit when
Δϵrsab → 0 [23]. However, when Δϵrsab becomes large, as is
the case near the equilibrium bond length, the eab-coupling
mechanism in BGE2 is automatically damped off. Then,
BGE2 reduces to the second-order perturbation energy
(PT2), which is adequate for weakly correlated systems
with large gaps. The incorrect bump in the BGE2 H2

dissociation curve is, therefore, understood to arise from
an eab coupling that is damped off too slowly. In this Letter,
we introduce a screening factor srsab ¼ erfcðΔϵrsabÞ to tune the
damping of the eab-coupling term in BGE2, resulting in a
screened BGE2 (sBGE2) approximation,

ESBGE2
c ¼

Xocc
a<b

~eab; with ~eab¼−
Xunocc
r<s

jhϕaϕbjjϕrϕsij2
Δϵrsab−srsab ~eab

: ð2Þ

sBGE2 (EEX
x þ ESBGE2

c ) retains all the advantages of BGE2
[23] such as size consistency, being one-electron self-
interaction-free, and giving the exact H2 dissociation limit
in the minimal basis. Furthermore, sBGE2 improves on
BGE2 in the intermediate bonding regime, as is evident from
Fig. 1. The maximum deviation from the exact Hþ

2 and H2

dissociation curves is only 0.1 eV. sBGE2 keeps the simple
sum-over-states formula and thus has the same computa-
tional scaling as PT2 (formally with the fifth power of the
system size), which is 1 order of magnitude higher than the
standard functionals (e.g., PBE0) in this work.
Next we turn to systems with more than two electrons.

While sBGE2 gives a unique perspective to understand the
challenges in one- and two-electron cases, it does not give
an improvement over PT2 for systems with large energy
gaps and with more than two electrons. This becomes
evident in our collection of benchmarks for various
chemical environments shown in Table I, which comprises
atomization energies of 55 small molecules (G2-1) [25], 76
reaction barriers (BH76) [26], 34 isomerization energies
(ISO34) [27], and 22 weak interactions (S22) [28,29].
The performance of sBGE2 is almost identical to PT2,

which is unsatisfactory for real applications. Our assess-
ment confirms that the RPA method works very well for
reaction energies, barriers and weak interactions, especially
when applied on top of a PBE0 reference (RPA@PBE0).
The underestimation of the atomization energy is a
well-documented problem of RPA (MAE ¼ 388 meV for
G2-1). Going beyond RPA, the renormalized PT2 method

FIG. 1. H2 (a) and Hþ
2 (b) dissociation curves without breaking

spin symmetry. Aug-cc-pVQZ basis sets [24] have been used for
all calculations. The total energies of isolated spin-polarized
atoms are shown in smaller panels to the right.
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(rPT2) adds an infinite summation of the second-order
exchange diagrams of PT2 and renormalized single-
excitation diagrams to RPA [14]. Compared with
RPA@PBE results, the rPT2@PBE method significantly
reduces the atomization error by 246 meV, albeit at a
notable increase of computational cost.
To derive an accurate but efficient orbital-dependent

functional, we model the integrand VXCðλÞ of the adiabatic
connection or coupling-constant integration [10] at fixed
electron density

EXC ¼
Z

1

0

dλVXCðλÞ: ð3Þ

Here the Coulomb interaction between electrons, λV̂ee, is
scaled by a coupling constant λ.Ψλ is the wave function for
electrons with this interaction in an effective λ-dependent
external scalar potential that holds their density nðrÞ at
its physical λ ¼ 1 limit. Then VXCðλÞ ¼ hΨλjV̂eejΨλi−
1
2

R
d3rd3r0nðrÞnðr0Þ=jr − r0j. Our level-5 model is

VZRPS
XC ðλÞ ¼ VGGA

XC ðλÞ þ ðEEX
x − EGGA

x Þð1 − λÞ
þ ðEL5

c − EGGA
c Þðλ − λ3Þ: ð4Þ

Like the level-4 model of Perdew et al. [22], leading to the
PBE0 hybrid, we start with the PBE GGA expression for
VXCðλÞ. We then add to it the simplest parameter-free cubic
polynomial in λ that corrects VXCðλÞ to EEX

x at λ ¼ 0, where
it is most in error, while leaving it unchanged at λ ¼ 1,
where it is least in error. As the coupling constant λ varies
from 0 to 1, the XC hole becomes more localized and better
described by GGA, and VZRPS

XC of Eq. (4) tends to VGGA
XC .

The L5 correlation energy properly contributes to linear
order in λ. There is an interesting near consistency in the
“‘static correlation” contribution [31] to the linear term in
the Taylor expansion of VXCðλÞ: 3½EGGA

x − EEX
x �λ in PBE0,

and f½EGGA
x − EEX

x � þ ½EL5
c − EGGA

c �gλ ≈ 2½EGGA
x − EEX

x �λ
in ZRPS of Eq. (4). The last step follows from
EL5
c − EGGA

c ≈
R
1
0 dλf½EGGA

x − EEX
x � þ ½EL5

c − EGGA
c �gλ.

After integrating VXC over λ from 0 to 1, this choice for
VXC yields a corresponding level-5 XC approximation,

EZRPS
XC ¼ EGGA

XC þ 1

2
ðEEX

x − EGGA
x Þ þ 1

4
ðEL5

c − EGGA
c Þ: ð5Þ

This is of the form of the one-parameter double-hybrid
approximation proposed by Sharkas, Toulouse, and Savin
[32] (with λ ¼ 1

2
). It is customary to evaluate the total

ground-state energy of the system using either the λ ¼ 0
wave function (single Slater determinant) with a density-
functional correction (Kohn-Sham approach) or the λ ¼ 1
true wave function (quantum chemistry approach) with no
correction, but those authors use the wave function at any
small λ for which the L5 second-order perturbation theory
might be accurate for the energy, and a corresponding
density functional correction.
In this Letter, we select the sBGE2 correlation for

opposite spins as the level-5 correlation, EL5
c ¼ ESBGE2

c;os ¼P
unocc
a<b eab with ðαa ≠ αbÞ, where (αa, αb) denotes the spin

states of electrons a and b. In typical atoms and molecules,
the parallel-spin correlation energy is much smaller than the
opposite-spin part, and in our Eq. (5), it is further scaled
down by a factor of 4. We restrict the sBGE2 contribution
to opposite spins (os-sBGE2) for three reasons: (a) many-
body perturbation theory in finite order provides an
unbalanced description of electron pairs with the same
and with different spin [33], as demonstrated in the
development of the spin-component scaled MP2 [33]
and scaled opposite-spin MP2 methods [34]; (b) the good
performance of sBGE2 in H2 dissociation reflects that
sBGE2 captures the electron-pair correlation, but for
opposite-spin pairs only; and (c) the computational scaling
of ESBGE2

c;os can be reduced to fourth or even lower power of
the size by using the Laplace quadrature approximation
combined with the localization of electron correlation [35].
As a natural extension of PBE0, we chose EGGA

x ¼ EPBE
x ,

and EGGA
c ¼ EPBE

c þ ETS
vdw where TS stands for the non-

empirical Tkatchenko-Scheffler dispersion correction [36].
We refer to this level-5 functional as ZRPS.

TABLE I. Mean absolute error (MAE) in meV for various test sets of quantum chemistry. The max absolute error (Max) is given in
parentheses. A complete-basis-set extrapolation from NAO-VCC-4Z and 5Z is carried out for all methods [30]. The level-5 methods with
the starting point (SP) are frozen-core and denoted as method@SP. The three methods with lowest error for each test set are marked in bold.

PBE-TS PBE0-TS
RPA
@PBE

RPA
@PBE0

rPT2
@PBE

rPT2
@PBE0

PT2
@PBE0

sBGE2
@PBE0

ZRPS
@PBE

ZRPS
@PBE0

G2-1 326 124 405 388 159 315 1570 1555 129 73
(1158) (404) (1171) (980) (936) (770) (4623) (4602) (452) (195)

BH76 407 178 88 54 101 106 483 480 119 92
(1332) (614) (292) (156) (382) (422) (2038) (2029) (502) (363)

ISO34 73 74 44 44 51 52 116 113 43 47
(212) (236) (162) (137) (186) (236) (451) (451) (178) (197)

S22 14 15 33 27 21 28 137 145 16 10
(43) (58) (79) (82) (69) (91) (537) (553) (51) (32)

Overall 276 124 167 147 100 148 695 690 96 69
(1158) (614) (1171) (980) (936) (770) (4623) (4602) (452) (363)
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All calculations in this work, with the exception of
coupled-cluster singles, doubles, and perturbative triples
[CCSD(T)], have been carried out with the FHI-aims code
[37–39]. The full-configuration interaction (FCI) results
were obtained with FHI aims and the quantumMonte Carlo
framework of Booth et al. [40]. All PT2, RPA, rPT2, (s)
BGE2, and ZRPS calculations are based on PBE0 Kohn-
Sham orbitals, but CCSD and CCSD(T) on Hartree-Fock
orbitals unless otherwise noted. For CCSD(T), we used
GAMESS [41].
The ZRPS XC functional is determined by the adiabatic-

connection model [see Eq. (4)]. Our approach, therefore,
does not require empirical data for parameter fitting. As
Table I demonstrates, ZRPS is remarkably accurate across a
diverse range of chemical properties. ZRPS@PBE0 exhib-
its the best performance. ZRPS@PBE is slightly worse, but
still delivers an overall MAE of less than 100 meV, and is
among the top three methods. A similar, mild starting-point
dependence is observed for all other test cases in this Letter.
For one- and two-electron systems, ZRPS deteriorates

the performance of sBGE2 (see Fig. 1), as it now receives a
portion of PBE exchange and correlation. However, unlike
PT2, RPA, and rPT2, ZRPS provides a consistent improve-
ment over PBE0 for both H2 and Hþ

2 .
As quintessential examples of systems with pronounced

many-body multireference character, the dissociation of
N2 and C2 is shown for different methods in Fig. 2. Note
that the C2 and N2 dissociation curves are very challenging
not only for density-functional methods but also for

wave-function theories. PT2 and sBGE2 are so far off that
they are not shown in the panels. Even CCSD(T), the “gold
standard” in quantum chemistry, diverges for the stretched
molecules. Discarding the perturbative triples, CCSD
performs better for N2, but gives rise to an incorrect
repulsive “bump” at intermediate bond distances. For C2,
CCSD significantly underestimates the whole dissociation
curve, leading to the wrong dissociation limit. Around
R ¼ 1.6 Å the curve exhibits a kink due to the inadequate
description of the interaction between the X1Σþ

g and B1Δg

states [42]. ZRPS@PBE0 convincingly surpasses CCSD
and CCSD(T) in particular for N2. The mix of sBGE2
electron-pair correlation and semilocal correlation provides
a balanced description in ZRPS at all bond distances.
Our last example is the 1,3-dipolar cycloaddition of

ozone to ethyne and ethene (see Table II), which is one
of the prototypical cases of multireference singlet-state
chemistry [44]. The evident degradation either from PBE to
PBE0 or from RPA to rPT2 supports the argument in
density-functional theory that a globally localized xc hole
is essential for the description of multireference correla-
tions. ZRPS is very accurate for the two ozone reactions,
which indicates that 50% exact exchange and 25% nonlocal
opposite-spin sBGE2 correlation in ZRPS achieves the
delicate localization of the XC hole required for this
multireference problem.
Many level-5 functionals [3,4] that are based on PT2

diverge for the uniform electron gas and extended metals
[45], because the band gaps close and zero-energy exci-
tations appear. The screened eab coupling of the sBGE2
correlation solves this divergence, which is demonstrated
by the good performance of ZRPS for similarly challenging
cases, such as the closing energy gaps in the dissociation
limit of molecular dimers. Given that the (s)BGE2 corre-
lation is size extensive [23], the applicability of ZRPS
to extended systems is guaranteed. The implementation
and further numeric benchmarks of ZRPS for solids are
ongoing in our group. Note, however, that unlike PBE0,
ZRPS is not exact for the uniform electron gas. While
ZRPS is probably better than PBE0 for molecules and
insulating solids, PBE0 could be better than ZRPS for
metallic solids.

FIG. 2. N2 (a) and C2 (b) dissociations without breaking spin
symmetry. Although spin-polarized calculations can provide a
qualitatively correct dissociation behavior, enforcing spin sym-
metry is crucial to achieve a smooth dissociation curve with no
Coulson-Fisher singularity [5,43]. The energy zero for all
methods is the total energy of two isolated spin-polarized atoms
at the FCI level. All calculations were performed with cc-pV3Z
basis sets [24]. For C2, we omit the ZRPS@PBE curve, because
PBE calculations for the correct occupation do not converge
anymore when the bond becomes stretched. The total energies of
two isolated spin-polarized atoms, referenced to FCI, are shown
in smaller panels.

TABLE II. Errors (in meV) of various methods for O3-
involved reactions, defined as RECal-RERef . RERef is the theo-
retical reference reaction energy (RE) taken from Ref. [44]
[2.345 eV and 2.100 eV for O3þC2H2 (A) and O3þC2H4 (B),
respectively].

PBE PBE0
RPA

@PBE0
rPT2

@PBE0
ZRPS
@PBE0

65 −432 −190 −738 41

259 −311 −206 −768 12
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In summary, based on a recently developed Bethe-
Goldstone second-order approximation, we propose a
screened sBGE2 variant. sBGE2 is by construction free
of one-electron self-correlation errors and very accurate for
the dissociation of both H2 and Hþ

2 . Taking the sBGE2
correlation as a building block, we propose a level-5
functional, ZRPS, which is a natural extension of the
PBE0 hybrid functional. The improvement of ZRPS over
current density-functional methods is remarkable and con-
sistent across various chemical bonding situations as well as
single- and multiple-bond dissociation. Although we dem-
onstrate that the starting-point dependence of ZRPS is mild,
the development of a self-consistent ZRPS XC potential in
the Kohn-Sham framework would be important, in particu-
lar, for charge-transfer systems [46]. Moreover, ZRPS does
not provide sufficient accuracy for all multireference prob-
lems in density-functional theory. Further improvements
could be achieved by more sophisticated adiabatic-
connection models that satisfy more exact constraints.
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