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A review is given of computational methods for the one-particle Green’s function of finite electronic systems. 
Two distinct approximation schemes are considered which are based on the diagrammatic perturbation 
expansions of the Green’s function G and of the self-energy part Z related to G via the Dyson equation. The 
first scheme referred to as the extended two-particle hole Tamm-Dancoff approximation (extended Zph-TDA) 
is derived as an infinite partial summation for Z and G being complete through third-order in the electronic 
repulsion. The essential numerical problem is the diagonalization of a symmetric matrix defined in the space of a 
special class of ionic configurations. The structure of this matrix allows for an efficient two-step diagonalization 
procedure where a special diagonalization algorithm for matrices with an arrow-type structure is employed. The 
second approximation scheme discussed here is the outer-valence Green’s function method (OVGF) based on a 
finite perturbation expansion of the self-energy part (it is exact to third order in the electronic repulsion and is 
supplemented by a geometrical approximation to higher orders). The OVGF is much simpler than the extended 
Zph-TDA, since no matrices are to be diagonalized. The range of applicability of the OVGF is, however, 
restricted. For both approximation schemes spin-free formulations of the working equations are presented. 
Aspects of an optimal implementation in computer codes are discussed. The numerical performance of the 
methods is demonstrated by application to the ionization spectra and electron affinities of selected molecules. 
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1. introduction 

Since the first ab initio applications to atoms and molecules over a decade ago. the method of 
the one-particle Green’s function [l--4] and related many-body methods have developed to a 
viable means of quantum-chemical calculations. The conceptual advantage of these methods over 
the conventional wave function approach such as the configuration interaction (CI) treatment 
stems from the fact that relevant physical entities. e.g.. ionization energies and transition 
moments are calculated directly without resorting to separate calculations for the initial ground 
state and the final (parent) ionic states. Hereby one circumvents from the outset one source of 
errors. which is immanent to ~~pproxir~lations within the wave function approach, namely the 
possibly unbalanced treatment of ground and ionic states. A further advantage is that the Green’s 
function methods permit sophisticated approximation schemes due to non-trivial combinati~~n of 
perturbation theory and full diagonalization which have no analogue in the wave function 
approach. Moreover, the Green’s function approach leads in a natural way to “size-consistent” 
approximations which have the correct scaling behaviour with respect to the number of electrons. 
This may be essential for the treatment of large systems. 

The use of the one-particle Green’s function and of the related methods in atomic and 
molecular physics is the subject of several previous review articles [5-X]. For a detailed discussion 
of the various specific approaches which have been deveIoped and applied so far we refer to these 
articles and to the references therein. However, a few remarks on the main theoretical develop- 
ments are in order. 

One such de~~e~opment is the di~~granlmatical approach. Here approxin~ations are based on the 
use of the well-known perturbation expansions of the one-particle Green’s function G and of the 
related self-energy part 2 which can be formulated in terms of the Feynman diagrams [l-4]. A 
previous review on diagrammatical methods aimed at atomic and molecular applications has 
been given by Cederbaum and Domcke [6]. Another concept is the equation-of-motion approach 
(EOM) which - originally formulated for the (electronic) excitation problem [9,10] has been 
adopted for the treatment of ionization and attachment processes [II-- 141. The basic EOM 
equations appear to be quite different from the one-particle Green’s function. since they are 
formulated in terms of ground-state expectation values of exact excitation operators for h: t 1 
particles. There is. however, a close relationship as is apparent from a propagator formafism 
[ 15- 163 in which the so-called super-operator representation of the one-particle Green’s function 
is approximated by inner-projection techniques. For an overview of these propagator techniques 
the reader may consult the review article by 6hrn and Born ix]. The theory and applications of 
the EOM approach are documented in the review article by Herman et al. [7]. 

The present article reviews two Green’s function methods that have developed within the 
diagrammatic approach namely the outer valence Green’s function method (OVGF) [6.17] and 
the extended two-particle-hole Tamm-Dancoff approximation (extended 2ph-TDA) [ 1 X,1 91. It is 
intended to complement and to continue the previous review article by Cederbaum and Domcke 
[6J in two respects: to present the advances which in the meantime have been achieved in the 
development of diagrammatic approximation schemes and to give a thorough discussion of the 
numerical procedures required in the application of these methods. However, the preseIitati~~t1 in 
the present article is largely self-contained and does not presuppose the previous article. 

Within the diagrammatic approach one obvious way to obtain an ~~ppr~~ximation for the 



W. uon Niessen et al. / The one-particle Green’s fundion 61 

one-particle Green’s function is to employ a finite expansion of the self-energy part Z. The 
OVGF method is based on the full third-order expansion of I: and introduces in addition a 
simple geometrical approximation for higher order contributions. It has been demonstrated by 
many applications (see table 1 to be discussed below) that the OVGF provides very accurate 
results for the ionization potentials of the outer valence orbitals and for electron affinities. Owing 
to the simplicity of the method one may apply this method to large systems without additional 
approximations. This also applies to the use of large basis sets. The applicability, however, is 
restricted to the energy range of the outer valence orbitals, where the ionization (attachment) is 
well described within the quasi-particle picture. In this region the self-energy part is a smooth 
function of the energy variable and a finite expansion is a good means to approximate Z. For 
energy regions where higher excited (shake-up) configurations are important the self-energy part 
has poles and thus cannot properly be described by any finite expansion. 

The correct analytical form is maintained by approximations which represent infinite (though 
partial) summations of the perturbation series for Z. Well-known examples are the random phase 
approximation (RPA) and the ladder summation for the self-energy part (see e.g. Mattuck [3]). In 
spite of their success in treating infinite fermion systems (electron gas, nuclear matter), these 
approximations are not always adequate for finite electronic systems [6]. A basic infinite partial 
summation which combines the contributions of special RPA and ladder diagrams is the 
2ph-TDA [6,20]. Although this approximation does not provide very accurate results, it enables a 
useful qualitative description of the entire valence-shell ionization spectrum and gives, in 
particular, access to the inner-valence regime, where in general, the single-particle picture of 
ionization is not adequate. For applications of the 2ph-TDA we refer to table 1 given in section 
5. 

A simple extension of the 2ph-TDA leads to an infinite partial summation for the self-energy 
part and the one-particle Green’s function which is complete through third order. This extended 
2ph-TDA [l&19] represents a distinctly improved approximation scheme combining the virtues 
of the OVGF and of the previous 2ph-TDA. A closely related third-order approximation has 
been derived within the EOM approach [lll14]. The systematic derivation of the extended 
2ph-TDA follows from a new diagrammatic approach [19,21] which has been termed algebraic 
diagrammatic construction (ADC). The ADC represents an exact resummation of the perturba- 
tion series for e.g., the self-energy part, in terms of a simple algebraic form introducing effective 
(higher-order) quantities. There exists a unique method for constructing successively the effective 
terms by comparing the original diagrammatic perturbation series with the perturbation expan- 
sion of the ADC form. This defines in a natural way a set of systematic approximation schemes 
for the self-energy part representing infinite partial summations complete through n th order of 
perturbation theory. The resulting mathematical procedures involve hermitian eigenvalue prob- 
lems within a space of physical excitations of N f 1 particles. Explicit expressions for the first 
three ADC schemes n = 2, 3 and 4 have been presented recently [19]. The case n = 2 is trivial and 
reproduces the second-order approximation for Z. The third-order scheme (ADC(3)) yields the 
extended 2ph-TDA which will be considered in this article. The fourth-order ADC scheme will 
only be mentioned here. Its numerical requirements are considerably higher than those of the 
extended 2ph-TDA and prevent, at the present stage, application to other than rather small 
systems. 

The essential numerical elements which have to be dealt with in actual applications are the 



diagonalization of (in general large) Hermitian matrices and the evaluation of terms which are 
familiar from perturbation theory. Although. in principle. both tasks represent standard problems 
in quantum chemical calculations, they appear in modifications which are specific to the Green’s 
function approach and which require special numerical strategies. A thorough presentation and 
discussion is attempted here of all the numerical steps which are encountered in the computa- 
tional implementation of the present Green’s function methods. 

2. The one-particle Green’s function 

.?. I. The relution to physical ohsercddes 

In this section a brief review is given of the one-particle Green’s function and of its relevance 
in the theoretical description of finite electronic systems. For definiteness we consider a 
N-electron system with a non-degenerate normalized ground state I$;: ) and energy E,:. In the 
case of a molecule a fixed nuclear geometry is assumed and rotational and vibrational degrees of 
freedom are suppressed. The (electronic) Hamiltonian of the considered system consists of a A 
one-particle part T and of the two-particle (Coulomb) interaction V. In the notation of 
second-quantization we may write 

(2.1) 

where (f (c’,) denote creation (destruction) operators for the one-particle states IT,) of a suitably 
chosen basis, in general. the Hartree- Fock (HF) basis for the ground state. The Coulomb matrix 

elements in (2.2) are defined according to 

V ,,A/= (Q?mcp,wV(1. uQ%ubRw (7.2) 

and 7], denote the matrix elements of the one-particle part ?. 
In a representation spanned by the one-particle states IF, > the one-particle Green’s function 

[I] becomes a matrix G( t, t’) with components 

Here 

(2.3) 

(2.4) 

denotes the Heisenberg representation of c,, and O(T) is the Heaviside step function. 
For a time-independent Hamiltonian G( t. t’) depends only on the time difference t ~ I’ and we 

may introduce the Fourier transform of G( t, t’) according to 

G(w) =/e “‘(‘-G( t, r’)d( t - f’). (2.5) 



By inserting in (2.3) 
EiV i ‘) one arrives at 
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complete sets of (N + l)-particle eigenstates 14,: * ‘> of & (with energies 
the spectral representation [I] for G(w): 

I, 
w + EON - EnN+I + iq 

Here, n is a positive infinitesimal introduced 

transform (2.5). 

n w+E,r-‘-EON-in 

to guarantee the convergence 

(2.6) 

of the Fourier 

The one-particle Green’s function contains physical information on the N-particle ground state 
and the ionic (N i I)-particle states. The ground-state expectation value of any one-particle 
operator 

a = c A,,+, (2.7) 

may be extracted from G according to the expression [l-4] 

(2.8b) 

In (2.8a) the time argument I’ = 1 + is infinitesimally larger than t, which means that one has to 
insert the second contribution on the right-hand side of the definition (2.3). The contour 
integration in (2.8b) must be performed over the upper complex w-plane and, thus, encloses all 
poles of G located above the real axis, i.e., all (N - l)-particle poles of the second sum in (2.6). 
Moreover, also the ground state energy Et can be obtained [l-4) from G: 

(2.9) 

Here, the contour is as in (2.8b), Tpy are the matrix elements of the one-particle part Y? of the 
Hamiltonian (2.1) and aPp4 is the Kronecker symbol. The contour integrations required in (2.8b) 
and (2.9) are readily performed once the spectral representation of the form (2.6) is available. It 
should be noted that alternative integration procedures based on modified contour paths have 
been investigated [22,23]. 

The physical relevance of the one-particle Green’s function is mainly based on its relation to 
the ionization and electron attachment spectra. As is apparent from the spectral representation 
(2.4) the (vertical-electronic) ionization energies 

1, czz ET;-’ - E;;” (2.10a) 
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and the electron affinities 

A,, = E,;Y - E,y+’ (2.10b) 

are given by the negative pole positions in G,,,(w). The residue corresponding to a pole II 

is given by the product of two transition amplitudes 

(2.11) 

(2.12) 

In the following we show how these amplitudes are related to the spectral intensities of the 
ionization experiment. Let us consider the case of photoelectron spectroscopy. If the photon 
energy w,, is sufficiently above the threshold for production of ions in the state ]#r ‘), then the 
corresponding partial-channel photoionization cross section is given by the expression [6,24] 

UJE) = +]&X;n)]2. (2.13) 

Here. 

(2.14) 

denotes the matrix-element of the dipole operator 2 taken between the one-particle state Iv,,) and 
the one-particle scattering state I+,) with kinetic energy c = tic, - 1,,. It should be mentioned that 
the derivation of eq. (2.13) involves two assumptions. First, the N-electron scattering states can 
be represented in the form (apart from appropriate spin and symmetry coupling) 

1K-y = dP >. (2.15) 

where cf denotes the creation operator for the scattering state I+,). Second, the scattering state 
]$J,) does not contribute to ground and ionic state correlation, i.e., 

L’,Ilg) = 0, c,l&) = 0. (2.16) 

According to eq. (2.13) the calculation of the spectral intensities consists of two separate parts. 
On one hand, one has to determine the dipole matrix-elements rep containing the information on 
the specific scattering process, e.g., the energy dependence of the cross section. The spectroscopic 
amplitudes .x0’) of eq. (2.12) on the other hand, depend only on the electronic properties of the 
(initial) grou;d state and of the parent ionic state. In general, the sum over orbitals p in eq. (2.13) 
runs over all (occupied and unoccupied) orbitals. Often. however, to a good approximation only 
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one term gives a non-vanishing contribution. Then eq. (2.13) simplifies to 

(2.17a) 

The pole strength 

P, = @)I2 (2.17b) 

is called the relative intensity, since it provides a measure for the relative intensities of the states n 
which derive their intensity from the same orbital p (in the sense of eq. (2.17a)). Of course, this 
supposes that ]7cP12 is only weakly energy-dependent. For a more thorough discussion of the 
intensity problem the reader is referred to refs. [6,24]. 

Finally, we mention that the one-particle Green’s function also represents an approach to the 
elastic scattering of electrons off atoms and molecules. For a discussion of this subject we refer to 
ref. [5]. Recent applications are cited in section 5. 

2.2. Self-energy and diagrammatic perturbation theory 

The perturbation expansion of the one-particle Green’s function G(w) and of the related 
self-energy part Z(o) introduced below is based on the usual decomposition of the full 
Hamiltonian fi into an “unperturbed” diagonal one-particle Hamiltonian g0 and a perturbation 
part I;r,: 

if, = J-v + t = c JyjCfC, + $ c yjk,+fc,ck. 
(2.18) 

Here, we use the second-quantized representation based on ground-state Hartree-Fock (HF) 
one-particle states ]GD,), z, denote HF orbital energies, and WI, denote the matrix elements of the 
non-diagonal one-particle perturbation contribution I@. In the HF case they are given by 

Yj = - C Yk[~k]~k. 
k 

(2.19) 

Here and in the following we use the notation I/lj,k,l = V,,,, - v,,k for the antisymmetrized 
Coulomb matrix elements, and nk = 1 - ii, denote orbital occupation numbers in the N-electron 
HF ground state I+,“). The choice fiO = A,, reduces considerably the number of terms in the 
perturbation series of G and Z. The formulation for a general unperturbed part Ai, is more 
lengthy, but a straightforward extension of the HF case.The one-particle Green’s function G(w) 
is related to the self-energy part Z(w) by the Dyson equation [l] 

G(w) = Go(w) +G"(w)Z(o)G(w) (2.20) 

allowing for the (formal) solution 

G(o) = [G’(w)-’ -Z(w)]-! (2.21) 



The “free” Green’s function G”( LJ) introduced here is given bv 

(2.22) 

This expression results from the definition (2.3) and (2.5) in the unperturbed case tf = Ff,,. The 
self-energy part Z(w) can be expanded in a well-defined perturbation series in terms of 
Feynmann diagrams which is simpler than the one for G(w). The rules for drawing and 
evaluating these diagrams are found in several textbooks [l-4] and review articles [6]. We confine 
ourselves to a few remarks which are intended to clarify the notions used in the following. A II th 
order Feynman diagram for Z(w) has two outer and II - 2 inner vertices (wiggly lines) represent- 
ing Coulomb matrix elements and 2n - 1 straight Go-lines. A more compact notation is obtained 
by combining the wiggly lines for the direct and exchange matrix elements to a dot. This is 
referred to as the Abrikosov or Hugenholtz [1.86] notation. Each 11th order Feynman diagram 
requires tr - 2 integrations over internal energy variables (or time variables). The results of these 
integrations can directly be evaluated by special rules concerning the t7! time orderings (or 
Goldstone diagrams) which are generated by each Feynman diagram. The secmd- and third-order 
Goldstone diagrams for Z(w) in Abrikosov notation are shown in figs. 1 and 2. respectively. 

Several important properties of the self-energy part Z(w) can be derived either by an 

inspection of the diagrammatic representation or by resorting to exact relations which relate X to 
higher Green’s functions [25.26]. The self-energy Z(w) can be written as a sum of a static 
(o-independent) part Z( tic) considered further below and a dynamic ( w-dependent) part M( WI 

X(w)=E(m)+M(w). (7.23) 

The dynamic part has a spectral representation 

similar to 

(a,,= +I) 
written as 

(2.24) 
y (J-o,,+iw,, 

1--- .I 

the one of G(w). According to u,, = + 1 the poles of M( w ) are located in the 1owc1 
or upper (o,, = - 1) complex w plane. Thus the dynamic self-energy part M(w) can be 
a sum 

M(w)=M’(o)+M”(w) (2.25) 

of two parts I and II being analytic in the upper and lower complex w plane. respectively. 
Physically these parts are associated with excitations of N + 1 (I) and of N - 1 particles (II). 
respectively. In general, the energies w,, do not yet correspond to energies of physical states. These 
result from the coupling to the space of one-particle (lp) and one-hole (lh) configurations via the 
Dyson equation. 

The decomposition of M(w) into the parts I and II is directly reflected in the diagrammatic 
perturbation expansion. The n! Goldstone diagrams for a given II th-order Feynman diagram can 
be divided into two distinct classes according to the time ordering t > r’ and t -c t’ of the external 
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Fig. 1. Second order time-ordered (Goldstone) diagrams for the self-energy part M( w ). 

A2 A3 

i @ @ 

c2 c3 

a 8 8 

Dl D2 D3 

AL A5 A6 

CL c5 C6 

DL D5 D6 

Fig. 2. Time-ordered (Goldstone) diagrams in third order. The diagrams Cl to C3 and Dl to D3 contribute to M’(w), 
C4 to C6 and D4 to D6 to M”(w) and Al to A6 are the diagrams of the static self-energy part. 

vertices. The first class (t > t’) contributes exclusively to M’(w), whereas the second class (t -z t’) 

contributes to M”(w) only. There are no mixed terms and M’(o) and M”(o) may be calculated 
separately from their respective diagrammatic expansions. 

The static self-energy part Z(co) can be expressed by the one-particle Green’s function 
according to [6,25,26] 

q4 = c Vpk,ql, 
k,l 

-6,,n, +&$G,,(w)dw 

Here, the contour integration is closed in the upper complex plane. Thus, 

& f G,, (o)dw = c xjn)x;“)*, 
P?E(N-I) 

(2.26) 

(2.27) 

where the summation is over all (N - l)-particle states n. Replacing G(o) in eq. (2.26) with the 



right-hand side of ey. (2.21) one obtains the implicit equation 

(2.28) 

by which the static part Z(W) can be determined self-consistently when M(w) or an approxima- 
tion for it is given. As a consequence of ey. (2.28) and of the Dyson equation (2.21) the 
calculation of G(W) can be reduced to the problem of calculating the dynamic self-energy part 
M( 0). The evaluation of the contour integration according to (2.27) requires the knowledge of all 
cationic residues, Alternatively, one may attempt a direct numerical evaluation along a modified 
contour path 122,231. 

Instead of the iterative procedure suggested by eq. (2.28) one obtains a direct de~errni~~~tio~ of 
X(W) by inserting the expansion 

G=G”+GoX(w)G”+ . . . (2.29) 

on the right-hand side of eq. (2.26). Retaining the first two terms of this expansion for G, ey. 
(2.26) becomes 

(2.30) 

For a given dynamic self-energy part M(o) the contour integration in eq. (2.30) can be performed 
yielding a linear equation for the components Z’,,(x) of the static self-energy part. The error 
introduced by the truncation of the expansion (2.29) is at least of fifth order and, as a 
consequence, z1(c4) is obtained complete through fourth order, if the dynamic self-energy part 
M(w) of the extended 2ph-TDA (ADC(3)) is employed. In general, one obtains by ey. (2.30) an 
excellent approximation to the fully iterated result of eq. (2.28). In appendix B the explicit linear 
equations resulting from eq. (2.30) are presented. 

The representation of the self-energy according to eqs. (2.23)-.(X25) allows to reformulate the 
Dyson equation (2.21) as the di~g(~~alization problem 

AX-XE, Xx+=1, (2.31a) 

/ 

efIqQ3) m’ mrr 
A== (m’)’ Q2’ 0 . (2.31b) 

(rn”)’ 0 Sz” 

Here t: denotes the diagonal matrix of one-particle energies. !Ji*” are the diagonal matrices of the 
energies o,, of M’~“(w) and rn’+” are the corresponding matrices of the coupling (Dyson) 
amplitudes lylP (n). The one-particle Green’s function is obtained as 
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in terms of the eigenvalues e, = E,, and the corresponding eigenvector components xr) = XPn. In 
these algebraic equations (devised for a finite discrete basis) the infinitesimal fiq is unessential 
and has been dropped. For numerical applications it is advantageous to resort to the original 
form (2.21) of the Dyson equation and to use the special algorithm described in section 4. We 
finally mention the sum rules 

c xyxy* = spq, (2.33) 
II 

c e xtN)xb)l)* = c,S,, 4 Z,,(m) 
” P 

(2.34) 

which are readily derived from the eigenvalue problem (2.31). Here the summation runs over all 
cationic and anionic states n. 

2.3. ADC approximation for the dynamic self-energy part 

As is discussed further below (section 2.5), a finite expansion of the self-energy part, say to 
third-order, may provide a good approximation in special cases. In general, however, one has to 
resort to approximations that are derived as infinite partial summations of the perturbation 
series. A general construction scheme referred to as algebraic diagrammatic construction (ADC) 
has been presented recently [193_ This scheme is designed to derive systematically infinite partial 
summations for M(o) complete through a finite (nth) order of perturbation theory. In the 
following we present the essentials of the ADC concept and discuss the second- and third-order 
ADC equations. A more comprehensive discussion of the ADC approach and the derivation of 
the complete fourth order equations is given in ref. [19]. 

The basic point of the ADC is that the exact self-energy parts M’(o) and M”(u) can be 
obtained by the simple algebraic form 

h&(w) = lJ;(wl - K - C)-‘U,. (2.35) 

For notational brevity the superscripts I, II are omitted whenever they are unessential. In eq. 
(2.35) Up denotes a constant (w-independent) vector of modified (effective) coupling amplitudes 
for the orbital p and K and C are constant, Hermitian matrices, the latter being referred to as the 
matrix of modified (effective) interaction. The configuration space for these matrices is given by 
the physical excitations of N + 1 particles excluding the lh and lp configurations. More precisely, 
the configuration space for the N + 1 particle case M’(o) is given by the 2p-lh, 3p-2h,. . . , 

configurations (with respect to the HF ground state I&‘)), whereas the 2h-lp, 3h-2p,. . . 
excitations are required in the (N - l)-particle case M”(o). 

The effective quantities Up and C are determined by perturbation expansions 

u 
P 

= u(1) + U’S’ + 
P P 

. . .) 

c = CC’) + (y’ + 
e--7 (2.36b) 

(2.36a) 



each series starting with a first-order contribution. The matrix K is the diagonal matrix of the 
zeroth-order (HF) excitation energies. e.g., 

K jhi,/hI = -6, + Eh + c,. n,n,n, = 1, 

K 
(2.37) 

r/hlm.,/Xlm -c, - E, + cx + E/ + c,,,, tl,n,nhn,n,,, = 1, 

for the 2pplh and 3pp2h space. respectively. 
Now a well-defined approximation M( w: n) is obtained which is complete to II th order of 

perturbation theory, n = 2. 3.. . . by comparing the ADC form 

M,,(u;n)=U~(n)(ol -K-C(n)) ‘U,(n) (2.38) 

with the (diagrammatic) perturbation series up to II th order and by requiring that M,ly( w: II) is 

exact up to n th order: 

M/&a; n)= t M;pd)+c+?+ 1). (2.39) 
,’ = : 

It is demonstrated in ref. [19] that this requirement enables a unique construction of the 
quantities yP( n) and C(n) in the n th order ADC form. 

The requtred configuration space in the nth order scheme depends on the order ?I. For 11 = 2 
and 3 the space is restricted to 2p-lh and 2h- lp configurations in the case I and II, respectivelv. 
At each even order the space has to be increased by the next higher class of excitations. e.g., by 
3p-2h (I) and 3hh2p (II) excitations for n = 4 and 5. 

For given ADC expression for U,, and C the matrix inversion problem of eq. (2.35) can be 
solved in form of the eigenvalue problem 

(K + C)Y = Yi-2. YY i- = 1. (2.40) 

where s2 and Y denote the diagonal matrix of eigenvalues and the eigenvector matrix. respec- 
tively. The eigenvalues represent the poles of the self-energy parts M’,“( w ) and the corresponding 
Dyson amplitudes are obtained according to 

nl(y) = ut y(v) 
P P 5 

(2.41) 

where Y(“) denotes the vth eigenvector. In the next step the Dyson equation can be solved either 
by resorting to the form (2.21) or by the diagonalization according to eq. (2.31). Obviously. the 
latter is equivalent to the following diagonalization problem 

B)(’ zz )(‘E )(‘)(‘t = 1 (2.423) 

I 

z + Z(m) (U’).’ (U”)’ 
B= us K’+C’ 0 (2.42h) 

\ u” 0 K” + C” I 
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The Green’s function is again given in the form (2.32) where e, = E,, and xc”) = Xin. By 
arranging the submatrices of B in the order lp, lh, 2p-lh, 2h-lp, 3p-2h,. . . oie obtains a 
structure shown in fig. 3. 

2.4. Extended two-particle-hole Tamm-Dancoff approximation 

Following the general ADC concept presented above we now construct explicitly the effective 
coupling amplitudes Up and the effective interaction matrices C for the second- and third-order 

schemes. 
The second-order contribution to the self-energy part M’(w) represented by the diagram (1) in 

fig. 1 reads 

Obviously, this expression has the form (2.35) where (case I) 

K’ jkl./‘k’l’ = ( - 6/ + <k + 6,) 6,,~6kk&, (2.44b) 

C’ Jkl./‘k’l’ = 0. 

ADC(D) I ADC(4.5); 
I I 

I 
1~ I lh 2p-lh 2h-lp :3~-2h 3h-2D ! ’ . ’ 

(2.44a) 

(2.44~) 

(2.43) 

Fig. 3. Structure of the eigenvalue problem (eq. (2.42)) for the one-particle Green’s function in the ADC approach. 
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The configuration space is spanned by the 2p-lh excitations 

1: (;, k, f), n,n,ti,= 1. k < 1. (2.45a) 

For the case II the expressions for K, U,, and C are formally identical; however, the configuration 
space is defined by all 2h-lp excitations 

II:(j,k.l), ii,np,=l, k<l. (2.45b) 

We note that in the strict second-order ADC scheme given by eqs. (2.35), (2.44) and (2.45) the 
effective interaction matrix C vanishes and the resulting approximation for M(w) is just the 
(trivial) second-order contribution (2.43). A simple extension can be obtained by employing the 
first-order expression for C which, strictly speaking, is only derived within the third-order scheme 
considered below: 

c = C’!’ jhI.~'h'I' /hl.l'h'I' case 1, (2.46a) 

C /hI,./'h'I' = - C$j,,c,s,c case II, (2.46b) 

where 

c’!’ = 6 Jhl,.j'h'/' v. 1.1' hI[h'I'] - (&$$,,,,y + ',,'v,',,,,',) + (k' H I'). (2.46~) 

The resulting approximation scheme for M(o) is readily identified as the two-particle-hole 
Tamm-Dancoff approximation (2ph-TDA) [6,20]. Obviously, the 2ph-TDA represents an infinite 
summation for M(w) which is consistent through second order, but incomplete in third and 
higher orders of perturbation theory. 

A consistent third-order approximation is the third-order (ADC(3)) scheme also referred to as 
extended 2ph-TDA [18,19]. In order to derive the corresponding effective matrix elements of 
U,,(3) and C( 3) we expand the algebraic form (2.38) to third order: 

J,&+; 3) = U, (l)t(,l _ K)plU;“+ Uj2’t(,1 _ K)p’U;“+ U:;“t(,l _ K)p’U;2) 

+U;“t(,l - K)-‘C”‘(w1 - K)-‘lJ;“+ o(4). (2.47) 

This expansion starts with the second-order contribution which has already been considered. 
Since Up is at least of first order, the three third-order contributions on the right-hand side of 
(2.47) involve the new factors U,j2) and C(l) which are of the second and first order, respectively. 
These quantities have to be determined by comparison with the third-order contribution in the 
diagrammatic perturbation expansion for M’(w) (M”(w)). In fig. 2 the third-order diagrams (Cl, 
C2, C3, Dl, D2, D3) contributing to M’(w) are shown. The corresponding analytical expressions 
have been given elsewhere [6]. They are also given in appendix C. The diagrams Cl, Dl are 
readily identified with the last third-order term of (2.47). Hereby C”’ can be determined. The 
diagrams C3, D3 and C2, D2 correspond to the first and second third-order term in (2.47). Thus. 
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we can evaluate Uc2’. The resulting expressions for case I read 
P 

&7’ , = u”? + (p’ 
P..W p.N p.Jkt' 

i. 

v 
+c kr[uj] 

j r (, Ek + f, - f,, - ‘; 

(2.48a) 

(2.48b) 

(2.48~) 

Here, Ud’$, and C$j.,~LrPl, are given by eqs. (2.44a) and (2.46). respectively. The configuration 
space is defined by (2.45a). For the case of M”(w) the configuration space is defined by (2.45b) 
and the results are 

(2.49a) 

(2.49~) 

where IJ,(:i, and C”’ Jk,,Jlk,,, are (formally~ given by eqs. (244a) and (2.44). 
The algebraic form of eq. (2.35) implemented with the effective coupling amplitudes Up and 

the effective interaction matrix C as given by eqs. (2.48) and (2.49) constitutes the third-order 
ADC approximation (ADC(3)) for the dynamic self-energy part M(w). Via the Dyson equation 
(2.21) and eq. (2.26) one obtains the ADC(3) approximation for the one-particle Green’s function 
G( w}, also referred to as extended 2ph-TDA (see refs. [l&19]). It should be noted that closely 
related third-order equations have been derived within the equation-of-motion (EOM) approach 
[ll-141. 

The ADC schemes reflect the symmetry properties of the Hamiltonian. For a spin-independent 
Hamiltonian one easily arrives at a spin-free formulation of the ADC equations. In appendix A 
we present the spin-free working equations for the extended 2ph-TDA (ADC(3)) approximation. 
A formulation exploiting the full rotation symmetry in the atomic case has been given elsewhere 

1181. 
In the extended 2ph-TDA (ADC(3)) the ionization energies, electron attachment energies, and 

the transition amplitudes of the ionic main states are treated consistently through third order. 
Within a wave function approach the consistency requires the consideration of 2p-2h double 
excitations for the ground state and of lh (lp), 2h-lp (2p-lh) and 3h--2p (3p-2h) excitations for 
the ionic states on the other hand. The explicit space employed in the extended 2ph-TDA is 
spanned by the lh and 2h-lp excitations of N - 1 particles and by the lp and 2p-lh excitations 
of N + 1 particles. This shows that in the Green’s function approach both the ground-state 



correlation and the higher ionic excitations (here 3h~-2p (or 3pP2h) excitations) are implicitly 
taken into account by ~neans of the coupling of the ( N - I)- and ( /V + 1)-particle spaces in the 
Dyson equation and by the use of higher-order (effective) coupling amplitudes U,,. The extended 
2ph-TDA also calculates explicitly the higher excited (2h Ip, 2p Ih) ionic states. Their energies 
and transition amplitudes are treated consistently through first and second order. respectively. 

In the preceding sections we have discussed a systematic scheme (ADC scheme) to determine 
the ionization potentials and electron affinities of an atom or molecule. The ADC scheme 
includes an infinite partial summation of Feynman diagrams and is exact through II th order 
perturbation theory. The n = 2 (2ph-TDA) and II = 3 (extended 2ph-TDA) schemes have been 

given explicitly, the II = 4 scheme is discussed in detail elsewhere [ 191. The 2ph-TDA and its 
extended version aim at the calculation of all (valence) ionization potentials and electron 
affinities. For this purpose large matrices have to be diagonalized. The computational details of 
these methods are given in section 4. 

In many cases we are not interested in the whole valence ionization spectrum, but rather in the 
first few ionization potentials of the system. The assignment of the ionization potentials of these 
outer-valence electrons of a molecule is essential for interpreting its photoelectron spectrum. The 
outer-valence ionization potentials are characteristic of the molecule and provide direct informa- 
tion about the chemical bonding. However. several of the outer-valence ionization potentials fall 
into a narrow energy range, making their assignment a severe theoretical problem. It is thus 
desirable to have a relatively simple method for their accurate calculation. If we restrict ourselves 
to the evaluation of the Green’s function in the outer-valence region of closed-shell atoms and 
molecules, we may take advantage of the fact that usually no poles of the self-energy part X( w ) 

lie in the energy (w) range of the outer-valence electrons. Consequently. Z(w) will be a smooth 
function with a small slope (aE,/ati I 0.1) in the neighbourhood of the outer-valence ionization 
potentials. This simplifies the calculation considerably. especially because it is not necessary to 
calculate the poles of Z(w) accurately. 

In the following we discuss a simple method to calculate the outer-valence ionization potentials 
(and electron affinities), the OVGF method. Since this method has been investigated elsewhere in 
detail [6,17,27], we discuss it here only briefly. It should be mentioned that his method has been 
successful in the calculation of the outer-valence ionization potentials of more than 250 molecules 
[28.29]. 

In the OVGF method it is assumed that the Green’s function is diagonal for those orbital 
indices which characterize outer-valence electrons and for w-values which are far away from poles 
of the self-energy 

(3.50) 

This central assumption can easily be checked. e.g.. by carrying out a fast second order or 
2ph-TDA calculation using a small basis set. For nearly all molecules we have calculated the 
approximation (2.50) has been found to be very satisfactory. Since G is diagonal, the self-energy 
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Z(O) is also diagonal. The energy dependent part of the self-energy can be written as 

15 

where the superscripts I and II in eq. (2.25) have 
2ph-TDA all poles w, develop from poles of the 
therefore, write 

(2.51) 

been omitted for brevity. In the (extended) 
second-order self-energy M’*‘(w). We may, 

M,,(w)=Clmb2,‘1’(1-A,,)/(w-wjp’-x,), (2.52) 

where G_$‘) is a pole of the second-order self-energy, i.e. it is just a linear combination of three 
orbital energies, and lrnbz,)12 is the second-order residue of this pole. (Here we write mpn for the 

terms rn:’ of eq. (2.24).) The quantities x, and A,, are defined such that their inclusion in eq. 
(2.52) reproduces the self-energy in eq. (2.51). The corrections x, and Ap,l are assumed to be 
small, or more precisely: 

lApnl < 1, IW($ - do))1 < 1. 

We may now expand Mpp( 0) 

(2.53) 

i 
1+ xn 

(3 _ wf) + ... 1. (2.54) 

Each term appearing in this expansion can be assigned to groups of distinct diagrams [6,17]. We 
define an average quantity A, by 

APC 
Imb2,‘12 

n w-bp-xx, 
=c A,nlmb2,)12 . 

,I w - w(O) - x n n 
(2.55) 

A, actually depends on w, but due to the fact that we are interested here in energies o far away 
from the poles of the self-energy we may consider A, to be a constant for o = eP ( cp is the orbital 
energy of the orbital in question). To lowest order A (the index p is dropped for simplicity) is 
determined by 

A= - ; (CI+Dl),M’2’, (2.56) 
I=2 

where the diagrams C2 to D5 of third order are shown in fig. 2. The analysis of terms in eq. (2.54) 
leads to our final result 

X((w)=Z(‘)(w)+(l +A)p’Z’3’(~) (2.57) 



which constitutes the OVGF self-energy part. From ey. (2.53) we find that the “screening 
parameter” A should be smaller than 1. It may happen. however. that the self-energy part in 
second order is very small leading to a too large value of A (see eq. (2.56)). We encounter such 

situations. e.g. in those rare cases where Koopmans’ theorem accidentally leads to excellent 
results. We may overcome the difficulty by dividing the self-energy into its two natural terms. M’ 
and M”, and repeat the above analysis for these individual terms by defining two screening 
parameters. These screening parameters then enter an expression similar to the one in eq. (2.57) 
(for more details see ref. [17]). In the extreme situation where X(‘)( ti) nearly vanishes eq. (2.57) is 
again the final result. but the parameter A has to be defined somewhat differently (for more 
details see ref. [6]). The formulae for all three possibilities are given in appendix C. 

As already mentioned. the simple formula (2.57) leads to surprisingly good results. It involves 
the calculation of the second- and third-order terms of the self-energy part only. Consequently. 
the OVGF method is a very practical and easy to handle method: no matrices have to be 
diagonalized and extended basis sets can be used. As is usually the case with practical methods. 
the OVGF method has some obvious shortcomings: It can only be applied to outer-valence 
electrons (see also next section) and ~ in contrast to the Zph-TDA method it is difficult to 
improve systematically by an extension to next (fourth) order. Here \ve should mention that the 
OVGF method is exact up to third order and the “renormalization” procedure we have 
introduced to obtain eq. (2.57) is a geometric approximation to fourth and higher orders. 

3. Computational procedures 

In this section we describe the computational procedures which are used in the extended 
2ph-TDA (section 3.2) and OVGF (section 3.3) Green’s function calculations. The input data for 
these calculations are the HF one-particle energies and the corresponding Coulomb matrix 
elements. We begin with a few comments on these preliminaries. 

The standard formulation of the Green’s function methods presented in section 2 is based on 

the one-particle data of a SCF calculation for the initial N-particle ground state and applies only 

to systems where this state is a closed-shell state. The latter requirement is a restriction of the 
Green’s function method which has not been fully overcome yet. As has been mentioned it is not 
necessary to employ the ground-state HartreeeFock basis. However. this basis certainly repre- 
sents the natural and preferable choice within the Green’s function approach. 

The Green’s function methods considered here require discrete one-particle states which are 
obtained by standard LCAO-MO-SCF procedures. Most applications presented in section 5 
employ the program system MUNICH [30]. The problem of constructing adequate basis seta is 
similar to the one encountered in the conventional CI treatments and we do not enter a 
discussion of this subject here. A few comments regarding the basis sets are given in section 5. 

The quantities which enter the Green’s function calculation are the orbital energies Ed and the 
Coulomb matrix elements ylh,, where the indices denote spatial one-particle quantum numbers. 
Since the number of Coulomb matrix elements can be very large their handling in an actual 
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computation, that is, the storage and retrieval, is an important point and a few considerations on 
this problem are in order. 

Part of the problem of handling the Coulomb matrix elements is common to the CI-type and 
Green’s function type approaches. These problems are associated with the large number of these 
matrix elements, their storage and addressing. Other problems are different. In the CI-type 
approaches one forms from the v,,, matrix elements the Hamiltonian matrix elements or directly 
the contributions to the eigenvectors and eigenvalues. The Coulomb matrix elements enter 
linearly into the expressions. In the Green’s function approaches, on the other hand, multiple 
products of V,,,, matrix elements enter the expression for the self-energy-. In particular we have to 
deal with this latter problem. In the handling of the y,k, matrix elements the use of symmetry is 
very essential for reducing their number to the number of unique non-zero matrix elements. Two 
types of symmetry are of importance, the permutational symmetry according to which we have 
(for real orbitals) 

V t/k/ = I/k/,, = bk, = ‘k/r, = I/lilk = v/t ,k = I/k/r = 6k,r (3.1) 

and the point group symmetry of the nuclear framework according to which an integral vJk, is 
only different from zero, if the direct product of the irreducible representations r, of orbitals i 

contains the totally symmetric representation r, i.e. 

V,,,,#O ifcXr/XrkXr,lra:,. (3.2) 

Our list of integrals is thus unique by permutational symmetry and we keep only non-zero 
integrals by the point group symmetry. This procedure is advantageous for symmetric molecules 
(for molecules with very low symmetry (C,, C,) or no symmetry it would be preferable to drop 
the point group symmetry and store only non-zero integrals together with their indices). At 
present we are not using symmetry groups with degenerate representations directly but use 
Abelian subgroups e.g. C,, for Td and C,,, D,, for D,, and O,, etc. In these cases we still keep a 
number of integrals which are actually zero by symmetry and others which are equal (within a 
phase factor) due to symmetry. In working with Abelian subgroups of groups containing 
degenerate representations one has to pay attention in the four index transformation of the 
two-electron integrals from the basis of atomic (Gaussian) functions to molecular orbitals that 
the molecular orbitals belonging to a degenerate representation all refer to the same axis system 
(i.e. the components of e-type orbitals all transform as e,, e, and not some as e,, el, others as e:, 

e.:. , similarly for triply degenerate representations). Prior to the transformation a rotation in the 
space of degenerate orbitals has to be performed to achieve the proper symmetry behaviour. 

Multiple products of yJk, matrix elements appear in the expression for the self-energy in two 
distinct contexts. In the OVGF method the self-energy matrix elements consist of sums of 
diagrams and these diagrams are sums of products of yJk, matrix elements. In the extended 
2ph-TDA method the coupling matrix elements ylzr) contain sums of Coulomb matrix elements 
and sums of products of these. Both expressions are of the form 

(3.3) 



where the last factor would be missing in the case of the second-order diagrams or the coupling 
matrix elements. C is a numerical constant containing the orbital energies and purely numerical 
constants. Some of the indices (1.. . .,I are equal. Some of these indices are also equal to the 
indicesp and q in which case these indices are not summed over. In the case the Coulomb matrix 
elements enter the expressions for the matrix elements to be calculated in a linear form the same 
methods as used in CI-type approaches could be used. We will only discuss the methods used to 
deal with products of V,,,, matrix elements. Three methods which can be used for the evaluation 
of such products are known in the literature. Which one is used depends on the computer 
situation with respect to core and disk space available. In the first method we keep all integrals 
unique by permutational symmetry and non-zero by spatial symmetry in fast core as a linear 
array. The addressing is done by a set of three index arrays. Given the indices i, j. I,. / of an 
integral V,,, the first of these index vectors gives the address of the integral V,,r, the second one 

for given i the address of the integral V,,,,, the third one the address of the integral V,,,,. These 
index vectors can themselves be symmetry reduced. The numerical procedures used in this 
method to deal with the second-order diagrams and the coupling matrix elements mi,“’ (products 
of Coulomb matrix elements) on the one hand and the third-order diagrams (triple products of 
Coulomb matrix elements) on the other hand are essentially identical, but the complexity of the 
third-order diagrams is certainly larger. The constant diagrams which do not contain the 
o-variable in the denominator can be simplified by extracting one combination of integrals and 
separating the summations. For the Al diagram (see appendix C). e.g.. this takes the following 
form 

(3.4) 

where B,, = 2Vpxp, - Vppk ,. This procedure is possible for all A-type diagrams. Similar factoriza- 
tion of the summations can be implemented for all third-order diagrams. 

In the second method which has been described by Silver and Wilson [31], we start from the 
assumption that a considerable percentage of the integrals can be kept in core but not all so that 
external storage on disk must be used too. Typically tens of thousand to a few hundred thousand 
integrals are kept in fast core. This method is described in detail elsewhere [31] and we thus 
describe it only very shortly. The diagrams or matrix elements to be evaluated contain integrals 

of the type I& V,L, V,,<,h’ Vohc,, I/;,,,c,d, where i, ,j. k. I refer to occupied orbitals and LI. h. (‘. tl 
to virtual ones. In general the number of occupied orbitals is considerably smaller than the 
number of virtual ones. Thus, the first blocks at least for some range of index pairs can be kept in 
core, but the block V,hc,J, for instance, not. The blocks in core are stored in individual linear 
arrays with suitable addressing vectors. The block Vrl,(‘, is read into fast core in individual loads. 
The storage sequence of these integrals and/or the DO loops have to be arranged in such a way 
as to minimize data transfer. 

If we can keep only a small fraction of the integrals in core or if we do not wish to keep them 
in core, then a method devised by Diercksen [32] can be used to evaluate the required matrix 
elements. This method is similar to the algorithm of Yoshimine [33] for the four index 
transformation of the integrals. It has been implemented by Diercksen and Pruner [34] in the 
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framework of the polarization propagator method of Oddershede [35] and also for the one 
particle Green’s function. It will be described in detail in another article [36] and we thus give 
only the essential outline of the procedure. 

In this method the two-electron integrals y,k, are subdivided into coreloads. A coreload is the 
number of integrals which will be kept in core in the process of evaluating the self-energy 
diagrams, e.g. 20000. Thus, if there are 2 X lo6 integrals there will be 100 coreloads. The four 
indices of the integrals will rarely be used to identify them, instead a linear index m will be used. 
Integrals as well as the matrix elements are referred to by two indices (n, m), the first one (n) is 
the coreload, it is going to appear in, the second one (m) is the sequence number of the integral 
in the coreload, 

(tjkf) -+ (n, m). (3.5) 

The matrix elements which we wish to compute consist of quantities - which we shall call terms 
_ of the structure 

(P? 4) c WC4 ( efsh > ($1) , (3.6) 

I GZ II t;;, III (;;, 

where ( p, q) denotes the matrix element of the self-energy or the matrix element of the coupling 
matrix m of eq. (2.31b). C is a numerical constant and the three sets of indices, I, II and 
II&denote the two-electron integrals. Terms which contain integrals zero by symmetry will be 
dropped from the outset. For a second-order diagram or for the coupling matrix elements the set 
III of indices will be missing as has been mentioned above. Some of the indices p, q, u,. . . ,I, can 
be equal. Thus, the terms written as symbolic matrix elements consists of one real word and 8 
integers. The quantity o and the orbital energies have been omitted, but as these are kept in core 
they can be inserted at any stage in the computation. We will step by step evaluate these terms 
starting with the index group III which we will replace by the numerical value of the integral. As 
the integrals cannot be kept in core we have to order the terms with respect to the indices of III 
such that all terms in a given group can be filled with the numerical values of the integrals once a 
coreload of integrals has been read into core. In this procedure we have to minimize input/out- 
put. The procedure is as follows. To each coreload n we assign a box n, thus if we have 100 
coreloads there will be 100 boxes. The terms will be put into these boxes such that all terms will 
be put into box n if the integral defined by III will appear in coreload n. The sequence number m 

of this integral in the coreload n will be assigned to the term in box n. Thus the terms in box n 
will be 

(P, q)C 1 11 (n, m). (3.7) 

There may be no terms in box n if the corresponding integrals are not required, there may also be 
more terms than the size of the coreload in box n if some of the integrals appear several times 
with different indices in I and II. The size of the boxes requires some comment. We have to keep 
M boxes in core if there are M coreloads of integrals. If we do not want to keep all integrals in 
core we have to subdivide the boxes into subparts and write a given subpart of box n onto a 



direct access file once it is fiIled and then start with the next subpart of this box. The size ctf the 
boxes should be computed iterativeIy given a certain core size. At start the box is chosen equal to 
the track length of the direct access device. ft is reduced in size if not alt M boxes Tit into core 
until this is the case. As mentioned the terms are created and distributed into the M boxes such 
that all terms in box n require only integrals from coreload II. If a given subpart of box u is filled. 
it is written on a direct access file. Its address on the direct access file is written on an 
identification section which is the first part of the next subpart. Thus starting with the last 
subpart of any given box whose address must be noted for each box we always have the address 
of the previous subpart beIonging to this box. The boxes (subparts) are written in the arbitrary 
order in which they are filled on the direct access file. Thus. the subparts of box 8~ may be in 
position 3, 8, 21. 22 and 44 on the direct access file. After this sorting procedure is finished and 
the addresses of the last subpart of each box noted we start reading in the integrals by coretoads. 
If coreload fz has been read we start reading the subparts of box l? st;trting with the Iast 0~. If a 
box is empty one can in~medi~tely jump over the entire coretoad. Each subpart of box 17 is 
scanned and the sequence number of the integral in the term is used to identify the integral. This 
reference is then resolved by replacing the index set III by the numerical value of the integral and 
multiplying it by the constant C. The resulting terms 

(p.y)C’fII (3.8) 

are then written on disk. The procedure is repeated for the new terms and the index set If and 
later I is replaced by the numerical value of the integral and combined with the constant. At the 
end we arrive at a list of terms 

(3.9) 

All terms having the same index pair ( p, q) are combined. (Their sum gives the matrix element 
X/,,(W) or F$? respectively. which is then used for solving the Dyson equation.) 

The results which are going to be discussed below in section 5 have been obtained using the 
first method, where a11 integrals are kept in core. 

As is discussed in section 2 the extended 2ph-TDA cal~u~~t~olls require the foflowing steps 

(1) Diagonalization of the matrices (K f C)‘.” of the 2p-lh-part I and of the 2h-lp-part II 
according to eq. (2.40). 

(2) The solution of the Dyson equation (2.21) in form of the eigenvalue problem for the special 
matrix A specified in eq. (2.31). 

(3) The self-consistent or direct evaluation of the constant self-energy part S(m). 

In the following we shall discuss in some detail the nu~leri~al aspects of these steps. As we shall 
see the major numerical problem arises from the size of the c~~nfiguration spaces I and II and. 
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thus, from the size of the matrices which have to be diagonalized. In the eigenvalue problem of 
step (2) one can take advantage of the special “arrow-type” structure of the matrix A. Here a new 
diagonalization algorithm has been developed [37] which can handle effectively very large 
dimensions of the spaces I and II. This algorithm is presented and discussed at length in section 
4. The actual bottlenecks are the eigenvalue problems of step (1). Here the full diagonalization, 
i.e., the determination of all eigenvalues and eigenvectors, is required to generate the input data 
of the matrix A of step (2). 

It should be kept in mind that instead of the two-step diagonalization procedure suggested 
above one could also proceed via the direct diagonalization of the matrix B specified in eq. (2.42). 
As long as one is interested in a few well-defined roots, e.g., those of the outer valence ionic main 
states. one could employ one of the diagonalization procedures which are used in the extended CI 
schemes, such as the Davidson procedure [38]. If, however, the aim is to calculate the full valence 
ionization spectrum including all satellite states and the inner valence region where the single- 
particle picture of ionization may break down [39941], one has to determine all roots of B (at 
least in a given energy interval). In this situation, especially when the density of cationic states is 
large, the two-step diagonalization procedure is advantageous. The use of direct diagonalization 
procedures has been investigated by Baker and Pickup [42]. 

3.2.1. Step (1): Diagonalization of the Zp-lh and Zh-lp parts 
The explicit spin-free expressions for the matrix elements of the matrices (K + C)‘~” are given 

in appendix A. As we will show in appendix A, there are two independent submatrices, one for 
the doublet states and one for quartet states. The latter do not couple to the one-hole (particle) 
configurations (in the matrix A of step (2)) and thus do not appear in the one-particle Green’s 
function. For completeness appendix A also lists the C matrix corresponding to the quartet states 
eq. (A.7). In the following we refer to the doublet case only. Here for each set (j, k, l), k G 1, of 
spatial one-particle quantum numbers, there arise one or two configurations depending on 
whether k = I or k < 1, respectively. Since in the matrix (K + C)’ the quantum numbersj and k, 1 
correspond to the occupied and unoccupied one-particle states, respectively, the number of 
configurations, i.e. the dimension of K + C, is N’ = Ni,Nr2 where N, and y,, denote the number of 
occupied and unoccupied (spatial) orbitals, respectively, which are taken mto account. Similarly, 
N’i = NrNz is the dimension of K + C in the case II. 

The spatial symmetry can be exploited to achieve a further reduction of the dimension of the 
diagonalization problems. In principle, one can construct configurations which transform accord- 
ing to irreducible representations of the spatial symmetry group. Such a formulation of the 
extended 2ph-TDA equation has been worked out for the case of atoms [18] where one can use 
the apparatus of tensor analysis. For molecules, on the other hand, each symmetry group requires 
a special treatment. Thus, it is more convenient to confine oneself to the largest one-dimensional 
(Abelian) subgroup of the considered symmetry group, e.g. D,, in the case of D,,. Since here all 
irreducible representations are one-dimensional it is a trivial task to classify the spatial configura- 
tions ( j, k, 1) with respect to their transformation properties. For each irreducible representation 
there results a decoupled submatrix of K + C which is subject of a separate diagonalisation 
procedure. We note that the eigenstates which are obtained as the result of these diagonalizations 
can, of course, be classified according to the irreducible representations of the full spatial 
symmetry groups. 



It is apparent that already for moderate systems and basis sets the dimension of the matrices I 

and II may prevent the full standard diagonalisation. which is required to generate the input data 
for step (2). As an example consider the extended 2ph-TDA calculation for NL reported in 
section 5. Here the largest dimension is 146 for the 2hblp space II, and 1028 for the 2p lh space 
(I). Since for most large computers the dimension of 500 represents the limit for the standard 
diagonalization routines, only the smaller diagonalization can be performed fully. 

A situation like this requires additional technical approximations. One possibility for reducing 
the dimensions of the configuration spaces I and II is the truncation of the HF basis bet, in 
particular, of the virtual (unoccupied) orbitals. If one is interested in the valence ionization. for 
example, one may omit to a good approximation the core orbitals and thus all configurations 
involving a core orbital. Similarly. one may discard high-lying virtual orbitals. However. the 
truncation of orbitals reaches soon the limits where the reliability of the results is seriously 
affected. Thus, one should, as a rule. try to exhaust the underlying basis as completely as 
possible. 

A simple approximation for the diagonalization of a matrix with dimension larger than 500 (or 
the limit of the standard diagonalization) is to select a submatrix of the maximum dimension, 
which then is subjected to a full diagonalization. and to approximate the remaining eigenvalues 
by their first-order (diagonal) expressions 

w /h/ = -c, + Eh + El+ c;h,,,h,. (3.10) 

The corresponding eigenvectors are taken in the zeroth-order approximation 

(3.11) 

As selection criterion (e.g. in the case of the calculation of ionization potentials) one may take the 
coupling strength 

',,I = c ,, k,’ + ‘, - 'h - ‘1 - c,hl.,hli 
(3.12) 

between the configuration (j, k. I) and all one-hole configurations. Often. as in the mentioned 
example of N,, the 2h-lp matrix can be diagonalized without any approximation and the 
selection procedure has only to be employed for the 2p-1 h part. Since the approximated 2pp1 h 
levels are energetically far apart from the cationic solutions this technical approximation will 
affect the final results very little. If a selection is required also in the space of the 2Llp 
configurations it has been found to be advantageous to use directly the quantities w,~, of eq. 
(3.10) instead of eq. (3.12) as selection criterion. We note that in the case of degenerate first-order 
energies u,~, all configurations (.;. k, I) have to be included on the same footing either in the full 
diagonalization or in the diagonal approximation. Otherwise the spatial symmetry of the 
eigenvalue problem will be destroyed. 

3.2.17. Step (2): solution of the D.vson equution 

Once the diagonalization procedures of step (1) are completed one can generate the matrix 
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elements of the matrix A (eq. (2.31)) whose eigenvalues and eigenvectors determine the one-par- 
ticle Green’s function (eq. (2.32)). The matrix A has the structure 

Aza b ! i b+ c ’ 

where the block a = c + Z( co) corresponds to the space of one-hole and one-particle configura- 
tions and is small (dimension N, + N,,). The block c is the large (dimension N’ + N”), but 

(3.13) 

diagonal matrix of the eigenvalues a,, of the eigenvalue problems I and II of step (1). The matrix 
b represents the coupling (matrix elements ~~~ tnt) between the 2p-lh and 2h-lp block c and the 
lh and lp block a (eq. (2.41)). The spin-free expressions for the coupling matrix elements are 
specified in eqs. (A.9)-(A.13) of appendix A. As has been mentioned above only the doublet 
states of I and II have non-vanishing coupling matrix elements. 

The eigenvalue problem for A decouples with respect to the spatial symmetry properties in a 
simple way. Since the one-hole and one-particle states (as solutions of a SCF calculation) reflect 
the symmetry properties of the full point group and since this also applies for the solutions of the 
diagonalization in step (l), the coupling matrix elements between states of a different symmetry 
species vanish. Thus, one can simply by inspection discard the coupling matrix elements of all 
configurations which belong to a different symmetry species. 

The special structure of the matrix A is called an “arrow-type” structure. The eigenvalue 
problem for such a matrix can be treated very effectively by the special algorithm 1371 to which 
section 4 is devoted. There also the requirements on storage and computer time of this algorithm 
are discussed. 

3.2.3. Step (3): eouluation of the s&tic self-energy part 
The static self-energy part Z(W) which appears as a part of the small block a of the matrix A 

in step (2) can be determined iteratively, as has been outlined in section 2. For this purpose one 
repeatedly performs step (2). One starts by setting Z( co) = 0 and solves the eigenvalue problem of 
step (2). In eq. (A.15) of appendix A the spin-free equations for the components of B(W) are 
given. These expressions require the first (l-h and l-p) eigenvector components of all (N - l)- 
particle eigenstates. The (IV + I)-particle eigenstates do not contribute and need not be consid- 
ered. Usually, the (N - ‘I)- and (N + 1)-particle solutions of the eigenvalue problem in step (2) 
are separated by a large energy interval, so that the identification of the (N - 1)-particle solutions 
does not render a problem. Another criterion is the magnitude of the coefficients of the (N - l)- 
and (N + 1)-particle configurations within a given eigenvector of A. The fact that only the 
(N - l)-particle solutions have to be calculated can directly be exploited by the special diagonali- 
zation algorithm described in section 4. It should be noted that the evaluation of the components 
XPy(co) according to eq. (A.15) involves, in general, all spatial symmetry species of the 
eigenstates of A. The resulting expression for x(00) exhibits the symmetry properties of the full 
spatial symmetry group. The next iteration step follows by inserting the previous expression for 
Z(W) into A and by repeating step (2). Usually only a few iterations are needed to obtain 
convergence. 

Another possibility is to use the direct determination of Z(W) according to eq. (2.30)). This 
leads to a set of linear equations for the components Z,,(W). The spin-free formulation of these 



equations is presented in appendix B. The input data which are required here are the eigenvalue 

w,? and the coupling matrix elements M:,“’ resulting from the doublet eigenvalue problems I and II 

of step (1). Again, all spatial symmetry species are involved. As is shown in appendix B. the 

solution of the linear equations is obtained by the inversion of a relatively small matrix defined 

with respect to configurations (k, /) where k and I are particle and hole quantum numbers, 

respectively. 

3.3. Numerical uspects of the 0 VGF method 

As briefly discussed in section 2.5 the ionic ground and the ionic first few excited states are c~f 

special interest. Of course we can use the extended 2ph-TDA to calculate the corresponding 

energies. In this case it is unnecessary to follow the diagonalization procedure described in 

section 3.2 which has been devised to be especially efficient when many eigenvalues should be 

computed. Rather being interested in a few eigenvalues only, we may use instead the Davidson 

diagonalization procedure [38] or related procedures. The fact that the pole strengths correspond- 

ing to the outer valence levels are close to unity helps in achieving convergence of these 

diagonalization procedures. The drawback in using the 2ph-TDA for caIculating only a few 

eigenvalues is that the static self-energy part cannot any more be calculated self-consistently from 

the dynamic self-energy part as described in section 3.2.3, since this procedure reyuires knowl- 

edge of all eigenvalues. Instead one has to resort to a straightforward perturbation evaluation of 

the static self-energy part by including all expansion terms of X( CG) up to a given order (third 

order in our case). This strategy has been recently used by Baker and Pickup [42]. The approach 

is useful as long as ]Z(CQ) ( is small. 

In section 2.5 it has been shown that the extended 2ph-TDA beIf-energy part c;m be 

approximated by a simplified form as long as only outer valence levels are of interest. The 

underlying method - named the OVGF method ~ is based on a geometric type of approximation 

to the self-energy part, is correct up to third-order perturbation theory and requires only the 

straightforward evaluation of terms in the perturbation expansion of X( ~3). No matrices need to 

be diagonalized. The working equations are given in section 2.5 and the handling of the 

perturbation terms has been described in section 3.1. Once the self-energy part has been 

calculated, the relevant pole of the Green’s function GP,( ~3) is determined as a root of the 

following Dyson equation 

(3.14) 

The relevant pole, i.e. the pole which corresponds to an outer valence cationic state when y is an 

occupied outer valence orbital in the HF ground state or to the electron affinity when cl is a 

virtual orbital, is characterized by a pole strength close to unity. The pole strength is given by 

(3.15) 

where eq is the solution of ey. (3.14). It should be noted that 0 I PC/ I 1. 

The OVGF method is restricted to poles for which 4, = 1 (in practice p,, > 0.9). For these poles 
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eq. (3.14) can be solved iteratively by defining the series WY), v = 0, 3,. . _ 

cd:“+‘)= 01”)+ [cq + S,,jo:“‘) - wy] Pcy, 

&p -_ < 
4 4 

which converges rapidly to eq. The auxiliary series P:“‘, Y = 0, 1,. . . , where 

(3.16a) 

(3.16b) 

(3.16c) 

converges to the pole strength Pq. The simplicity of the equations for determining the self-energy 
part and for solving the Dyson equation makes the OVGF method applicable to larger molecules 
and enables the use of extended basis sets. The necessary formulae for the OVGF method 
(diagrams, and expressions for the renormalization) are given in appendix C. 

4. The eigenvalue problem for arrow matrices 

In section 2.2 it has been demonstrated how the solution of the Dyson equation reduces to the 
diagonalization of an arrow matrix. The computational details of the construction of this matrix 
have been given in sections 3.1 and 3.2. In the following we discuss the eigenvalue problem of a 
general Hermitian arrow matrix and present an efficient algorithm for obtaining its eigenvalues 
and eigenvectors. We adopt the numerical procedure of Walter et al. (371. We consider a general 
Hermitian arrow matrix Y of the form 

yzA B 
i 1 BT c’ (4.1) 

where A is an N x N Hermitian matrix with elements a,, coupled to the real M x A4 diagonal 
matrix C = ( c;S,;} by the N x A4 matrix B with elements b,,. Without loss of generality one may 
take the c, to be ordered such that 

c, IC,SC,I . ..IC.. (4.2) 

Hermitian arrow matrices have been studied, e.g., for determining the changes of the unperturbed 
energies caused by adding additional states to the hamiltonian matrix [43,44]. 

To make contact with the preceding sections we note that the arrow matrix Y in eq. (4.1) is 
identical with the matrix A in eq. (3.4). It is convenient to introduce a matrix L(w) which is - 
apart from the diagonal matrix of the orbital energies - identical to the self-energy part Z(o) 

L(w) = e + Z(w). (4.3) 

Whenever unambiguously defined, L is also called the self-energy part. In the present notation 



the elements of this matrix read 

(4.4) 

For completeness we recall that the Green’s function is closely related to L via the Dyson 
equation 

G(w)= [WI -L(w)] -‘. (4.5 

We can express the Green’s function in terms of the eigenvalues and eigenvectors of Y: 

YX=XE, XX’=l. (4.6) 

Here E is the diagonal matrix of eigenvalues e,, and X = { .Y,, } is the unitary matrix of 
eigenvectors. The Green’s function now reads 

IV + ,M )i. ,, * 

(4.7) 

Eys. (4.1) to (4.7) constitute our working equations. The Dyson equation (4.5) has the essential 
advantage that the eigenvalue problem of Y can be studied by iIlvestigatillg the pole structure of 
the w-dependent Green’s function. From a numerical point of view the attractive feature of this 
approach is the fact that the poles of G(w) can be obtained by “graphical” methods and that the 
matrices to be dealt with are of order N only. This last attribute is of particular importance 
because for all applications M Z+ N. 

If the dimension N of the submatrix A is equal to 1, the structure of Y is particularly simple: 
only the first row, the first column and the diagonal are different from zero. This one-dimen- 
sional case has been considered by many authors [43,45]. The eigenvalues can be obtained by a 
straightforward graphical procedure. The multidimensional case N B 1. however, has found less 
attention and has only recently been treated by Walter et al. [373. We follow here their 
“graphical” procedure for obtaining the eigenvalues and eigenvectors of Hermitian arrow 
matrices. For the sake of completeness and clarity we first discuss the one-dimetlsi(~naI case. 

As an illustrative example we first consider the one-dimensional case. If the dimension of A is 
equal to 1, Y has the form 

Y= (4.8) 
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and the corresponding Green’s function matrix is one dimensional and reads 

G(w)=l/[-l(w)], (4.9a) 

(4.9b) 

The analytic properties of the solutions of eq. (4.9) are well-known [43,45]. Here we restrict 
ourselves to a brief summary of the essential results. 

The (M + 1) eigenvalues of Y are obtained as the solutions e, of the implicit equation for o 

w = f(w). (4.10) 

These solutions can easily be found by a graphical method. Let us first assume that all c, are 
different, i.e., c, < c2 < c3 < . . . < cM. In this case the eigenvalues e, are all distinct. Fig. 4 shows a 
graph of f(w) for a particular set of parameters u, b,,, and c,,. The poles of l(w) are indicated by 
vertical dotted lines and the intervals ( - 00, c,), (c,, cz), . . . ,( cM, co) are specified by the index 
h = 1, 2,... , M + 1, respectively. As can be seen from this graph the solutions e,, of eq. (4.16) are 
obtained as the values of o at the intersections of I(w) with the dashed line y = o. Since l(w) is 
monotonically decreasing in each interval h, there is exactly one eigenvalue of Y in each of these 
intervals. This property of the eigenvalues of Y is often referred to as the separation theorem [43]. 
Numerically, eq. (4.10) can be solved separately for each interval using well-known algorithms 
[46], e.g. the Newton-Raphson method. 

Let us now consider the case when K diagonal elements of C are equal, say 

c, = cm+1 = . . . = C,,+K_,. (4.11) 

From the explicit expression of I(w) in eq. (4.9b) we see immediately that this is equivalent to 
replacing Y by a matrix Y, where K coupling matrix elements b,, h,,, , , . . . , b,,, K_, are replaced 
by modified quantities &,,, &,,~+,, . . . ,b,,,+K_, 

(4.12) 

bm+, = i;n1+2 = . . . = hn*+K_l = 0. 

Now (K - 1) diagonal elements of Y decouple and one finds that c, is a (K - l)-fold degenerate 
eigenvalue of Y. The residues of the corresponding poles of the Green’s function vanish and the 
(K - 1)-fold degenerate eigenvalues e, = c,, do not occur as poles of G(w). 

Finally, we turn to the problem of determining the eigenvector matrix. It is easily seen that 

X ,+,,n = b:x,,,/(e,, - c,), 1 I i 5 M. (4.13) 
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Fig. 4. Graphical determination of the eigenvalues of an arrow matrix Y for the one-dimensional case 3’ = 1 ( M = 4). 
The full lines represent the function 1(w), the poles of I(w) are indicated by vertical dotted lines. The eigenvalues of Y 
are obtained as the values of w at the intersections of I(w) with the dashed line )‘ = w. 

The normalization condition X+X = 1 fixes the remaining first eigenvector component to be 

I 
.M 

1+ c 14,,IZ 
-Yl.n = 

,,, = I ( r,, - C’,)] )? 

-I ‘2 

1 (4.14) 

The sum within the brackets is easily identified with the slope of I(w) at the intersection point of 
the straight line .v = w with I(w). i.e., at the pole w = e,, of the Green’s function 

x1,,, = [l - a(e,,)/ati] -’ l. (4.1s) 

The graphical method of computing the poles and residues of G(w) is extremely fast. Further- 
more it has the advantage that there is exactly one pole of G( w ) in each interval h. Each of these 
poles can be computed in a separate calculation. 

4.2. The multi-dimensional case N ) 1 

For the general case N > 1 the arrow matrix Y is of order N + A4 and the Green’s function 
matrix G as well as L are of order N. The function f(w) in eq. (4.9) is replaced by a set of N 
functions /,(a) which are defined by diagonalizing L( ~3) at every value of (3 (w f c,,,. tu = 
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1, 2,...,M): 

I,(u) = [F+(~)L(~)F(c~)],,, F(o)F+(o) = 1. (4.16) 

The matrix F(w) of eigenvectors is unitary. In the following we discuss the analytic properties of 
this set of functions and subsequently we present a pole search algorithm built upon these 
analytic properties. 

The poles of the Green’s function are obtained again - as in the one-dimensional case - as the 
solutions of the implicit equations 

o=l,(o), i=l,2 ,..., N. (4.17) 

While the function I(o) in the one-dimensional case has simple poles at w = c, (m = 1, 2,. . ,M), 

the f,(w) are of a more complex form. To study the behaviour of the I,(w) at the poles c,, of 
L(w), we first discuss the case where all c,, are different. Let us consider the structure of the l,(w) 
around a particular pole of L(o), say ck. For ck_, < o < ck+ ,, we divide L(o) into two parts 

L(w)=L(w)+ 1 -B,Bi.. 
I.4 - Ck 

(4.18) 

where L(o) is identical to L(w) except that it does not contain the pole at ck, i.e. the summation 
in eq. (4.4) is restricted to m f k. B, is a column vector of length N and elements h,,. We now 
diagonalize the Hermitian matrix B, Bl: 

(B~B~)S = sp? (4.19) 

The eigenvalues are simply given by 

,,L+2, g”‘=py= . ..=/3kk’=o (4.20) 

and the N components si, of the eigenvector S, corresponding to the eigenvalue fi,‘“’ are explicitly 
obtained as 

s (4.21) 

and the remaining (N - 1) eigenvectors corresponding to the eigenvalues 0 span the orthogonal 
complement of S,. If N is a power of 2 this orthogonal complement is determined straightfor- 
wardly by permutations of the elements b;,. 
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With the aid of the unitary transformation S which diagonalizes B,B: 

I 

S+L( 0)s = 

we arrive at 

(4.22) 

where 0 is either a matrix or a vector containing only zeros and the other quantities arise from 
the diagonalization of L(w): 

Sts( w)S = H(w), 

I,,(4 = Y,b). i= 1. 3 . . . . . N. (4.23) j=2, 

D,,(w)=H,,(w). i.,j==2,3 . . . . . N. 

For c/, ~, < o < cx +, the elements of the matrix i._(w) are continuous by construction and, 
therefore, also the H,,(w) are continuous. Consequently [37], one function I,( w ) has a simple pole 
at ~3 = cx and the other (N - 1) functions I,( w ) are continuous for ci, , < cc -c cx + ,. Furthermore. 
one obtains for the value of these functions at w = cx 

I, ( (‘A ) = d, ( (‘A ) 3 (4.24) 

where the cr’,( ch ) are the eigenvalues of the matrix D( ch ) defined above in eqs. (4.22) and (4.23). 
Two additional properties of the functions f,(w) should be mentioned: (a) each I,( w ) is a 

monotonically decreasing function between any two of its successive poles and (b) when (~1 
approaches infinity, f,(w) approaches a constant a, which is an eigenvalue of the submatrix A in 

eq. (4.1). 
We note that in the one-dimensional case the number of poles of the function /(w) is M, 

whereas for N > 1 the number of poles I, of the particular function /,(a) is less than M. If we 

denote by l,( w ) the function which has a pole at u = c,, the next poles of I,( w ) occur at cl + ,%. 

~‘l+2A”~~~~(‘I+(l, -I)!&‘. Similarly, the poles of /*( ti) occur at c’~, c7 + v,. . . c1 +( ,. ,) v, etc. It follows 
that the number of poles is given by 

M.N>i. 

where [a] denotes the largest integer number which is I u. It should be noted that this formula 
for the number of poles is valid only if all c,,, are different. 

The analytic properties of the functions /,(w) can best be visualized by a graphical analysis. 
Fig. 5 shows a graph of the functions I,(w) for N = 3, the dimension of C being M = 4. The 
positions of the poles c,,? of L(w) (c, = - 3, (” = - 1, c’3 = 1, c4 = 3) are marked by vertical dotted 
lines. At w = - 3 the function I,(o) has a simple pole, but is continuous at w = - 1 and w = I. 

The second (I, = 2 according to eq. (4.25)) pole of II(w) occurs at w = 3. The remaining two 
functions 12(w) and /3(w) have only one pole each (I, = I, = 1). /,(a) is monotonically decreas- 
ing in each of the intervals ( - co, - 3), (- 3. 3) and (3, a), /2(w) in the intervals ( - x, - 1) and 
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Fig. 5. Graphical determination of the eigenvalues of an arrow matrix Y for the multi-dimensional case N = 3 (M = 4). 
The full lines represent the three functions i,(u), l,(o) and I,( 0); the poles of L( CO) are indicated by vertical dotted 
lines. At each pole of L(w) exactly one I,(w) has a simple pole. There are three intersection points of the I,(u) with the 
dashed liney = w in the interval h = 3, two in the interval h =l, but none in the interval h = 2. The slope of i,(w) at an 
intersection determines the residues of the Green’s function and the eigenvectors of Y. 

(- 1, 60) and EJw) in (- so1 1) and (1, co). Similarly to the one-dimensional case, the 7 
(= N -t M) eigenvalues of Y are obtained as the values of w at the intersections of the dashed line 
y = w with th e curves Ii(w). However, the separation theorem of the one-dimensional case no 
longer holds here. As can be seen from fig. 5 there are three eigenvalues of Y in the interval h = 3 
and two in the interval h = 1, but none in the internal h = 2. Obviously, in contrast to the 
one-dimensional case, the number of possible eigenvalues in each of the intervals h varies. Since 
there are N functions I,(o), the upper limit for the number of intersection points in each interval 
h is N. The lower limit for these numbers is 1 in the first (h = 1) and last (h = M + 1) intervals 
and 0 otherwise. 

Although there is no separation theorem for the multi-dimensional case, the number of 
eigenvalues in each of the intervals h can easily be determined. Suppose we want to know how 
many roots of Y are in a particular interval ( ck, c~+~ ). As a first step we calculate the values 
/,( ck) of the (N - 1) functions I,(w) which are continuous at ck as well as the values I,( ck+ ,) of 
the (N - 1) functions which are continuous at ck+,. According to eq. (4.24) this is done by 
diagonalizing the matrix D(w) of eq. (4.22) for o = ck and w = ck+,, respectively. Since all 1;(o) 
are monotonically decreasing in the interval (c,+, c&+,), we can immediately tell which and how 
many l,(o) intersect the straight line y = o. Similarly, the rim intervals (- 00, c,) and ( cM, 00) 
can be investigated by taking into account the asymptotic behavior of the I,(w) (see property (b) 
below eq. (4.24)). 

We now drop the condition that all c, must be different. Suppose K elements of C are equal, 
say ck = ck_+_, = . . . = c~+~_~. The corresponding coupling matrix elements form K vectors B,, 
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6 /;+1*..., B A +K 1. Suppose further that J of this set of vectors are linearly independent. Since 
each of these vectors is of length N, J 5 N and K. Although ci, is now a K-fold degenerate pole of 
L(o). the asymptotic behavior as well as the monotoilicity of the set of i,t 0) is not altered. 
However, instead of one, exactly f fu~~ctions now have a simple pole at t3 = C~. The r~~lair?iilg 
( N - J) functions are continuous at this point. in order to compute the values of these functions 

at 13= c’~ we return to eys, (4.18) and (4.19) and replace the matrix B,Bi by 

K-- I 

This matrix is of rank J and. therefore, has J eigenvalues different from zero: 

(4.26) 

Similarly to eq. (4.22) the diverging /,( wf decouple from the continuous ones and we arrive at the 
following relation 

S’L(w)S = H(w) + 

where 

(4.27) 

D&+H,,(w), i,j=J-t- 1,J-k2 . .._. Iv. 

and H(w) has been defined in eq. (4.23). The values of the ( N - J f continuous functions I,( o) at 
w = (‘A are obtained as before as the eigenvatues of the submatrix D( cA ) vvhich is now of the order 
iv -J. 

A few additional interesting points are worth meilti~~ning if cA is a K-fold degenerate pole of 
Lf ~3). If the degenerate pole happens to be c1 or c,~, than there are at least J eigenvalues of Y, i.e. 

poles of the Green’s function. in the intervals ( - co. c, ) and ( c,,,, 32). respectively. If J = N for a 
particular C~ then there is at least one eigenvaIue of Y in each of the two adjacent intervals 

(c,,_,. ci:) and (c.~, L’~+~ ). Most ~~~z~~~~u~i~~~ ci itself is a ( K - J f-fold degenerate root of Y. These 
roots do not appear as poles of the Green’s function, since the corresponding residues vanish. 

To illustrate the effect of a degenerate pole of L(U) we have plotted in fig. 6 the three 
functions I,(o), 12(w) and /3(o) for the same set of parameters as used in fig. 5 with one 
additional pole at w = - 1 which is now twofold degenerate. The coupling matrix elements are 
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Fig. 6. Graphical determination of the eigenvalues of an arrow matrix Y for the multi-dimensional case N = 3 (M = 5). 
For the explanation of the symbols see fig. 5. The matrix L(o) is the same as in fig. 5 except that an additional pole 
has been added at w = - 1. Therefore. two functions I, ( w ) have a pole at this point. The additional eigenvalue of Y lies 
in interval h = 2. 

chosen such that the two vectors 6, and B, are linearly ind~pendellt, i.e. f = 2. Fig. 6 shows that 
at w = - 1 both 1*(o) and I,(w) have a pole in contrast to fig. 5 where j3( w) has been continuous 
at this point. Since the additional pole of L(w) increases the dimension of Y by 1, there must be 
one additional eigenvalue. From fig. 6 it follows that this solution lies in the interval h = 2. It 
should be noted that the number of eigenvalues in a given interval h can still be easily calculated 
by the procedure described above for the non-degenerate case. 

Finally, we turn to the computation of the eigenvectors of Y. The relation between the 
eigenvector matrix X and the residues of the Green’s function is given in eq. (4.7). The first N 
components of any eigenvector of Y are obtained from the derivative of I,(w) with respect to w at 
its intersection point w = e, with the straight line y = w: 

xpn = F,ije,)[l - ar;(e,,)/awf -“*, 1 IP I M. (4.28) 

F,,(w) are the elements of the eigenvector matrix F(w) which diagonalizes L(w), see eq. (4.16). 
The derivatives of f,(w) with respect to w can be given explicitly 

w4 _ _ 
a0 

f l%A2 
nz=l (w - c,J2 ’ 

(4.29a) 
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where 

a 
,I?, = c F,,bk,,,. (4.29b) 

,2= 1 

These relations complete the evaluation of the Green’s function. It might, however. be of interest 
to determine also the remaining M components (corresponding to the submatrix C) of the 
eigenvectors of Y. These components ~ which do not enter the Green’s function expression (4.7) 
~ may serve as a tool to idenfity the contributions of higher excited configurations. They are 
determined by the relation 

X Nip.r1 = 1 h/yf,x,,,/(e,, - cp ). 1 5 p I M (4.30) 
/=l 

for e,, # c’,‘. The less interesting case ‘,I = c/j (the corresponding residue of the Green’s function 
usually vanishes in this case) is treated in ref. [37]. 

4.3. A pole seurch ulgorithm for solcing the eigenvdue problem of Hermitiun urrow matrices 

The preceding analysis has shown that there is an equivalence between the eigenvalues of 
Hermitian arrow matrices having non-vanishing eigenvector components with respect to the 
submatrix A on one hand and the poles of the Green’s function for Y on the other hand. 
Numerically, this equivalence can be utilized to compute the Green’s function G( 0). For this 
purpose, the results of the last section for the multi-dimensional case N > 1 can be converted into 
a general algorithm for obtaining all poles of the Green’s function. In the following we present 
the essential features of such a pole search algorithm: 

1) 

2) 

3) 

The M known poles of L(o) give a straightforward way of dividing the range of ti and hence 
the spectrum of the eigenvalues of Y into the M + 1 intervals ( - 30. c,). (c,. c-,). . . .( c+,. co). 

Since each of these intervals can be investigated separately, one may restrict the eigenvalue 
analysis to cmy interval (a, b) without having to solve the whole problem. 
For a particular interval h = ( ck, cA + , ) the number of eigenvalues e,, of Y in h is determined in 
the following way: The values of the continuous functions I,(w) at w = c/, and w = c/, +, are 

calculated by diagonalizing the matrices D( c/, ) and D( cx + , ) as described in section 4.2. Since 

each f,(w) is monotonically decreasing in h, there is at most one intersection point of a 
particular f,(w) with the straight line .P = (3. Knowing the numerical values of I,( (‘x ) and 
I,( ck+ ,) makes it possible to determine which functions I,( w ) are intersected and. conse- 

quently, how many eigenvalues of Y lie in h. If h = (- x, c,) or (c’,$,. x) one must also take 
into account the asymptotic behaviour of the set of functions /,(a). Scanning all M + 1 
intervals in this way guarantees that no eigenvalue of Y is omitted. 
A particular eigenvalue e,1 is determined by solving the equation w - I,(w) = 0. This has to be 
done iteratively, e.g. using a Newton-Raphson procedure. The iteration involves the evalua- 

tion of I,(w) at iteration points w, where cx < w,, < cx + ,. To calculate /,( w,,) the matrix 
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elements L,,( wy) are constructed via eq. (4.4) and the resulting matrix L( w, j is diagonalized. 
The ith (ordered) eigenvalue of L( w,) then corresponds to /;( c+). In the iterative cycle only 
matrices of order N need to be manipulated which means that for fixed N the computational 
time for a particular e, is proportional to M. 

4) For a particular eigenvalue err the corresponding eigenvector is obtained via the derivative of 
l,(w) with respect to w at w = e,. The derivative is given analytically and hence the 

corresponding eigenvector components can directly be evaluated via eqs. (4.28)-(4.30). For 
fixed N the computational time for a particular eigenvector is linear in M, i.e. the time for 
calculating the hole eigenvector matrix is proportional to M*. 

5) To complete the eigenvalue analysis one must determine the eigenvalues of Y having vanishing 
eigenvector components with respect to the submatrix A, which due to ~~anishing residues 
cannot show up as poles of G(w). Such special eigenvalues can only occur if a pole ck is 
degenerate. In this case one analyzes the structure of the coupling matrix elements B,. If ck is 
K-fold degenerate and the number J of linearly independent vectors of the set B,, . . . , B,+,_ , 
is less than K, it follows that ck is a (K - J)-fold degenerate eigenvalue of Y. 

The features of the pole search algorithm as outlined above suggest that it will be particularly 
efficient for two practical applications one is often faced with: either only a certain range of the 
eigenvalue spectrum is needed or many (or even all) eigenvalues together with the corresponding 
eigenvectors have to be evaluated. In both cases the efficiency of the above algorithm increases 
the larger the “tail” M of the arrow is compared to the dimension N of the submatrix A. If all 
eigenvectors are to be calculated even for medium sized matrices (&4 = 300) we have found that, 
compared to standard diagonalization routines for N = 3, a factor of 7 in CPU time is gained. 
For N = 6 this saving is reduced to a factor of 3. The drastic reduction of computing time is, of 
course, due to the fact that the time for evaluating all eigenvectors is proportional to M2 whereas 
standard routines exhibit an M3 dependence. A further saving is accomplished if not all 
eigenvalues are needed. The latter is particularly important for very large’matrices. In this case 
one often encounters the problem of determining all eigenvalues within a given range. The pole 
search algorithm is ideally suited for this sort of problem because all intervals (a, h) are treated 
with the same accuracy. For such large matrices a comparison with the Lanczos [87] algorithm 
shows that as long as only eigenvalues are computed the CPU times for the two methods are 
roughly the same. However, the great numerical stability of the pole search algorithm is a quality 
which cannot be matched by the Lanczos algorithm. With the latter considerable numerical effort 
is required to eliminate spurious eigenvalues or to calculate eigenvectors. We also would like to 
emphasize that very close or degenerate eigenvalues of Y do not pose any additional difficulties 
within the framework of the above algorithm because this problem is reduced to the problem of 
coping with degeneracies of the very small N X N matrix L(w). 

5. Applications 

The one-particular Green’s function method has been applied to a large number of atoms and 
molecules ranging from He to SF, and transition metal compounds. Most of the calculations have 



been carried out with the objective of explaining ionization spectra like photoelectron and (e. 2e) 
spectra. Some applications are available to the electron affinities and electronvibration (vibronic) 
coupling constants in molecules. The latter quantities are of interest when calculating the vibronic 
structure in molecular ionization spectra and the nuclear geometry of the molecular ions. Only 
little is known about the usefulness of computing electronic correlation energies via Green’s 
functions. Applications of Green’s functions to electronic correlation energies have been reported 
[23,47749] on a few small systems: He, Be, LiH, N,, CO and H,O. The self-energy part can also 
be used to calculate the cross section for collisions of electrons with atoms and molecules (see 
section 2.1). The concept has been applied to electron scattering off He. H, and Nz [50--521. 

In table 1 we have collected the atoms and molecules on which ab initio Green’s function and 
EOM calculations have been carried out. It should be mentioned that many semiempirical 
applications of Green’s functions are also available in the literature. Of these the OVGF 
calculations on several metal-organic compounds using a newly parameterized INDO Hamilto- 
nian deserve special attention [53,54]. All calculations in table 1 are based on finite basis set 
methods. In the molecular calculations Gaussian atomic orbitals have predominantly been used 
(see section 3.1). In the case of atoms use has been made [1X] of the spherical symmetry to reduce 
the extended Zph-TDA equations to radial equations. In this version the eyuations have been 
solved using Slater type orbitals. As mentioned in preceding sections, the OVGF equations can 
be solved for extended basis sets without truncation. Indeed, the basis sets have been exhausted 
in most OVGF calculations included in table 1. Since the 2ph-TDA method is based on matrix 
diagonalization, it is much more cumbersome to exhaust the basis sets. In many of the 2ph-TDA 
computations reported in table 1 diagonalization procedures have been used which are less 
sophisticated than those described in this work and the basis sets were truncated. For the larger 
molecules and older calculations truncation errors might be significant, but nevertheless the 
results are useful for the interpretation of the experimental findings. In what follows we discuss a 
few applications of the OVGF and extended 2ph-TDA methods to the calculation of valence 
ionization potentials and electron affinities. The results are used to briefly interprete ionization 
spectra and some attention is paid to the ionization of inner-valence electrons. The complex 
inner-valence-shell ionization spectra of molecules are the subject of current experimental and 
theoretical investigations. As an example one may consider the model molecules N, and CO. 
Recently new experimental data [55] have been obtained by synchrotron radiation at various 
photon energies. These experimental spectra corroborating previously experimental work [56662] 
show an extended structure comprising numerous peaks in the region of 25545 eV binding energy 
which cannot be explained by the single-particle picture of ionization. Due to strong configura- 
tion mixing between the inner-valence hole configuration and higher excited configurations, e.g., 
two-hole-one-particle (2phhlp) excitations, there may occur a multitude of final ionic states 
which share the partial ionization cross section for the respective inner-valence orbital. This 
breakdown of the single-particle picture for the ionization of inner-valence electrons is a common 
phenomenon, as has been demonstrated by theoretical studies in N, [39,24] and CO [39.24.63] 
and in many other molecules [64]. General aspects of the phenomenon are discussed in refs. 
[65,66]. 

As examples we choose N,. C2N,H, (s-tetrazine) and ZnCl, for the discussion of the 
ionization spectra and C,, P2, SO, and 0, for a short presentation of the electron affinities. The 
model molecule N, is discussed in some detail as an introduction to the use of the method and 
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Table 1 
Compilation of calculations on atoms and molecules performed with Green’s functions or related methods 

Molecule ‘) Method ‘) Refs. h’ Remarks ‘) 

He 
Li 
Be 

F 
Ne 
Na 

MS 
Ca 

H, 
Li 
Be: 

C, 

N2 

02 

F* 

P2 

Cl2 

Br2 

LiH 

BeH 
BH 

OH 
FH 

NaH 
CIH 
BrH 
IH 
BO 
co 
CN 
CS 
PN 
SiO 
SiS 
HCN 
HNC 

co2 

cos 

cs2 

N,O 

FCN 
ZnCl 2 
CdCl 2 
NiCl 2 

OF 
GF 
GF, 2ph-TDA 
EOM 

OVGF, GF, EOM. 2ph-TDA 
GF 
GF, 2ph-TDA 
Zph-TDA 
GF 
GF, Zph-TDA 
EOM 
OVGF 
OVGF, GF, EOM, 
2ph-TDA 
GF 
OVGF, Zph-TDA 
OVGF, Zph-TDA 

OVGF. GF, 2ph-TDA 
OVGF, 2ph-TDA 
EOM, GF 
EOM, GF 
EOM 
EOM 

OVGF, 2ph-RDA, EOM 

EOM 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, Zph-TDA 
EOM 
OVGF, 2ph-TDA 
EOM, GF, Zph-TDA 
OVGF, Zph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-RDA 
OVGF. 2ph-TDA 
OVGF, Zph-TDA 
OVGF, 2ph-TDA 
OVGF, Zph-TDA 
OVGF, 2ph-TDA 
OVGF. 2ph-TDA 
OVGF, Zph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, Zph-TDA 

(l-5) 
(6.7) 
(1.89) 

(10) 
(10-17.122) 

(7) 
(8314) 

(8) 
(18-20) 
(1516,122) 

(21) 
(22) 
(2,13.23328, 
29,30-36,9.122) 

(37) 
(13,38,39) 
(13,22,40) 

(41342) 

(42) 
(15,16.43-46) 

(7,47) 
(10348) 

(10) 
(10,39,43,49, 

50) 

(43) 
(50,51) 
(5Q51) 
(50,51) 

(52) 
(31.53,9) 
(35,41,52,54) 

(40,55) 
(40.56) 

(53) 
(53) 
(53,57760) 

(53.57) 
(13,61) 

(5362) 

(63) 
(53,61.64) 

(59.65) 

(66) 
(66) 
(66) 

IP. e-S, E, 
IP, EA 

IP, E, 
EA 

IP 
IP. EA 

IP 
IP 
IP, e-S 
IP,EA 
EA 
EA 
IP, e-S, EC 

IP 
IP 
IP,EA 

IP, EA 
IP 
IP, EA, EC 

IP, EA 
IP, EA 
EA 

IP, EA 

EA 
IP 
IP 
IP 
EA 
IP, EC 
EA 
IP 
IP 
IP 
IP 
IP, ve 
IP 
IP 
IP 
IP 

IP, ve 
IP 
IP 
IP 
IP 



N H 2 

PH, 
H,S 
HNO 
Be, 
NO? 

0.X 
SO, 

OF, 
SF2 

C,H, 
&C%C-F 
F-C’SC-F 

N&--N 
N=C-NEC 

N H 1 

PH, 
N,H, 

(tram-, cis-, 1, i-) 

H ,CO 
H #3 
HNCS 

B% 
BF, 
N, FZ (tram-, cis-) 

SO, 
S,J’J, 
H--C&-CN 
H-C&-NC 
F--C=C-CN 
CH, 

CH,F 
CH,CI 
C’H,Br 

CH,l 
CHLF, 
CH,Cl, 
CHF3 
CF, 
HzNCN 
H&NH 
HCOOH 
CH 2 N, (diazirine) 
C’H,O, (.dioxiranr) 
H-CZZC--C-C-H 
H-CZC-Cg- F 
F-CsC.-CZC-F 

OVGF, CF. Zph-TDA 

EOM. GF 
GF 
OVGF, Zph-TDA 
OVGF, 2ph-TDA 

EOM 
EOM 
OVGF 
OVGF, ‘ph-TDA 
OVGF, Zph-TDA 

OVGF, 2ph-TDA 
OVGF, 2ph-TD 

OVGF, 2ph-TDA 
OVGF. 2ph-TDA 
OVGF. 2ph-TDA 
OVGF. Zph-TDA 
OVGF, Zph-TDA. GF 
Zph-TDA 
OVGF 

OVGF, 2ph-TDA 
OVGF. 2ph-TDA 
OVGF, Zph-TDA 
EOM 
OVGF. Zph-TDA 
OVGF 
OVGF 
OVGF, Zph-TDA 
OVGF, Zph-TDA 
UVGF, Zph-TDA 
OVGF, Zph-TDA 
OVGF, Zph-TDA, GF 
OVGF. Zph-TDA, GF 
OVGF. 2ph-TDA 
OVGF. Zph-TDA 
OVGF, Zph-TDA 
OVGF. Zph-TDA 
OVGF, Zph-TDA 
OVGF, Zph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF. Zph-TDA 
OVGF. Zph-TDA 
OVGF, Zph-TDA 
OVGF. 2ph-TDA 
OVGF. 2ph-TDA 
OVGF. Zph-TDA 
OVGF. Zph-TDA 

(U-17.25.35. 
38.43 45,53.9.122) 
(54,671 
(54) 
( 13.42.68.69) 
(53) 
(21) 
(70) 
(71.72) 
(53.71.X) 
(73) 
(73) 
(38,53.74-76) 
(39.75) 
(39.75.773 
(53.6”).78-80) 
(53) 
(25,42.81 -83.122) 
(69) 
(X4) 

(3X.53.85-88) 
(53.6X) 
(53) 
(21) 
(hS.XY.90) 

(91) 

(92) 

(93) 
(53.59.79) 
(53) 
(59) 
(2S.74.76.Y4,122) 
(39,94.122) 
(51) 
(51) 
(51) 
(94) 
(91) 
(95) 
(95) 
(53) 
(53) 
(5WII) 
(96) 
(96) 
(53.75.76) 
(75) 
(39.77) 

If’. fq 

EA 
EA 
IP 
IP 
EA 
EA 
If’. EA 
f P. t!A 
IP 
IF’ 
I P 
IP 
IP 
IP. I’>, ve. ig 
IP 
IP vs w iu . I .3 
IP 
w. \s 

1P. vz 
II”. v?; 
I P 
EA 
IP. v\. vt‘. ig 

IP 
IP, EA 
1P 
JP 
IP 
It’ 
IF 
JP 
IP 
IP 
IP 
IP 
1P 
I J’ 
IP 
IP 
IP 
11’ 
II’ 
IP 
JP 
I I’ 
Ii’ 
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Molecule ‘) Method ‘) Refs. ‘) Remarks ‘) 

NC-C=C-CN 
NC-C=C-NC 

CH,OH 
CH,SH 
HCONH, 
CH,CN 
CH,NC 
CFJN 

C,H, 
C,H,F 
C,H,CI 
C,H,F, (tram-, cis-, 1% 1-f 
C,H,CI, (trans-, cis-, 1, l-) 

C, I-IF, 

C,HCI, 
C,F‘l 
C,Cl, 
C, H,O, (tram-, cis-glyoxal) 
C,F@, (tram-) 
H-C=C-CHO 

N204 
CH,NH, 
CH,NO, 
C, H,O (ethylene oxide) 
CH,CHO 
CzH,S (thiirane) 
C, H 4 (allene) 
C, II, (cyclopropene) 
CH,-C=C-H 
C,H,CN 
trans-C, H z FCN 
H-C=C--COOH 
H-C=C...CZC-CN 

SF. 
C,H, 
C, H s N (~thyleneimine) 

C,H,N, (s-tetrazine) 
C,H,(CN), (tram-, cis-, 1, f-1 
HCOOCH s 
H-C=C-CH,OH 
H ,C==CHCHO (acrolein) 
C,H, (butatriene) 
CH,-C=C-CN 
H-C&C.-C&-eC-H 

NC-C=C-C=C-CN 

R,H, 
CH,OCH, 
CH,CH,OH 
C,H, (cyclopropane) 

OVGF, 2ph-TDA 
OVGF, Zph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, Zph-TDA 
OVGF, Zph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, Zph-TDA 
OVGF, Zph-TDA 
OVGF, 2ph-TDA 
OVGF, Zph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, Zph-TDA 
OVGF, Zph-TDA 

OVGF, Zph-TDA 
OVGF 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, Zph-TDA 
OVGF, Zph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF. Zph-TDA 
OVGF, 2ph-TDA 
OVGF. 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, Zph-TDA 
OVGF 
OVGF, Zph-TDA, GF 
OVGF, Zph-TDA 
OVGF, Zph-TDA 
OVGF, Zph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF, Zph-TDA 
OVGF, 2ph-TDA 
OVGF, 2ph-TDA 
OVGF. Zph-TDA 
OVGF. 2ph-TDA 

(53.59.79) 

(53) 
w 
(53) 
(65.97) 
(59,79) 

(79) 
(59.65) 
(74,76,98-100,123) 
(39JO1.102) 

151) 
(39,101) 

(51) 
(39,101) 

(51) 
(39,101) 

(51) 
(88,103) 

(104) 
(88.105) 

(106) 

(42) 
(65) 
(42,107) 

(42) 
(96) 

(74,98) 

(96) 
(53) 
(42) 
(42) 
(S8,105) 

(53) 
(42,108.109) 
(74,76,110) 
(42,107) 

(111) 

(42) 
(53) 
(88,105) 

(88) 
(74,98,112) 

(53.59.79) 

(53,76) 
(53) 
(65) 
(42) 
(53) 
(42,74,107) 

IP 
IP 
IP 
IP 
IP 
IP 
IP 
IP 

IP, ve, ig 
IP 

IP 
IP 
IP 
IP 

IP 
IP 

IP 
IP 
IP 
IP 
IP 

IP 
IP 
IP 
IP 
IP 
IP 
IP 
IP 
IP 
IP 
IP 

IP 
IP 
IP 
IP 

IP 
IP 
IP 
IP 
IP 

IP, ve, ig 
IP 
IP 
IP 
IP 
IP 
IP 
IP 



Table 1 (continued) 
- 

Molecule <‘I Method cl 

____I__ 

Refs. r” Remarks “ 

CH,CH,CN 
C,H,N, (s-triazine) 
C,H,O (furan) 
C, H,S (thiophene) 
ll--C&-C_=C-CGC-CN 

CH,COCH, 
CJ H, (1,3-butadiene) 

C, I-4 5 N (pyrrole) 
C, H, P (phosphole) 

C,H,N, 
(pyrazine, pyrimidine. pvridazine) 

Cz(CN)A 
C, H,(cyclopentadiene) 
C,H,Si 

(silacyclopentadiene) 
C, H, N (pyridine) 
C, H s P (phosphortdme) 
C, H, (benzene) 

r-C,H,F, 
(pars-difluorobenzen~) 

C,H, (norbornadiene) 

p-C~H~(NO~}(N~~) 
p~~~~-nitroanilin~) 

OVGF. Zph-TDA 
OVGF, Zph-TDA 
OVGF, 2ph-TDA 
OVtiF, Zph-TDA 
OVGF. 2ph-TDA 

OVGF. Zph-TDA 
OVGF. Zph-TDA 
OVGF. Zph-TDA 
OVGF 
OVGF. 2ph-TDA 

OVGF. Zph-TDA 
OVGF. Zph-TDA 
OVGF 

OVGF. Zph-TDA 
OVGF 
OVGF. 2ph-TDA 
OVGF. Zph-TDA 

OVGF, ?ph-TDA 
2ph-TDA 

(53) 

(III) 
(42,111) 
(42,113) 
(53) 

(42) 
(74.76) 
(42.114) 

(114) 
(III) 

(42) 
(42.115) 
(115) 

(Ill.llh) 

(116) 
(74.76.117) 

(39,l IX) 

(47.119) 
(120.121) 

IP 
IP 
II’ 

IP 
I f’ 
I I’ 
1 P 
II’ 
ip 
I P 

IP 
I 1’ 
IP 

I I’ 
I I’ 
II’, \‘S 

IP 

If” 
I I’ 

.‘) ‘The ordering of the atoms and molecules is with respect to the nuclear charge and the number of atoms in the 
molecule. Within each group of n-atomic molecules the ordering is somewhat arbitrary. For the larger molecules 
organic ones are listed first and they are ordered with respect to the number of carbon atoms in the molecule. 

“) The references to the table are compiled below as supplementary references. 
‘r The following abbreviations have been used: 

OVGF present outer valence Green’s function method or closely related version: 

2ph-TDA Zph-TDA. extended Zph-TDA or closely related method: 

EOM equation of motion method; 

GF some other type of Green’s function method: 

IP ionization potential. 

EA 
e--S 

f$ 
ve 
VS 

ig 

Relative intensities are often also given and available ionization spectra (ph~~t~~~lectr~)l~ and (c:. 3) 
spectra) are discussed: 
electron affinity; 
electron-atom or alectron-molecule scattering cross sections: 

electron correlation energy: 
vibronic coupling effects in the ionization spectrum. e.g. Jahn Teller effect: 
vibrational structure in the ionization spectrum: 
geometry of the molecular ion. 
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the other molecules are only briefly addressed. S-tetrazine represents an organic molecule of 
chemical interest and ZnCl, is a simple representative of inorganic compounds with transition 
metal atoms which have received much attention lately. 

The objective of this section is to provide model applications demonstrating the capabilities of 
the extended Zph-TDA. This approximation is identical to the full third-order ADC approxima- 
tion, i.e. to ADC(3), and closely related to the third-order approximation derived within the 
EOM approach. The capabilities of the OVGF method, which is also correct to third order, have 
been discussed in detail elsewhere [28,67] and will receive only minor attention here. We follow 
here very closely the recent work of Schirmer and Walter [68] on N, and CO. 

The HF one-particle data for N, have been obtained from LCAO - SCF calculations for the 
neutral molecule ground states using the experimental equilibrium position R = 2.0693 au. The 
basis set is built up of Cartesian Gaussian functions. 

It consists of eleven functions of s-type and seven function of p-type contracted to five 
functions of s-type and four functions of p-type. The exponential parameters and contraction 
coefficients are taken from the work of Salez and Veillard [69]. (We choose the following 
contractions: no. 14 for s, no. 8 for p.) In addition, one function of d-type is added to the basis 
set ( oId = 0.75). 



The 2ph-TDA calculation is performed by the two-step diagonalization procedure outlined in 
section 3 using the spin-free formulation of these equations (appendix A). The spatial symmetry 
has been exploited by selecting the configurations with respect to the subgroup D,,. The orbital 
space has almost completely been exhausted. Out of 46 HF-orbitals 42 orbitals are maintained. 
Those omitted are the two Is core orbitals and the highest two virtual orbitals which are 
counterparts to the core orbitals. The largest dimension of the configuration space II (2hhlp) is 
146 and a full diagonalization was possible. This was no longer possible for the 2p-lh block I 

where the maximum dimension is 1028. Here, a matrix of 400 selected configurations was 
diagonalized. The remaining configurations ( j, k, /) were included in the arrow-type matrix A by 
taking the first-order approximations (see section 3.2). 

w/hl = - 6, + Eh + c, + ',:,.,hI 

for the eigenvalues and 

for the coupling amplitudes. As selection criterion the coupling strength of eq. (3.12) was used. 
Certainly, this technical approximation in the diagonalization of block I will only affect the 
results for the N - 1 particle states very little, since they are energetically well separated from the 
2p-lh configurations, which we treat approximately. The diagonalization of A (Dyson equation) 
was done for the full space of 2hhlp (II) and 2p-lh (I) configurations. The diagonalization 
procedure used to diagonalize A is discussed in section 4. The static self-energy part has been 
determined iteratively by inserting repeatedly the result of eq. (2.26) in eq. (2.31). The final 
results are obtained after three iterations. 

The results of both the Zph-TDA and extended 2ph-TDA calculations for N, is shown in table 
2. Also some experimental ionization potentials are presented. The vertical ionization potentials 
which are considered here are taken as the centroids of the bands in the photoelectron spectrum. 
A correction, which in general is small, arises from a different (harmonic) curvature of the ground 
and the ionic potential curves at the ground-state geometry and from anharmonicities in the 
potential curves [6]. The vertical experimental values derived for Nz should be correct to fO.l 
eV. 

The ionic main states X22,+, A’II, and B2x: of NC corresponding to the outer valence 
orbitals 30~, la, and 2a, are well described by the present extended 2ph-TDA calculations. The 
discrepancy between the calculated ionization potentials (IP’s) and the experimental values is 
smaller than 0.2 eV, which at present is considered as the bench mark of accuracy for good “state 
of the art” calculations [28,70-731. For comparison we present and discuss some representative 
results of other approaches (see table 3). In table 3 we also present the results of the complete 
OVGF calculation for the present basis set. These results are in close agreement with those 
obtained previously for larger basis sets (which invoke more than one polarization function) and 
are reported in ref. [28]. The most extensive configuration interaction (CI) calculations on the N2 
ionization potentials have been performed by Ermler and McLean [73]. The results in table 3 are 
obtained for a large basis of Slater type functions (6s4p3d2f). The Cl procedure takes into 
account all single and double excitations with respect to the neutral and ionic HartreeeFock 
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Table 2 
Vertical ionization energies I, (eV) and intensity coefficients xP (n)’ in N, obtained from 2ph-TDA and extended 

2ph-TDA (ADC(3)) calculations. States with x:” < 0.01 are omitted except for the first satellite states in each 

symmetry 

Orbital HF 

P -<P 

2ph-TDA 

1” 
X(n)* 

” - 

Ext. Zph-TDA 

1, 
X(n)’ 

P 

‘?rg 4’ 

16” d’ 

19 d) 

16.80 

17.28 

21.17 

40.27 

- 3.66 

58.55 

43.78 

16.38 0.91 

28.63 < 0.01 

35.53 < 0.01 

14.21 0.88 

17.22 0.81 

24.98 0.04 

35.90 0.04 

28.87 
36.41 
37.53 
39.18 
39.25 
40.02 
40.76 

24.36 
24.56 

25.47 
26.26 

29.33 
31.55 

0.14 
0.49 
0.01 
0.01 
0.04 
0.09 
0.09 

< 0.01 
< 0.01 

< 0.01 
< 0.01 

< 0.01 
< 0.01 

16.85 0.92 

28.63 < 0.01 

35.57 < 0.01 

15.70 0.91 

18.96 0.82 

25.13 0.07 

35.34 0.02 

29.20 0.10 
37.43 0.30 
37.56 0.10 
38.97 0.14 
39.25 0.04 
39.94 0.15 
40.62 0.06 

24.38 
24.56 

25.48 
26.26 

29.33 
31.56 

< 0.01 
< 0.01 

< 0.01 
< 0.01 

< 0.01 
< 0.01 

Experiment 

I” 

Leading configurations 

17.0 il) 1% -1 

20;‘30,‘1n 

20;~3es$ g 

15.6 ‘I’ 3lq9’ 

18.8 il) 2% -1 

25.2 h’ 

29.4 ” 

‘) Turner et al. [85]. 
h, Asbrink and Fridh [61]. 
‘) Krummacher et al. [55]. 
d, These orbitals are not occupied in the Hartree-Fock ground state. Non-vanishing intensity coefficients XL”)* for the 

satellite states n arise from ground state correlation. 

configurations. The contribution of quadruple excitations is estimated by the Davidson correc- 
tion [88-911. Chong and Langhoff [74] have calculated the ionization potentials of N, using 
third-order Rayleigh-Schrodinger perturbation theory plus a geometrical approximation. The 
results shown in table 3 are obtained with the same basis as the present one except for a different 
11s to 5s contraction. 

Within the EOM approach several calculations on the N, ionization potentials have been 
reported [70,74,75]. In table 3 the results of Herman et al. [70] are shown. These data are 



Table 3 
Comparison of outer-valence vertical ionization energies (eV) in N? 

ADC(3) ,I’ OVGF h’ EOM ” RSPT “’ c, C, Exp. ” 

x’s; 15.70 15.44 15.94 15.45 15.65 15.6 
A’ II L, 16.X5 16.74 17.20 16.4X 16.79 17.0 

B’BZ 1X.96 1X.89 19.01 19.04 I9.00 1X.X 

.‘) Present results. 

” Von Niessen [X4]. 

” Herman et al. [70]. 

‘) Chong and Langhoff [72]. 

‘) Ermler and McLean (731. 

“’ Turner et al. (X5]. 

obtained from a double-zeta plus polarization basis of Slater functions (4s2pld) being qualita- 
tively comparable to our basis. As in our calculation and in the OVGF calculation. the virtual 
orbital space has been essentially exhausted. The EOM-equations employed by Herman et al. 
differ from the extended 2ph-TDA equations by the expression for the static self-energy part 
Z(w) in the one-particle block of ey. (2.31). In order to obtain a treatment that is consistent 
through third order one has to employ at least the complete third order contribution IZ(‘l( x) for 
the static self-energy part. The EOM calculations discussed here. however. use only a part of 
X(3)(cc) according to the original derivation of the EOM-equations by Simons and Smith [76], 
namely the parts Al and A2 (adopting here the terminology of ref. [ 171). In the extended 
2ph-TDA, on the other hand, the static self-energy part is obtained self-consistently according to 
eqs. (2.26), (2.17) and (2.28). This leads to an approximation for Z(x) that is complete through 
fourth-order in perturbation theory and moreover contains contributions through infinite order. 
A good approximation for X(w) is essential to obtain accurate results, since. in general. the 
contributions introduced by these terms are often of the order 0.5 eV. A shift A\‘,,,,(w) in the 
diagonal element corresponding to the orbital p introduces approximately the shift 

AI,, = -x;AC,&o) 

for the ionization potential I,,. Here. x,, denotes the transition amplitude obtained for LX!,,,( x,) 
= 0. In table 4 the diagonal elements X,,,, (P-J) are shown for the valence orbitals of N, in the 

Table 4 

Diagonal static self-energy contributions Z,,,, (CG) (eV) for the valence orhitals in N, ,I’ 

Orbital Third order Al+A2 ADC‘(3) 

30; 0.80 0.33 0.58 

1% 0.69 0.42 0.46 

2 o,, 0.68 0.30 0.50 

2% 0.70 0.25 0.43 

“’ The employed basis set and orbital space are specified in section 5.1. 
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three approximations discussed above. The difference between the partial and the full third-order 
contribution is considerable (up to 0.5 eV). The self-consistent fourth- (and higher-)order 
approximation and probably the exact values mediate between the other two versions. We 
mention that the incomplete consideration of Z’3’(oc) in otherwise consistent third-order equa- 
tions leads to a severe dependence of the results on the truncation of the virtual space. This effect 
certainly limits the value of the results in the work of Bacskay and Hush [77]. 

In the region of higher ionization energy ( > 20 eV) secondary (satellite) peaks appear in the 
spectrum which correspond to 2hhlp configurations (single hole plus single excitations). These 
states obtain spectra1 intensity via the admixture of single hole (or particle) configurations, 
measured by the transition amplitudes xP (n) of eq. (2.12). A prominent example is the C2Z: state 

appearing in the experimental spectra [61] at 25.2 eV (estimated centroid). This satellite being 
associated with the 3cr;‘l~,~‘l~~ configuration has 7% of the total intensity available for the 2a, 
orbital according to the extended 2ph-TDA results. A second 2XU satellite corresponding to this 
configuration bearing 2% of the 20, partial cross section is found 10 eV above the C state. The 
ionization energies of the 2h-lp excited states are treated consistently through first-order both in 
the previous 2ph-TDA and in the present extended version. Accordingly, one finds only small 
changes when comparing the resulting energies in the two methods. On the other hand, the 
transition amplitudes are given exactly up to second order in the extended 2ph-TDA. This 
introduces a considerable modification of the intensities with respect to the previous results as 
can be seen by inspecting the relative intensities of the 2XU satellites. The good agreement for the 
ionization energy of the C state is probably fortuitous since, in general. the first order-treatment 
is not sufficient to provide accurate results. 

It should be noted that these satellite states have been studied in previous theoretical work. A 
qualitative description has been given by full CI calculations which include only a few occupied 
and virtual orbitals [78-821. A more extensive CI treatment has been presented by Kosugi et al. 
[83] and by Langhoff et al. [24]. A third-order EOM calculation employing the full third-order 
static self-energy part Z”‘(oo) and a double zeta plus polarization basis of Slater functions has 
been presented by Herman et al. [75]. Although there are differences with respect to basis sets 
and the methods employed, all calculations give very similar results for the ionization energies of 
the energetically lowest (2h-lp) satellite states. 

A different situation is found for the ionization out of the inner valence 20~ orbital of N,. The 
20~ hole-configuration lying energetically above the first 2h-lp configurations couples strongly to 
several of the latter (and higher excited) configurations. As a consequence one no longer finds an 
ionic 23 main state but a multitude of final 2X’9 states sharing the partial 2us intensity. For the 
2us ionization of N, this effect is demonstrated by the present results in table 2 and by the 
previous results [24,39,75]. Our calculation finds seven major (xP > 0.01) 22, components 
extending from 29.2-40.6 eV. The first state characterized as the TIT* excitation la;‘11~~ on the 
20, hole configuration can be assigned to the peak at 29.4 eV (peak maximum) in the 
experimental spectrum. Whereas this state is similarly reproduced by all previous calculations 
[24,39,75,83], the theoretical *Xc, spectrum at higher binding energy is extremely sensitive to 
details of the calculation, such as basis sets, truncation of the virtual space and the methods 
employed. This can be seen by comparing the results of the two 2ph-TDA versions as well as the 
results of previous 2ph-TDA [24,39], CI [24] and EOM [75] calculations. Without going into 
detail one may state that only the breakdown effect as such is reproduced by the calculations, 



whereas the detailed structure of the theoretical spectrum is still beyond an even qualitative 
agreement with experiment. 

There are several reasons for this situation. The first deficiency arises from the use of a finite 
discrete basis of one-particle (HF) states. The energy region considered here is already close to 
the first double ionization threshold of N1 ( = 43 eVj to which several Rydberg series of N,’ 
excited states converge. Using a finite discrete basis only the very first members of such (2h-- lp) 
excited Rydberg states are described properly. One obtains artificial states and thus an artificial 
spectral structure at higher excitation energy which can be viewed as an inadequate simulation of 
higher Rydberg and continuum states. The calculation still provides valuable information. since it 
specifies the various series that couple to the 2up state (see table 2). However. the specific discrete 
structure may not be reliable. This explains the strong basis set dependence of the results which is 
experienced in the present calculations. 

Besides this general deficiency there are shortcomings that are specific to the present extended 
2ph-TDA and the third-order EOM approach. As has been mentioned. the ionization energies of 
the 2phhlp excited states are treated consistently only to first-order, which certainly is not 
satisfactory, since both of the two (partially compensating) effects. i.e. ground-state correlation 
and coupling to the 3h-2p and 4h-3p excited configurations, are neglected. Moreover, some of 
the lowest 3h-2p excitations explicitly appear in the inner valence ionization spectrum. Both the 
CI calculations of Kosugi et al. [83] and of Langhoff et al. [24] predict states characterized as 
mainly 3~; ‘~IT,~~IT~Z at abou t 35 eV binding energy. Configurations of this type are also expected 
to mix with the 2hhlp configurations leading to a considerable modification of the present 
extended 2ph-TDA results. These types of deficiencies of the extended Zph-TDA (ADC(3)) can 
be removed [19] by employing the ADC(4) which is the natural extension of ADC(3). The 
numerical effort required in solving the ADC(4) is, however, considerable. 

5.2. s-tetrazine 

The solution of the extended 2ph-TDA for larger molecules like s-tetrazine requires a 
considerable numerical effort when a good quality basis set is used. For such molecules the 
computation is rewarding because of the existing rich satellite structure and the failure of the 
HartreeeFock calculation to assign even the main bands in the ionization spectrum. Extended 
basis sets can be used in the OVGF calculation, but only a small portion of the spectrum can be 
evaluated owing to the rich satellite structure which restricts the applicability of the method. To 
save computer time we have performed an extended 2ph-TDA calculation on s-tetrazine using a 
double-zeta basis without augmenting it by polarization functions. We use the results to 
qualitatively interprete the experimental observations [94,95]. A theoretical discussion of the 
ionization spectra of the azabenzenes including s-tetrazine has been given before [96,97]. 

The basis set used in the calculation on s-tetrazine is of double-zeta quality: [OS~P/~S]/(~S~P/ 
2s) and consists of the basis sets of Huzinaga for the C, N and H atoms [93]. The Huzinaga 
contraction has been used. The core orbitals and their virtual counterparts have been omitted 
from the orbital basis in the extended 2ph-TDA calculation. In addition the energetically highest 
8 virtual orbitals were left out. This leads to an orbital basis of 15 occupied and 29 virtual 
orbitals. For the different symmetry species the dimension of the matrices of block I range from 
1400 to 1700 and of the matrices of block II from 700 to 900. In all cases 500 configurations were 
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selected and the resulting matrices were diagonalized completely. The remaining configurations 
were taken into account in a diagonal approximation in the Dyson equation. In the case of block 
I the selection was done according to the selection criterion of eq. (3.12) in the case of block II, 
on the other hand, the selection was done using eq. (3.10). 

The extended 2ph-TDA predicts a large number of ionic states which acquire intensity in the 
photoelectron spectrum. For simplicity we have drawn in fig. 7 the calculated spectrum together 
with the experimental spectrum [94] recorded using He II radiation. The calculated ionization 
peaks are drawn as vertical bars at the computed ionization energies I,. The height of a bar n is 
given by the sum over the pole strengths ]xP 1 (n) 2. Since the Green’s function matrix is nearly 
diagonal for s-tetrazine, a specific Ix:)]’ dominates in this sum and every bar can be assigned to 
originate from a given orbital. For the relation between the intensity of a line in the spectrum and 
the spectroscopic amplitude x:) see section 2.1. 

Let us briefly discuss the photoelectron spectrum. The observed and computed spectra exhibit 
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Fig. 7. Experimental and calculated photoelectron spectrum of s-tetrazine. The experimental spectrum [94] has been 
recorded using He11 radiation. The theoretical bar spectrum is calculated via the extended Zph-TDA (for more details 
see text). Only lines with pole strengths greater or equal to 0.01 are shown. The numbering of the orbitals is according 
to the Hartree-Fock sequence. 



a first main band just below 10 eV. The band arises from the ionization out of the outermost 
orbital 2b,,. The second band in the spectrum lies between 12 and 14 eV and is seen to include 
several main ionization peaks, the number of which is difficult to determine on experimental 
grounds alone. The calculation predicts this band to consist of five main ionization peaks. The 
ordering of the corresponding orbitals does not follow the ordering predicted by the HartreeeFock 
calculation. The first peak, for example, is attributed to the 3bzl, orbital which is the fifth 
outermost orbital instead to the second outermost orbital 1 b,, (see fig. 7). The relative position of 
the closely lying main ionization potentials corresponding to the 4a, and lb,, orbit& cannot be 
reliably determined. Probably a more adequate basis set could resolve the problem in case it leads 
to a larger separation of the energies. The third, fourth, fifth and sixth main band in the observed 
spectrum are predicted to correspond to the 1 b,,, 2bzU + 3a,. 2b,,, and 2a, orbitals, respectively. 

The calculated spectrum in fig. 7 exhibits numerous satellite lines above 14 eV. The breakdown 
of the one-particle picture of ionization is evident for the la,. 1 bJU. 1 b2(, and 1 b,, orbitala. Several 
of the remaining valence orbitals, e.g. 2a, and 3a,. have lost considerable strength to satellite 
states. The experimental spectrum [94], which unfortunately extends only up to 25 cV, possesses a 
continuously growing underground which might be an indication for the rich satellite structure. 
Since there is an energy gap in the spectrum between the second and third main bands. it is 
possible to experimentally substantiate the theoretical prediction made by the extended 2ph-TDA 
that satellite peaks fall into this gap (see fig. 7). 

_i. 3. Zinc dichloride 

The field of high-temperature photoelectron spectroscopy of vapours has become very popular 
and with it the study of the ionic states of transition metal compounds. The interesting 
experimental spectra have stimulated theoretical work on the subject and a vast number of 
computations have been carried out (see. e.g., ref. [98-1001 and references therein). In the 
following we briefly discuss our OVGF and extended 2ph-TDA computations on ZnCl, [loo] 
which is a prototype of the many transition-metal dihalides studied in the literature. This 
molecule has been investigated several times experimentally [lOI -1051, thereby serving as a 
model for testing new instrumental resolution techniques. 

ZnCl, has been studied before [loo] by the OVGF and 2ph-TDA methods and compared with 
CdClz and NiC12. Let us briefly discuss the results qualitatively. The calculated ionization 
spectrum of ZnClz exhibits three groups of lines. The first group at lowest binding energy 
corresponds to the outer valence orbitals 2~, lvL,, 2a,, and 30~ which are responsible for the 

bonding of the molecule. The second group of lines consists of three closely spaced lines. These 
correspond to the orbitals 16,. 2~~ and 2up which derive from the metal core d levels in a 
cylindrical ligand field. It is not useful to assign the observed peaks to the computed lines, since 
the observed peak separations are of a similar magnitude as the spinorbit coupling constant for 
the zinc d subshell [104]. The third group of lines results upon ionization out of the la,, and 10~ 
orbitals which have mainly chlorine 3s character. For these orbit& a breakdown of the molecular 
orbital picture of ionization is predicted. 

We have recalculated the ionization spectrum of ZnCl, with the OVGF and extended 
2ph-TDA methods using a slightly larger basis set than in the previous calculations. The basis set 
is [14sllp6d/l2s9p]/(9s6p3d/6s4p). It consists of the basis set of Veillard for the Cl atoms 1921 



Table 5 
Vertical ionization energies of &ICI, obtained from UVGF and extended Zph-TDA calculations [all energies in eV) 

energy 2ph-TDA 
--- 

-I 2% 12.60 11.82 11.69 11.87 

1n; 13.02 12.29 12.20 12.42 

2% 13.68 X3.04 12.S8 13.12 

J%. 14.58 14.11 13.85 14.15 

arid the /14s9p5d] basis set of Huzinaga for the Zn atom [106] which is a slightly modified version 
of the basis of Wachters [107], The two most diffuse s-type f~Inctions have been replaced with two 
s-type functions with exponential parameters tu,(Zn) = 0.32, 0.08 to account for the effect of 
orbital contraction in chemical bonding. Two diffuse p-type functions with a,(Zn) ‘=s 0.3, O,t?7 
have been added to describe the 4p orbital on Zn and a further d-type function with n,(Zn) = 0.2 
has been added following the recommendation of Hay [108]. 13 occupied and 43 virtual orbitats 
have been included in the OVGF calculation which exhausts the valence virtual orbital space; in 
the extended 2ph-TDA calculation 36 virtual orbitals were included; virtual orbitals with an 
orbital energy exceeding 4 au were thus left out. For the different symmetry species the 
dimension of the matrices of block I range from 1400 to 2400 and of block II from 700 to 850. 
Out of these SO0 configurations were selected and the resulting matrices were diagonaiized. The 
rern~~lin~ configurations were taken into account in a diagonal approximation in the Dyson 
equation. In the case of block I the selection was done according to the selection criterion of eq. 
(3.121, in the case of block II, the selection was done using eq. (3.10). 

The results of the present ~~mFutations lead to the same qualitative inter~r~tat~ou of the 
spectrum as discussed above. The main quantitative difference is found for the io~i~~ti~~~ 
potentials derived from metal core d levels. In the 2ph-TDA we have found these ionizatiorr 
potentials to be centered around 17 eV and in the extended version we now obtain the values 
20.0, 20.3 and 20.4 eV for the ionization of the 209, l$ and 1~s orbitals, respectively, 
~xper~n~ex~tally, the corresponding peaks are located between 19.0 and 19.5 eV il~plyi~~ a 
substantial improvement of the extended Zph-TDA over the original version. Furthermore, the 
calculations indicate that basis set effects play an important role for this type of localized levels. 

In table 5 we have collected the ionization potentials of the four outermost valence orbitals 
2ns, l?r,, 20; and 3~~ calculated in the OVGF and extended 2ph-TDA methods. The ordering of 
the io~~~ati~~ potentials remains t,he same at all levels of theory ranging from the Hartree-.Foek 
to the extended 2ph-TDA. The values obtained with the UVGF method using the present basis 
set are in excellent agreement with the measured values and differ only slightly ( = 0.1 eV) from 
those previously determined via the same method and the smaller basis set. The results obtained 
with the extended 2ph-TDA show a significant improvement over the results of the 2ph-TDA 
computation by approximately an overall shift of 0.7 eV to higher binding energies. The former 
values are much closer to those of the QVGF and in good accord with the experiments. 

The knowledge of electron affinities of atams and molecules is important for the understand- 
ing of a variety of physical aad chemical processes. ~~~~rtunately, the experimental as well as the 



Basis ” - 
_._______ 

Vertical Vertical Adi;kbatic 

(f-W (WGF) (CIVGF) 
~._-- .-,~ 

[:fa7pld],(Ss4Pld) , 3.19 3.46 3.41 
[12&pld]/(6s5Pld) 3.24 3.54 3.55 
[I 1 s7pZdJ/( S&pad) 3.20 3.59 3.60 

Pz 
[ 12s9p2d]/( 7s5p2d) - 0.59 0.002 0.12 
[ 12s9p3d]/(7sSp3d) - 0.60 0.006 0.13 
[13slOp2d]/(7xSp2d) --0.38 0.176 0.30 

~~s~p~d],~~~4p~d) 1.44 1.76 2.26 
[lOs6pld]/(5s3pld) I ho 1.67 2.17 

SO, 
[ I2s9pId/9sSpJ/(6s4p~d,‘4s2p~ 0.73 o,Ic4 1.08 
fl3sropld/l~s6ptdJ/(?sSpld/S53pldf 0.51 0.69 0.93 

3.54 I” 

(3.3 h 0.5 hk 

u.24 _t: 0.23 L’ 

2.102x “) 

1 .(I97 e) 

iis Ref. 11 181. 

ht Ref. [119]. 

<) Ref. [IZO]. 

‘I) Ref. [121]. 

r, Ref. 11221. 

‘I Bnsis sets and results WI C2 and Pz are taken from ref. [115] and on SO, and 0, from ref. /123]. 

theoretical determination of accurate electron affinities is difficult (see e.g., refs. [109,110]). The 
most accurate experimental method is the photodetachment method [109,11 l] which, however. 
can only be applied to species of which the negative ions are available with sufficiently high 
conc~ntratioK1. The theoretical approaches which have been used to compute electron affinities 
include configuration-interaction (see, e.g.. refs. [112,113]). cquation~of-nl~)ti~~~ [114], Green’s 
function [11,5,116] and variation-perturbation [117] methods or in appropriate cases the ab initio 
SCF method with very extended basis sets [124]. These calculations indicate that extended basis 
sets must be used for a proper description of the electron correlation in the negative ion. Clearly, 
a method as the OVGF method, which does not involve the diagonalization of matrices. is 
~art~culariy efficient when extended basis sets are to be used. We have tested the OVGF method 
in several cases and present here briefly the results for a few molecules. The extended Zph-TDA 
has not yet been systematically applied to compute electron affinities using extended basis sets. 

Table 6 shows the vertical and adiabatic electron affinities of CZ, PZ, 0, and SO, computed via 
the OVGF method for several basis sets. The experimental adiabatic etectron affinities are shown 
as well, The vertical electron affinity of a molecule M is defined as the difference between the 
total electronic energies of the negative ion M ~ and M taken at the equi~ibriunl geometry of M. 
The adiabatic electron affinity is given as the difference between the ground state energies of W‘ 
and M. The energy separation between the adiabatic and vertical electron affinities is a measure 
for the change of equilibrium geometry due to electron attachment to M. Except for C,. the 
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equilibrium geometries of the molecules shown in table 6 differ noticeably from the equilibrium 
geometries of the corresponding negative ions. 

C;, SO; and 0; are seen to be stable molecules already on the Hartree-Fock level. The 
corresponding states may thus be characterized by the index of a single Hartree-Fock orbital 
which are 35, 3b,( n),and 2b,( IT), respectively. In all cases the many-body effects act to stabilize 
the negative ion. This finding is of crucial importance for PZ- which is predicted to be unstable on 
the Hartree-Fock level, but stable when many-body effects are included. Basis set effects are 
seen to be important for Pz, 0, and SO, and less important for C, for which the basis set is 
probably nearly large enough to achieve convergence. As is best demonstrated in the case of 
ozone, changes in the basis set may have different impact on the calculated Hartree-Fock and 
final electron affinity. In all cases the inclusion of diffuse functions in the basis set is essential for 
obtaining a reliable prediction on the value of the electron affinity. The need to include diffuse 
functions is quite obvious, since the attached electron is not as localized at the molecular site as 
are the electrons of the neutral molecule. A more detailed discussion of the present calculations 
including the description of the basis sets and the investigation of the changes of geometry due to 
electron attachment can be found elsetihere [115,123]. 

6. Concluding remarks 

The one-particle Green’s function, which gives information on relevant physical properties of 
many-particle systems, has been investigated. This function is connected via the Dyson equation 
to the self-energy part which is an effective energy-dependent one-particle potential. For the 
self-energy part a systematic series of approximation schemes, termed ADC( n), exists. The 
application of the ADC(n) gives rise to a self-energy part which is exact up to (and including) 
n th order in the perturbation expansion in terms of the electron-electron interaction. A partial 
summation of certain perturbation terms up to infinite order is also included. In the present work 
we have thoroughly studied the applicability of the ADC(3) which is also named extended 
2ph-TDA. The working equations of this third order scheme have been given explicitly and a 
numerical procedure for their evaluation discussed. The solution of the Dyson equation has been 
shown to reduce to the diagonalization of matrices of the arrow type. Emphasis has been put on 
the computational solution of the eigenvalue problem of arrow matrices. An efficient procedure 
which allows the determination of all eigenvalues in a preselected interval is developed. 

In addition to the ADC(3) we have discussed the computational procedure of another 
third-order method, the OVGF method, which has been successfully used many times before. The 
OVGF method is restricted to low energies only, but is very efficient there, since its application 
does not involve the diagonalization of matrices. For illustrative purposes applications to a few 
molecules are presented using both the ADC(3) and the OVGF methods. It has been demon- 
strated that at energies for which the OVGF method is applicable, both methods give similar 
results and in good agreement with experiment. The extended 2ph-TDA can be used to calculate 
the complete valence ionization spectra of molecules. The systematic application of the 2ph-TDA 
to a vast number of molecules has lead to the manifestation of the breakdown of the single-par- 
ticle picture of ionization as a common phenomenon. The main ionization energies are well 
described by the extended Zph-TDA and the description of the energies of the satellite states is 
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Here, the M quantum number is M = l/2 (M = -l/2 in case II). The quartet component 
(with M = l/2 ) is found to be 

Obviously, eqs. (A.1) and (A.2) and the analogous equations for the other M quantum numbers 
induce a unitary transformation W between the original and the new eigenvector components. It 
is easy to check that the transformed eigenvalue problem, 

W(K + C)W~WY = WYQ, (A-3) 

decouples with respect to the total spin S and the magnetic quantum numbers M. Moreover, for a 
given S the resufting equations do not depend on M. The eigenvalue for the doublet states in 
terms of the components of (A.l) can, finally, be written in the spin-free form 

where the spin-free configurations (j, k, 1) are restricted by k I 1. The components of the 
transformed matrix C(i/‘) are as follows (case I): 

~W2) 
,/kt(l),J’k’i’(I) = sjjrvk!k’l’ + a,,,( - i$,,j,, i- 4 y,,,,,j) + s,,,i - yrkjk+ + 1 y’kkrj)} + { k’ t?* /‘I, 

(ASa) 

CW) 
./k/(l).,j’k’/‘(t) = $6 (( (Skk~~~f,rj - S,,i/;,kk~j) - (k’ +-+ /I)), (ASb) 

c!‘/2’ 
,/kl(2),J’k’/‘(l) = +fi (( 8kk,lj;,,l,_, - &[&‘kk’l) + (k’ ++ 1)], (A.5c) 

(y/2) 
Jki(2). J’k’(‘(2) 

(ASd) 

(y2) 
Jk&?), j’k’k’(l) = @@j&k (ASf) 

In these expressions we suppose k < I and k’ < I’. The special case k’ = i’ (k = t’) is considered by 
eqs. (A_5e)-(A.5g). 

In case I j denotes an unoccupied spatial orbital and k, I doubly occupied spatial orbitals. 
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The spin-free formulation of case II is formally identical except for a 

the matrix 

cW?ni = _ C”/“‘” 

different overall sign of 

(A.61 

The one-particle indices ,j, k, I have a different meaning: ,j is restricted to (doubly) occupied 
spatial orbitals and k, I denote unoccupied spatial orbitals. 

For completeness we also give the interaction matrix for the quartet states (S = 3/2) in the 
case I 

Here, the configurations (j, k, /f are restricted by k -e f. 
As the next step one has to determine the Dyson a~l~~itudes M:,‘~) of eq. (2.41). ~r~ti~~g the 

spit-quantiim numbers explicitly one obtains 

The effective coupling amplitudes L$~,,,,x,iX in the extended 2ph-TDA are specified by eqs. 

(2.44a), (2.48) and (2.49). By empIo~ing the spin-symmetry adapted eigenvector components, 
(A.l), fA.2), ‘t 1 is easily checked that only the doublet components contribute to ~$7~~. The 
M = - l/2 and M = l/2 components couple exclusively to /??Fi) and frz$). respectively, and give 
equal contributions 

where (case I) 

fA.10) 
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I 
Ijp..tkit,sj in eq. (A.lO) are 

(A.11) 

where the superscripts (1) and (2) denote the first- and second-order ~ontr~butio~s~ A formally 
similar expression is obtained in the case II 

U”Y 
P,Jkf(.c) 

= u”! 
p.Jkfts! 

- iq&$>_ fA.12) 

T-iere C$@&~, results from the expression for ~~.~~~~.*~ by exchanging the occupation numbers of 
the summation indices according to II, t-, Ei: 

Q’? _ pd&s) = u;;!/&li * Fi/). (A.13) 

Finally, we consider the static self-energy part x(00) (eq, (2.26)). Obviously, X( 60) exhibits the 
symmetry properties of the one-particle Green’s function, that is 

c W.W = %P.L$~ %W~ = 0. 

Using this property one arrives at the spin-free fo~~~~at~o~ of eq. (2.26) and (2.27) 

fA.14) 

IX,,{ Cc?) = z: @&# - ~~~~~ -s,, + 
t 

1 X~“?X~~~ * 
1 

(A,lS) 
k,l nE(N-1) 

Here, .xf”) denotes the arn~~it~d~s of the spin-free Green’s function. The summation over n in eq. 
(A.15) comprises all N - 1 particle states. The HF expression (2.19) has been introduced in eq. 
(A.15). 

For a given dynamic se~f~e~~rgy part 

the counter integration in eq. (2.3~~ can be readily performed yielding 

@.I) 

(B.2a) 
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where the inhomogeneity B,,, is given by 

i Bpq = c Vph,q,l c tn)‘%z~)* - "In, ii,n, 

X.1 t1 F I ‘I (9, - Q)h - 4 + kh - 4(Q - 9,) 

n,n, - 
tllllk 1 

(f,-Q)(~,-4 - (~h-$)(~h-%)/I. 
(B.2b) 

For real one-particle states (which in general are used) Z(W) is symmetric and the set of linear 
equations (3.2) may be restricted to p I q. Introducing in addition the spin-free formulation one 
obtains in matrix notation 

e(m) = B + A&Q), (B.3) 

where z( co) denotes the vector with components 2 ,,u.yCl( co) with p I q. B denotes the vector with 
components Bps_ ( p I q) and A is defined by 

Obviously, the matrix A is of the form 

A= 
A,, 0 

i i A,, 0 . 

where 1 stands for p-h index pairs and 2 for pp- or hh-pairs. 
The solution of eq. (B.3) 

%(m)=(l -A) ‘B, 

thus can be expressed as 

(, _A)Pl= (1 -ANY’ 

r 

0 

A,,(1 - A,,)-~’ 1 

by the inverse (1 - A,,) ~’ in the (small) ph-space. 

(B.4) 

(B.5) 

(B.6) 

(B.7) 



(C.7) 



(C.12) 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

(C.17) 

(C.18) 

(C.19) 

(C.20) 



+ 
* 

For p = q the following equalities hoId 

A3=R4;AS=A6; C2= C3; C4=C5; LX2=03; D4=D5. 

(eq, 4.56 of ref. 161 and eq, (2.56) of the text), 
Effective self-energy 

(r7q. 4.56 of ref. [C;] and eq. (2S7) of the text), 

Gl = - (C4 + C5 + 04 + D5),‘Bl 

(fX& 17 of ref. f17f, eq. 4.6Ob of ref_ [6]); 

G2 = -- (C2 + C3 + D2 -t IH)/B2 
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fC.24) 

(C.22) 

K,23) 

(C.24) 

(C.25) 

(C.26) 

(C.27) 

(6.23) 



(eq. 20 of ref. [17], eq. 4.60b of ref. 161). 
Effective self-energy 

+(1 + G2)-'(Cl -t('2+ C3 -tDl+D2+ D3)+ i AI (('29) 
f- I 

(eq. 21 of ref. 1171). 

(‘1 
Geometric parameter 

A _ [GI(C4+ C5 + C6+D4+ D5 4 D6)+ G2(C’l_i- C2+ C3 -+_.Dl+ D2+ D3)] (c.io) 

; (CZ+Dl) 
I .. 1 

(eq. 4.60a of ref. [6]) with Gl und G2 from eqs. (C.27) and C.28). 
Effective self-energy 

(C’31) 
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