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ABSTRACT: The GW-technology corrects the Kohn−Sham
(KS) single particle energies and single particle states for
artifacts of the exchange-correlation (XC) functional of the
underlying density functional theory (DFT) calculation. We
present the formalism and implementation of GW adapted for
standard quantum chemistry packages. Our implementation is
tested using a typical set of molecules. We find that already
after the first iteration of the self-consistency cycle, G0W0, the
deviations of quasi-particle energies from experimental
ionization potentials and electron affinities can be reduced by an order of magnitude against those of KS-DFT using GGA or
hybrid functionals. Also, we confirm that even on this level of approximation there is a considerably diminished dependency of
the G0W0-results on the XC-functional of the underlying DFT.

1. INTRODUCTION
One of the most used approaches for the computational study of
solids, nanoscale systems, and molecules is the density functional
theory (DFT).1 DFT has an ubiquitous appearance in computa-
tional chemistry and materials sciences because it often offers
the only possibility to obtain useful ab initio results for relevant
system sizes.
A well-known difficulty with DFT-calculations is related to

approximations in the exchange-correlation (XC) functional,
the most familiar one being the local density approximation
(LDA).2,3 The use of such local (or semilocal) approximations
has several important consequences, in praxi. First, the neglect of
the derivative-discontinuity in such approximate functionals
implies uncertainties in the description of charge-transfer pro-
cesses, because the alignment of Kohn−Sham (KS) levels of
different subsystems is not properly accounted for. Second,
neglecting nonlocal terms also implies that weak, van der Waals
like, binding forces are being described badly or not at all.
Moreover, (differences between) KS-single particle energies are
often interpreted as physical excitation energies, because the KS-
estimates of these energies tend to compare significantly better to
experimental results than, for instance, those originating from
Hartree−Fock (HF) theory. Still, a formal justification for this
praxis (i.e., a KS-analog of the Koopmans’ theorem4) does not
exist in general. To identify situations when good quantitative
estimates can be obtained, nevertheless, is the subject of ongoing
research.5,6

A method to systematically improve upon shortcomings of
DFT-estimates of single particle excitation spectra, i.e., ionization
potentials and electron affinities, is well established for electronic
band structure calculations in solids: the GW-method. Its central

object is the Green’s function G; its poles describe single particle
excitation energies and lifetimes. The GW-approach is based on
an exact representation of G in terms of a power series of the
screened Coulomb interaction W, which is called the Hedin
equations.7,8 The GW-equations are obtained as an approx-
imation to the Hedin-equations, in which the screened Coulomb
interaction W is calculated neglecting so-called vertex correc-
tions.9−12

Effectively, one can say that theGW-approach, similar to other
one electron Green’s function approaches, replaces in the DFT-
calculation the problematic unknown XC-potential by a self-
energy, Σ. In this process the KS-equations are transformed into a
self-consistent set of quasi-particle equations. Similar to the XC-
potentials of DFT, which are functionals of the electron density,
Σ[G] is a functional of G and therefore typically needs to be
updated in the iteration cycle that solves the quasi-particle
equations. In contrast to XC-potentials, Σ is not Hermitian and
depends on energy. Furthermore similar to the Fock-operator
and unlike (semi) local XC-potentials, Σ is nonlocal in space.
A key feature of Green’s functions is that their poles by

construction def ine the single-particle (or quasi-particle)
excitation energies. In particular, the GW-quasi-particle energies
up to the highest occupied molecular orbital (HOMO) cor-
respond to the primary vertical ionization energies. When using a
basis that keeps track explicitly also of core states, we have access
to the ionization energies relevant for core-level spectroscopies.
The knowledge of the full quasi-particle spectrum and quasi-
particle states also gives access to calculating other physical
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quantities. One example is molecular transport; another one is
the calculation of optical excitation spectra via the solution of the
Bethe-Salpeter equation (BSE).11 Finally, also total energy cal-
culations for structure relaxations can be performed with
knowledge of G and W.13

Due to its quantitative success, the GW-method is about to
become a standard tool to investigate band structures of solids
and surfaces.11 It is well-known that, and understood why, the
gaps calculated from KS-DFT energies systematically under-
estimate the experimental values by up to 5 eV.9,14,15 The GW-
method, on the other hand, predicts for a large range for
semiconductors the fundamental bandgap correctly up to a few
tenths of an eV.9,16−18 In some cases the results obtained from
DFT are even qualitatively wrong. For instance Germanium,
Indiumarsenide, and Ytriumhydride are predicted to be metallic
by DFT where GW correctly predicts a finite gap.9,19,20 Also for
metallic systems theGW-method improves the description of the
electronic structure significantly as compared to KS-DFT. For
example, the bandwidths, relative positions of s- and d-states and
the magnetic moments of transition metals have been shown to
be described much better in the GW-framework than in that of
KS-DFT.21 Moreover, very recent studies showed that, if pseudo
potential issues and relativistic effects are taken into account
properly, GW also reproduces the band-structure of a heavy
elements like gold and plutonium very accurately.22,23 This pro-
mising potential has led to an active development, and recently
the method has become available in various first principles solid
state codes.24−29

Developments in this field are ongoing. A central step in the
calculation of the GW-self-energy matrix elements needed to
obtain the quasi-particle energies involves a sum over occupied as
well as a sum over unoccupied orbitals. Several groups are
exploring techniques to circumvent the later by replacing it by an
identity minus a second sum over the occupied orbitals.30,31

Ultimately this so-called ″collapsing of the spectral sum″ should
lead to an improved scaling of the computational cost with the
system size. A GW-calculation usually starts from the results of a
DFT-calculation to which then in the GW-step corrections are
being calculated. These corrected results may then be iterated to
self-consistency. Some groups are therefore focusing at defining
the optimal functional for the initial DFT-calculation.32 For a
GW-calculation the initial guess for the electronic response of the
system is one of the most important input parameters to be
obtained from the initial DFT-calculation. This is however not
necessarily described best by a functional designed to perform
well at describing the total energy and atomic structure, for
which most regularly used functionals have been designed. A
final important development mentioned here is involved
with improving the core and semicore treatment.32 As in DFT-
calculations, it is also in a GW-calculation possible to treat the
core levels of the atoms only approximately. This has to be done
however with great care since they do contribute to the electronic
response, which is needed in GW to calculate the screening.34

Several recent applications suggest that GW will also be
successful when applied to single molecules. Examples are GW-
studies on organic molecules,35−42 CdSe clusters of up to 82
atoms,43,44 hydrogen passivated Si clusters of up to 41 silicon
atoms,45 metal clusters,46−49 and C60.

50 In all cases ionization
energies and electron affinities are calculated with an accuracy at
least an order of magnitude closer to the experimental values
than those that can be obtained from the KS-DFT energies. For
optical excitation spectra,43,45 quantitative and even qualitative
improvements with respect to TDDFT have been observed by

using GW+BSE. Moreover, first investigations as to the effect of
self-consistency have demonstrated for small molecules that even
further improvements are possible.38,46,51,52 A special field where
GW-studies on molecular clusters have proven useful is that of
Molecular Electronics. Here special purpose tools are being
developed to calculate transport properties of single molecules
based on a GW-description of the electronic structure.53,54

Until recently many GW-studies on molecules employed
band-structure codes and supercells, so only relatively small
system sizes were accessible. The first applications using a loca-
lized basis set37,46 date back less than ten years, and only very
recently this is becoming a more applied approach.38−41,52,55,56

However, to our knowledge there is until now only one
multipurpose first principles package available that also offers the
possibility to calculate the quasi-particle spectrum of molecular
systems; the FHI-aims code.52,57

In this paper we describe how to build theG0W0-approach into
a typical quantum chemistry package, operating with localized
basis sets. A special feature of this implementation is the use
of spectral representations of the response function. The use
of spectral representations was formally introduced by Hedin,9

and later applied by Tiago et al.58 and very recently also by
Bruneval.56 In this way an analytic evaluation of energy integrals
and derivatives is feasible. The matrix elements of Σ will be
expressed via two electron integrals, which are often available in
standard codes. Therefore, the resulting expressions can be
implemented efficiently in any generic quantum chemistry code.
To be specific, we give an example and describe our imple-
mentation into the TURBOMOLE package. Benchmark cal-
culations have been performed using this implementation and
will be discussed.

2. FORMALISM
2.1. Hedin Equations. In this section we recall the basic

formalism behind the GW-approach. Its central object is the
causal Green’s function G. It is a matrix that depends on two
spatial and two time coordinates; the corresponding matrix
elements in space-time representation read G(r1t1,r2t2). They
represent the probability amplitude for a particle that has been
created at (r2t2) in space time to be picked up at the point (r1t1).
To simplify the notation, we adopt the convention that the
combined coordinate (riti) is replaced by the index i, so the matrix
elements become G(1,2). These matrix elements can be obtained
from solving a set of coupled integral equations, the Hedin
equations:7,8

∫= + ΣG G d G G(1, 2) (1, 2) (34) (1, 3) (3, 4) (4, 2)H H

(1)

∫Σ = Γ+i d G W(1, 2) (34) (1, 3 ) (1, 4) (3, 2, 4) (2)

∫= +W v d v P W(1, 2) (1, 2) (34) (1, 3) (3, 4) (4, 2)

(3)

∫= − Γ +P i d G G(1, 2) (34) (1, 3) (3, 2, 4) (4, 1 ) (4)

∫δ δ δ
δΓ = − − + Σ

× Γ

d
G

G G

(1, 2, 3) (1 2) (2 3) (4567) (1, 2)
(4, 5)

(4, 6) (7, 5) (6, 7, 3) (5)
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The integrands are summations over spatial and time coordinates.
The superscript plus + indicates a positive infinitesimal added to
the time variable.
Equations 1−5 constitute a complicated self-consistency

problem for the matrix G and the matrix operator Γ. The first
of these equations, 1, is the Dyson equation. It is the basic
statement that will eventually translate into the quasi-particle
equation. The Green’s function GH, which appears here as
reference Green’s function, is to be taken with respect to the
Hartree-ground state. (GH should be distinguished from the
initial guess Gin for G needed later when iteratively solving this
self-consistency problem.89 This initial guess will be the Green’s
function with respect to the KS-ground state: Gin = GKS.) The
basic structure of the Dyson equation is transparent: it features
two Green’s functions describing the ingoing and outgoing
states of particles that scatter with a strength described by the
self-energy Σ. The second equation, 2, defines Σ in terms of
the dynamically screened Coulomb interactionW and the vertex
operator Γ. These two objects are given by the consecutive
three equations. Equation 3 is the standard expression relating
the screened interaction to the Coulomb interaction v(r1r2) =
e2/(r1 − r2) and the polarization function P given in eq 4.
Upon approximating the vertex function, Γ, by the first term

of 5 we can close the set of eqs 1−4. In this way we arrive at the
GW-method. To obtain an exact solution, the second term in the
last equation would have to be kept and iterated as well. This last
equation, 5, is the Bethe-Salpeter equation. It takes into account
all those multiscattering events, that cannot be accounted for
by the effective, retarded interaction W, alone. Its solution is
difficult, because Γ is a matrix-operator. Moreover, no particular
means exists to evaluate the functional derivative making the exact
solution impossible.
From a computational point of view, eq 3 is slightly inconvenient

because to solve it requires an inversion. This becomes particularly
obvious when casting 3 into a familiar form featuring the dielectric
function

∫= ϵ−W d v(1, 2) (3) (1, 3) (3, 2)1
(6)

∫δϵ = − d v P(1, 2) (1, 2) (3) (1, 3) (3, 2) (7)

Fortunately, in many quantum chemistry codes this inversion
already is implemented. Namely, to determine optical excitation
spectra, where the full density response χ is required. It relates to P
and ϵ in the following way:

∫χ χ= +P d P v(1, 2) (1, 2) (34) (1, 3) (3, 4) (4, 2) (8)

∫δ χϵ = +− d v(1, 2) (1, 2) (3) (1, 3) (3, 2)1
(9)

Therefore, it is convenient to expressW also in terms of the χ (the
reducible response function):

∫ χ= +W v d v v(1, 2) (1, 2) (34) (1, 3) (3, 4) (4, 2) (10)

The full density response χ is a central object of time-dependent
DFT. As it turns out, for this reason an approximate expression for
χ is readily available in many quantum chemistry codes that offer
calculations of optical excitations.
2.2. Dyson Equation and Quasi-Particles. 2.2.1. Separa-

tion of Time Scales and Poles of the Green’s Function. In a gas
of N noninteracting fermions each single particle orbital ψn

(0)(r)

corresponds to a quantum number n with an associated energy
ϵn
(0) that are conserved. The fact that there are as many conserved
quantities as there are particles makes the problem (relatively) easily
tractable. Upon introducing an interaction between the particles, the
situation becomes much more complicated because due to particle
scattering almost all conservation laws are lost. Correspondingly,
the interacting eigenstates can no longer be given by a single Slater
determinant.
One may, however, ask how long it takes for the interaction to

mix in other Slater determinants if the time evolution started with
an initial state constructed from a single Slater determinant only.
If the interaction is weak, then themixingmay take long enough so
that it can be meaningful to introduce a concept of “approximate
conservation laws”, where an electron carries a given quantum
number for a certain time τn before it is scattered into another
state. Specifically, if a condition

τ τΔ ≫ ℏ ℏ Δ = ϵ − ϵ′ ′ ′ ′/ , / ,n n n n n n n n, , (11)

is satisfied, then the lifetimes τn and τn′ are long enough so that the
wave function experiences in its time evolution a phase-shift with
clearly identifiable contributions frompairs of neighboring in energy
“quasi-particle” states n and n′. In this situation one can separate a
“short time dynamics”, completely governed by the quasi-particle
energies εn, from a long time dynamics, t ≫ τn, where the decay
processes can enter.
In the presence of a separation of time scales the concept of

Green’s functions, G, is particularly helpful. By definition,59

Green’s functions formally are expectation values taken with
respect to the interacting ground state. Since the Hamiltonian
does not depend on time explicitly, this results in time
translational invariance and the matrix elements depend only
on the difference of two times: G(r1,r2;t1 − t2). Hence, an
equivalent representation of G can be given in Fourier/energy
space

∫ π− =
−∞

∞ − −G t t dE e G E( )
2

( )iE t t
1 2

( )1 2

(12)

(Here and in the following we measure an action in units of ℏ;
effectively ℏ → 1.)
Per constructionem, the poles of G in the frequency plane,

zn = εn + iγn, correspond to the quasi-particle energies and
their (single particle) life times γn = 2π/τn. For noninteracting
particles, these poles are situated infinitely close to the real axis,
zn
(0) = ϵn

(0) − iηsgn(ϵn
(0) − μ), since there is no scattering and the

associated quantum numbers are conserved. We have introduced
the chemical potential μ and a positive real number η which is to
be sent to zero, η → 0, at the end of all calculations. As usual,
μ controls the particle number via

∫=
μ

−∞
N dE A ETr ( )

(13)

π μ= − −A E E G E( ) 1 sgn( )Im( ( ))
(14)

where A(E) denotes the “spectral function” and “Tr” a trace over
the spatial degrees of freedom. The spectral function represents
the full information content of the Green’s function, as may be
inferred from the Lehmann representation:59,60

∫ η μ= ′ ′
− ′ + ′ −−∞

+∞
G E dE A E

E E i E
( ) ( )

sgn( ) (15)

In the Green’s function language, by switching on the interaction
we shift the poles along the real axis and into the imaginary plane,
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into zn. (Pole shiftings crossing the real axis are forbidden in the
process due to causality.) Green’s functions owe their popularity to
the fact that they offer a concept to calculate these shifts (and other
quantities) perturbatively in the interaction resumming partial
series of infinitely many perturbative contributions.
2.2.2. Spectral Representation and Quasi-Particle Equa-

tion. The Dyson equation for G(E), 1, can be rewritten in Fourier
space. After analytic continuation into the complex frequency
domain and recalling the representation of the (inverse of the)
unperturbed Green’s function

= − ϵ− &G z z H z( ) ,H
1

H (16)

where HH denotes the Hartree-Hamiltonian, we get

− · − Σ · =z H G z z G z( ) ( ) ( ) ( ) 1H (17)

We here suppress the spatial indices by applying a matrix nota-
tion where A·B stands for ∫ A(r,r″)B(r″,r′)dr″ and AB for A(r,r′)
B(r,r′).90
A solution of the Dyson equation, 17, can be constructed by

introducing a quasi-spectral representation:

∑ ε η ε μ′ =
Ψ Ψ ′

− + −

†
G z

z z
z z i

r r
r r

( , ; )
( , ) ( , )

( ) sgn( )n

r n l n

n n

, ,

(18)

It features left and right eigenvectors, Ψl,n(z), Ψr,n(z), and
eigenvalues εn(z) that represent the quasi-particle/hole states
Ψn(z) and energies εn(z). They are found as solutions of the
quasi-particle equations

ε+ Σ ·Ψ = ΨH z z z z( ( )) ( ) ( ) ( )n n nH r, r, (19)

εΨ · + Σ = Ψ† †z H z z z( ) ( ( )) ( ) ( )n n nl, H l, (20)

2.2.3. Quasi-Particle Equation with Kohn−Sham Reference
System. With an eye on computational applications, we next
write the quasi-particle equations in a suitable single particle
reference basis. There are two natural options for choosing
such a basis. An obvious possibility would be to adopt the basis of
eigenstates of the Hartree-Hamiltonian HH. Another possibility
are the eigenstates and energies of the KS-Hamiltonian HKS =
HH + VXC. In this article we prefer the second choice because the
KS-Green’s function

∑ ψ ψ
η μ′ =

* ′
− ϵ + ϵ −G E

E i
r r

r r
( , ; )

( ) ( )
sgn( )n

n n

n n
KS

(21)

where the sum over n is over all, occupied and virtual, KS-orbitals,
tends to be much closer to the fixed point Green’s function of the
GW-cycle than the Hartree-based Green’s function GH. Hence,
we will design an approach where the KS-states ψn and energies
ϵn represent the zeroth order approximation to the quasi-particle
states, Ψn

(0)(z) = ψn, and energies, εn
(0)(z) = ϵn, if z takes values

close to a pole, z− εn(z)≈ 0.With this plan it is natural to expand
the quasi-particle states in terms of the reference orbitals:

∑ ψΨ = ̲ ̲z zr r( , ) ( ) ( )n
n

n n nr, ,<
(22)

As the first step in the approximation cycle, we operate with GKS.
In this spirit we later will only keep the leading term

δ δϵ = +̲ ′ ′ ̲ v( ) ( )n n n nn n n,< 6 (23)

In the ψn-basis the quasi-particle eq 19 can be rewritten in the
following way, suppressing dependency on the z-coordinate in
Σ,< , εn:

∫

∫ ∬
∫

∬
∬

∬

∑ ∑ ∑

∑
∑

∑

∑

∑

∑

ψ ψ ε ψ

ψ ψ ψ ψ

ε ψ ψ

δ ψ δ ψ

ψ ψ
ε δ

δ ψ δ ψ

ε

δ ε

+ ′Σ ′ ′ =

̅ + ′ ̅ Σ ′ ′

= ̅

ϵ − ′ ̅ − ′ ′

+ ′ ̅ Σ ′ ′
=

ϵ + ′ ̅ Σ ′ − − ′ ′

=

ϵ + ⟨ | Σ − | ̲⟩ =

′ ̲ ̲ ′ ̲ ̲ ′ ′ ̲ ̲

′ ̲ ̲ ̲

′ ′ ̲ ̲

′ ̲ ̲ ̲

̲

′ ′ ̲ ̲

′ ̲ ̲ ̲

′ ′

′ ̲ ̲ ′ ′

H d

d H d d

d

d d v

d d

z d d z v

z z

z n z V n z z

r r r r r r

r r r r r r r r r

r r r

r r r r r r r

r r r r r r

r r r r r r r r r

( ) ( , ) ( ) ( )

[ ( ) ( ) ( ) ( , ) ( )]

( ) ( )

[ ( ) ( ) ( ) ( )

( ) ( , ) ( )]

( )[ ( )( ( , , ) ( ) ( )) ( )]

( ) ( )

( )[ ( ( ) ) )] ( ) ( )

n
n n n

n
n n n n

n
n n n

n
n n n H n n n

n
n

n n n n

n
n n n n n n xc n

n n

n
n

n n n n

n
n n n n n n n

n n n

n
n n n n n n n n

H , , ,

,

,

, ,

, ,

, , xc

,

, , xc ,

< < <

<

<

<

<

<

<

< <

(24)

where the full z-dependency has been restored in the last two
lines. Equation 24 constitutes an eigensystem-problem. For a
given value of z we are looking for the set of eigenvalues εn′(z)
and the belonging eigenvectors with components< n′,n(z) of the
matrix in brackets, [...].91

The poles of the Green’s function follow from the pole
condition

ε− =′z z( ) 0n

Therefore, to find these poles we should solve the following self-
consistency problem:

∑ ε ε ε ε⟨ |Σ − | ̲⟩ = − ϵ′ ̲ ′ ′ ′ ′ ′n V n( ) ( ) ( ) ( )
n

n n n n n n n n n, xc ,< <

(25)

This expression is the quasi-particle equation written with
reference to the KS-system that we have been after. An analogue
equation can also be written for the left-hand eigensystem

∑ ε ε ε ε̃ ⟨ ̲|Σ − | ⟩ = − ϵ ̃′ ̲ ′ ′ ′ ′ ′n V n( ) ( ) ( ) ( )
n

n n n n n n n n n, xc ,< <

(26)

where <̃ n′,n are the expansion coefficients of the left-hand
eigenvectors in terms of the reference orbitals:

∑ ψΨ = ̃ ̲̅ ̲z zr r( , ) ( ) ( )n
n

n n nl, ,<
(27)

2.3. GW-Approximation. As indicated above, the GW-
approximation ignores the second term in the RHS of eq 5. The
expression for the self-energy becomes

Σ = + +G iG W[ ](1, 2) (1, 2 ) (1, 2 ) (28)

in the energy domain

∫π ω ω ωΣ = −ω
−∞

∞ − +
G E i e G E W d[ ]( )

2
( ) ( )i 0

(29)

In our notation we keep the energy dependence explicit, E for
fermionic and ω for bosonic degrees of freedom. Furthermore,
by writing Σ[G] we emphasize that in the GW-context Σ[G]
should be understood as a matrix functional of the Green’s
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function G. In the absence of vertex corrections also the
equations for the screened interaction simplify considerably:

∫= +W v d v P W(1, 2) (1, 2) (34) (1, 3) (3, 4) (4, 2)

(30)

= − +P iG G(1, 2) (1, 2) (2, 1 ) (31)

Clearly, also P[G] (and therefore W itself) should be viewed
as functionals of G. Rephrasing the problem in terms of the
full response function χ proceeds exactly in the same way as
before. In frequency/real space domain we have the explicit
representation

∫ω χ ω= − + − −W v d d v vr r r r r r r r r r r r( , ; ) ( ) ( ) ( , ; ) ( )1 2 1 2 3 4 1 3 3 4 4 2

(32)

∫χ ω ω ω χ ω= + −P d d P vr r r r r r r r r r r r( , ; ) ( , ; ) ( , ; ) ( ) ( , ; )1 2 1 2 3 4 1 3 3 4 4 2

(33)

2.4. Self-Consistent Solutions of the GW-Equations.
The ultimate task of aGW-calculation would be to find thematrix
G(E) that solves the GW-equations, i.e., the Dyson equation,

= − Σ− −G G G( [ ])H
1 1

(34)

together with 28,30, and 31. Such a solution will be called “fully
self-consistent”.
Solving the GW-equations with full self-consistency has

important advantages. Most notably, the self-consistent solu-
tion for G(1,2) is generally not dependent on the reference sys-
tem chosen in the Hedin equations.61,62 This implies the
following technical advantage. Starting from the initial guess GKS
the self-consistency iteration cycle is going to construct auto-
matically the correct sequence of diagrams (in the Hartree-
reference system) for the self-energy. The subtraction procedure
ensures that the fixed point of this iteration does not depend on
the choice of the initial functional. Recently, it was shown
explicitly by Caruso et al. that both HF and KS-DFT as a starting
point converge to the same self-consistent solution for various
molecules.61 Moreover, it has been shown by Tandetzky et al.
that, although many self-consistent solutions exist in principle,
there is only one physical solution.62 This unique physical
solution has also been shown to be the solution that is found by
the commonly used algorithms.
Unfortunately, fully self-consistent solutions may be difficult

to find and therefore not always affordable from the computa-
tional point of view. However, one could hope that for many
practical purposes full self-consistency is not required in order to
obtain a useful result. In such situations schemes providing
“partial self-consistency” may be useful alternatives. [In addition
different types of self-consistency, like Van Schilfgaarden’s quasi-
particle self-consistency, have been developed.]21

2.4.1. Partial Self-Consistency: GW0-Schemes. “Partially self-
consistent” schemes that keep the screening fixed at that of the
reference system − called GW0 − have the formal definition

Σ = + +G iG W[ ](1, 2) (1, 2 ) (1, 2 )ref (35)

where Wref is a screened Coulomb interaction that has been
calculated once and for all for some reference system, which does
not need to be the same as the one in the Hedin equations. In
such schemes the iterative process of solving the GW-equations
does not update W, instead it is kept fixed, W = Wref. As a
consequence, the fixed-point Green’s function of the iteration
cycle describes a gas of particles that interact with density

fluctuations brought about by the reference system but not
by itself. There are several possible choices for the reference
system.

Screening Based on GH: Hartree Approximation. One
describes the dynamical screening of charges in the interacting
electron gas on the time-dependent-Hartree level:

∫= +W v d v P W(1, 2) (1, 2) (34) (1, 3) (3, 4) (4, 2)HH H

(36)

= − +P iG G(1, 2) (1, 2) (2, 1 )H H H (37)

In the constituting equation one makes the replacement
Wref → WH.

Screening Based on GKS: DFT. The self-energy functional 35
replacesWref →WKS where the KS-screened interaction is given
by

∫= +W v d v P W(1, 2) (1, 2) (34) (1, 3) (3, 4) (4, 2)KS KS KS

(38)

= − +P iG G(1, 2) (1, 2) (2, 1 )KS KS KS (39)

We mention that when working with DFT as the reference
system, it can be convenient to re-express the Hartree-based
Green’s function: GH

−1 = GKS
−1 + VXC.

Screening Based on Time Dependent DFT: ALDA. The
functional for the self-energy replaces Wref → WALDA, where the
TDDFT-screened interaction is given by

∫ χ= +W v d v v(1, 2) (1, 2) (34) (1, 3) (3, 4) (4, 2)ALDA ALDA

(40)

χ = − −− −P v f(1, 2) (1, 2) (1, 2) (1, 2)ALDA
1

KS
1

XC
ALDA

(41)

with f XC
ALDA(1,2) = δvXC

ALDA(r1)/δn(r2)δ(t1 − t2). In the case of a
hybrid XC functional additionally exchange contributions
weighted by a hybrid mixing parameter are also included. One
in that case mixes TDDFT and TDHF in the calculation of the
response function just as one mixes the DFT XC-functional and
the HF exchange in the ground-state calculation.63

2.4.2. No Self-Consistency: G0W0-Approximation. In prac-
tice, one often terminates the iteration cycle for the GW0-
schemes already after the first step. There is no update in the self-
energy, then, and one has Σ(0) = Σ[Gin] for the initial and final
form of the self-energy matrix. As we have indicated already
above, usually a good starting point for the iteration cycle is the
KS-system,64,65 hence Gin = GKS and

Σ = + +iG W(1, 2) (1, 2 ) (1, 2 )(0)
KS KS (42)

Discussion. The last procedure in G0W0 can be rationalized
by comparing to self-consistent GW in the following way. In
GW we would aim at solving the following self-consistency
problem

= − Σ− −G G G( [ ])H
1 1

where the functional for the self-energy is specified by the
simplifying GW-expression 28

Σ = + +G iG W[ ](1, 2) (1, 2 ) (1, 2 )

On the G0W0-level we stop the iteration cycle after the first step
going from G(0): = Gin = GKS to

= − Σ = + − Σ− − − −G G G G V G( [ ]) ( [ ])(1)
H

1
KS

1
KS

1
XC KS

1
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In this procedure one essentially hopes that convergence in the
cycle is fast enough, so that most of the GW-corrections are
already contributed within the first iteration step. It should be
clearly noticed that this approximation is neither controlled nor
particularly systematic.
2.5. Linearized Quasi-Particle Equation. The leading

order correction to the energies will be obtained, as usual, by
working with the unperturbed wave functions. With this logic,
also here we can employ 23 to evaluate 25 and thus get

ϵ + ⟨ |Σ − | ⟩ = =n G z V n z n N[ ]( ) , 1...n n nKS
(1)

xc
(1)

(43)

In principle this equation now needs to be solved for the poles
zn
(1). Notice, that one is working here with a zero iteration cycle
only, i.e. G0W0, with respect to the self-energy, since Σ is
calculated with the KS-Green’s function and not updated. Hence,
the self-consistent solution of eq 43, z(1), is not a pole ofΣ(0). This
is in contrast to the fully self-consistent solution, zn, which is a
pole of Σ.
This consideration suggests that faster convergence to the true

GW-poles is achieved, if we linearize eq 43 in order to obtain an
estimate. Written compactly we obtain

= ϵ + ⟨ |Σ ϵ − | ⟩z Z n V n( )n n n n
(1)

xc (44)

which we take as the definition of z(1). Here, Zn is given by

= − ∂Σ
∂ =ϵ

−⎡

⎣
⎢⎢

⎤

⎦
⎥⎥Z n E

E
n1 ( )

n
E

1

n (45)

3. DYNAMICAL SCREENING
3.1. Density Response As an Eigenvalue Problem. In

terms of the irreducible response function, P, the screened
Coulomb interaction W is given by

ω ε ω= · = − · ·− −W v v P v( ) ( ) (1 )1 1 (46)

see Section 2.1, 6−10. Alternatively, we can constructW from the
full (reducible) response function, χ = P + P·v·χ.

ω χ ω= + · ·W v v v( ) ( ) (47)

Since P entersW by an inversion, it can be advantageous from a
numerical point of view to obtain W with χ directly, rather than
via P. Indeed, consider the case where P−1 is easily obtained,
while (1 − Pv)−1 is hard to calculate. In this situation the inverse
of χ is readily found:

χ ω ω= −− −P v( ) ( )1 1 (48)

The inversion of χ−1 can efficiently be done by investigating the
eigensystem of this matrix. Namely, recall that like any other
physical correlation function, χ(z) has a spectral representation.
It specifies χ(z) in terms of its residues and poles in the complex
plane. Since χ is a symmetric (complex) matrix and spans the
same space as P, the two have the same number of poles, we may
write (z = ω + i2η)

∑χ ω ρ ρ′ = ′ − Ω − * + Ω
⎛
⎝⎜

⎞
⎠⎟z z

r r r r( , , ) ( ) ( ) 1 1

m
m m

m m
(49)

The pole positions, Ωm, are the (charge neutral) excitation
energies, and ρm(r) denote the transition densities; m runs over
all excitations, the product of the number of poles in the upper

and the lower complex half planes of the Green’s function,
eq 31.92

The poles, Ωm, can directly be obtained from analyzing the
spectrum of the inverse χ−1. Namely, we must have at the pole
position, z = Ωm, of χ(z) a zero eigenvalue of χ

−1(z). So, we are
looking for a combination of z and ξ(m), such that χ−1(z)ξ(m) = 0
has a solution, explicitly

ξΩ − =−P v( ( ) ) 0m
m1 ( )

(50)

3.1.1. Derivation of the Generalized Eigenvalue Problem:
RPA Equations. We next stipulated that like the full correla-
tion function also the irreducible one has a spectral
decomposition:

∑ω′ = Φ Φ ′ − Ω − * + Ω
⎛
⎝⎜

⎞
⎠⎟P

z z
r r r r( , , ) ( ) ( ) 1 1

n
n n

n nr r

(51)

In order to more easily facilitate the matrix inversion, we
employ a trick and formally extend the matrix space we are
working in. We rewrite P, χ, and P·v·χ

∑ω ω′ = Φ Φ Π
Φ ′
Φ ′

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟P r r r r

r

r
( , , ) ( ( ), ( )) ( )

( )

( )n
n n n n

n

n
,

(52)

∑χ ω ω′ = Φ Φ Ξ
Φ ′
Φ ′′

′
′

′

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟r r r r

r

r
( , , ) ( ( ), ( )) ( )

( )

( )n n
n n n n

n

n,
,

(53)

∑χ ω

ω ω

· · ′ = Φ Φ

Π Ξ
Φ ′
Φ ′

′ ̅

̅ ̅ ′
′

′

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

P v

V

r r r r

r

r

[ ]( , , ) ( ( ), ( ))

[ ( ) ( )]
( )

( )

n n n
n n

n n n n n n
n

n

, ,

, , ,

where

ω δΠ =
− Ω

− * + Ω′ ′

−

−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

z

z
( )

( ) 0

0 ( )
n n n n

n

n
, ,

r
1

r
1

(54)

∫

=

= ̅ ̅′
Φ ̅
Φ ̅

̅ ̅′ Φ ̅′ Φ ̅′

′ ′

′ ′

⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

V v

d d vr r
r

r
r r r r

1 1
1 1

( )

( )
( , )( ( ), ( ))

n n n n

n

n
n n

, ,

(55)

Fully analogous to their parent matrices P, v, and χ also
the corresponding matrix kernels satisfy the following
identity:

∑ω δ ω ω ωΞ = Π + Π Ξ′ ′ ̅ ̅ ′V( ) ( ) ( ) ( )n n n n n n
n

n n n n n n, , , , , ,
(56)

In these objects the generalized eigenvalue problem 50 now
reads

ξΠ Ω − =− V( ( ) ) 0m
m1 ( )

(57)

or more explicitly

∑ δ
Ω − Ω

−Ω − Ω
− =̅ ̅

̅

̅

⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⎛

⎝
⎞
⎠
⎤
⎦
⎥⎥
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥v

X

Y

0

0
1 1
1 1

0
n

n n
m n

m n
n n

n
m

n
m,

r

r
,

( )

( )

(58)
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where the traditional notation ξ(m) = (X(m),Y(m)) has been
introduced; in this notation

∑ρ = + ΦX Yr r( ) ( ) ( )m
n

n
m

n
m

n
( ) ( )

(59)

To make eq 58 look more like a conventional eigenvalue
problem, a notation is commonly introduced

Δ = −
⎛
⎝⎜

⎞
⎠⎟

1 0
0 1 (60)

so that

∑ δΩ Δ =
Ω

Ω
+̅ ̅

̅

̅

⎜ ⎟
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⎛

⎝
⎞
⎠
⎤
⎦
⎥⎥
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

X

Y
v

X

Y

0

0
1 1
1 1m

n
m

n
m

n
n n

n

n
n n

n
m

n
m

( )

( ) ,
r

r
,

( )

( )

(61)

Equation 61 is a density analogue of the quasi-particle equa-
tion, which we already derived from the Dyson equation
for the Green’s function. In a simple approximation one
replaces the irreducible response P by the response of the
noninteracting reference system. In this case Ωrm denotes
simply the energy cost for a bare (i.e., only coulomb screened)
particle-hole excitation. If the single-particle reference sys-
tem is Hartree−Fock, P → PHF, this approximation is called
RPA.
The RPA goes back to early work by D. Bohm and D. Pines

in the field of nuclear physics.66,67 Later it was introduced in
the context of time dependent DFT by Casida68 and used in
the context of GW by Tiago and Chelikowsky.37 In electronic
structure literature the same approximation but using the KS-
system as a reference, see the next section, is often also referred to
as “RPA”. In order to avoid confusion in terminology with the
usage of RPA in standard condensed and nuclear matter text
books, we refer to the conventional RPA as HF-RPA, while we
will call the approximation based on the KS-system as KS-RPA,
or “bare” KS-single particle response.
3.2. KS-Approximation for the Ground State Response.

In this section we employ the approximation P → PKS, with
(z = ω + 2iη)

∑ ∑ω ψ ψ ψ ψ′ = * * ′ ′

× − ϵ − ϵ − * + ϵ − ϵ
⎡
⎣⎢

⎤
⎦⎥

P

z z

r r r r r r( , , ) ( ) ( ) ( ) ( )

1
( )

1
( )

i a
a i i a

a i a i

KS

(62)

where as usual i runs over occupied states and a runs over
unoccupied states.
The expression is readily derived from the basic definition

of P(1,2), 21, in terms of the causal Green’s functions, 39. By
comparing with eq 51 one concludes that ρm should be expanded
in a basis of static spin orbital products

∑ρ ψ ψ= +X Yr r r( ) ( ) ( ) ( )m
i a

m m i a i a
,

,
(63)

where again i,j,.. label occupied states and a,b,.. label empty states.
As explained in the previous section, the vectors |Xm,Ym⟩ are
solutions of the non-Hermitian eigenvalue problem

Λ − Ω Δ | ⟩ =X Y( ) , 0m m m (64)

under the orthonormality constraint

δ⟨ |Δ| ⟩ =′ ′ ′X Y X Y, ,m m m m m m, (65)

and the operators

Λ = Δ = −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

A B
B A

,
1 0
0 1 (66)

contain the orbital rotation Hessians

δ δ+ = ϵ − ϵ + ⟨ | ⟩ij ab(A B) ( ) 2iajb a i ij ab (67)

δ δ− = ϵ − ϵ(A B) ( )iajb a i ij ab (68)

with ⟨ij|ab⟩ = ∫ drdr′ψi(r)ψj(r′)(1/(|r − r′|)ψa(r)ψb(r′).
3.3. TDDFT-Response. The exact TDDFT-representation

of the irreducible density response is given after an inversion:

ω ω ω= −− −P P f( ) ( ) ( )1
KS

1
XC (69)

The equation may be understood as an implicit definition for the
TDDFT-kernel f XC. The equivalent to eq 50 then reads

ξΩ − Ω − =−P f v( ( ) ( ) ) 0m m
m

KS
1

XC
( )

(70)

As already indicated above, 41, in the adiabatic LDA (ALDA) one
replaces the TDDFT-kernel f XC by the instantaneous ground
state kernel in LDA approximation

ω δ
δ′ = ′f

v n
n

r r
r

r
( , , )

[ ]( )
( )XC

(ALDA) XC
(LDA)

(71)

i.e., the functional derivative of the LDA XC-potential with
respect to the ground-state density. As long as the XC-kernel
does not pick up a frequency dependency, the numerical treat-
ment of this equation follows the same computational lines as it
does for standard LDA.

In TDDFT the calculation of the response function follows
the same procedure as described in the previous section, with
the difference that the f XC is added to eq 67. In the case of
a hybrid XC functional eqs 67 and 68 additionally contain
exchange contributions weighted by the hybrid mixing
parameter. More details can be found in the work of Furche
and Ahlrichs.63

Remark: For G0W0 both theories, KS-GS and TDDFT in
ALDA approximation, could be considered when calculating the
density susceptibility. However, in the case where a self-consistent
solution is to be achieved also with respect to χ, ALDA must be
excluded from the second and all further iteration processes.
ALDA cannot be used in the self-consistency cycle, because
updating WKS with the improved density does not eliminate the
artifacts from the LDA-kernels.

4. CALCULATION OF THE MATRIX ELEMENTS OF Σ[G]
4.1. Self-Energies and Spectral Function. For the

evaluation of the self-energy matrix elements we split the self-
energy into an energy independent hermitian exchange and an
energy dependent correlation part:

Σ = Σ + ΣE E( ) ( )x c (72)
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∫ ∫π ω ω μΣ = − = − ′ ′ −ω μ−
−∞

+i d e G E v dE A E v
2

( ) ( )ix 0

(73)

∫π ω ω χ ωΣ = − · ·E i d G E v v( )
2

( ) ( )c
(74)

In the second line the spectral representation of the (causal)
Green’s function, 15, has been used. Also the correlation part of
the self-energy, Σc, can be formulated in terms of the spectral
function (z = ω + 2iη)

∫

∫
∫

∫

∑

∑

π ω ω χ ω

μ ρ ρ

π ω ω η

μ ρ ρ

μ

Σ = − · ·

= ′ ′ − · ·

× − ′ − + ′

× − Ω − * + Ω

= ′ ′ − · ·

× − ′ − ′ −

−∞

∞

−∞

∞

⎛
⎝⎜

⎞
⎠⎟

E i d G E v v

dE A E v v

i d
E E i E

z z

dE A E v v

E E Z E

( )
2

( ) ( )

( ) ( )( )

2
1

sgn( )
1 1

( )( )( )

1
sgn( )

m
m m

m m

m
m m

m

c

(75)

where Zm = Ωm − 3iη.

An equivalent expression for the matrix elements of the
self-energy is also given by Hedin in his review paper of
1999.9 Later it has been applied by Tiago et al. to molecular
systems;37 very recently the same approach has also been used
by Bruneval.56

4.2. Matrix Elements of Σ[GKS]. The bare KS-Green’s
function was given in eq 21. It exhibits the spectral function

∑ ψ ψ δ′ = * ′ − ϵA E Er r r r( , , ) ( ) ( ) ( )
n

n n nKS
(76)

Employing eq 73 and 75 the corresponding matrix elements of
Σ[GKS] in the KS-basis are readily derived at energies matching
the bare KS-values, E = ϵn. These are the expressions needed for
evaluating the linearized quasi-particle eq 44.

We have for the exchange part of the self-energy

∫

∫∑

∑ ∑

μ

ψ ψ δ ψ ψ

⟨ |Σ | ′⟩ = − ′ ′ − · ′

= − ′ ′ ′ − ϵ ′ ′

= − ̲| ̲ ′ = − | ′

μ

μ

−∞

̲ −∞
̲ ′ ̲

n n n dE A E v n

dE E v

nn nn ni in

r r r r r r

( )

( ) ( ) ( ) ( , ) ( ) ( )

( ) ( )

n
n n n n n

n i

x
KS

occ.

(77)

where we have adopted the notation

∫ ∫| = ′ | − ′| ′ ′pq rs d d p q r sr r r r
r r

r r( ) ( ) ( ) 1 ( ) ( )

The integrals in eq 77 are the usual exchange integrals as in HF.
In a self-consistent treatment with respect to G (GW0-level),

using only this piece, i.e. not adding correlation, would hence
restore exact exchange. The correlation part gives us

∫

∫

∑ ∑

∑ ∑

∑ ∑

μ

ρ ρ

μ

δ δ μ μ

ρ ρ

μ

ρ ρ

μ

⟨ |Σ | ′⟩ = ′ ⟨ ̲| ′ − | ̲ ′⟩

× ⟨ ̲′| | · · | ′ | ̲⟩

× − ′ − ′ −

= ′ ′ − − ϵ +

× ⟨ ̲′| · | ′⟩⟨ | · | ̲⟩

× − ′ − ′ −

= ̲ | | ′ ̲

× − ϵ − ϵ −

′ −∞

∞

′ −∞

∞
̲ ̲ ′ ̲

̲ ̲

n E n dE n A E n

n n v v n n

E E Z E

dE E

n v n n v n

E E Z E

nn n n

E Z

( ) ( )

( )( )
1
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( )

( ) ( )
1

sgn( )

( )( )

1
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n n m

m m

m

n n m
n n n

m m

m
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c

,
KS

,
,

(78)

The on-shell diagonal matrix elements simplify:

∑ ∑ ρ
μ⟨ |Σ ϵ | ⟩ =

| ̲ | |
ϵ − ϵ − ϵ −̲ ̲

n n
nn
Z

( )
( )

sgn( )n
m n

m

n n m n

c
2

(79)

4.3. Energy Shifts of Quasi-Particles on theG0W0-Level.
Eventually, we will be mainly interested in the interac-
tion induced shift of the quasi-particle energies, i.e., in
εn
(1) = Rezn(1). It is given by the real part of the linearized quasi-
particle equation, 44,

ε = ϵ + ⟨ |Σ | ⟩ + ⟨ |Σ ϵ | ⟩ − ⟨ | | ⟩Z n n n n n V nRe [ Re( ( ) ) ]n n n n
(1) x c

xc
(80)

= − Σ
ϵ

−⎡

⎣
⎢⎢⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎤

⎦
⎥⎥⎥

Z n d E
dE

nRe 1 Re ( )
n

c
1

n (81)

The real part of the diagonal matrix elements of Σ have exchange
contribution given by

∑⟨ |Σ | ⟩ = − |n n ni in( )
i

x

(82)

while for the correlation contribution we have (3η → η̃)

∑ ∑

∑

ρ
η

ρ
η

⟨ |Σ ϵ | ⟩

= | | | ϵ − ϵ + Ω
ϵ − ϵ + Ω + ̃

+ | | | ϵ − ϵ − Ω
ϵ − ϵ − Ω + ̃

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

n n

in

an

Re( ( ) )

( )
( )

( )
( )

c
n

m i
m

n i m

n i m

a
m

n a m

n a m

2
2 2

2
2 2

(83)
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where as before m runs over all density excitations. The real part
of the diagonal matrix elements of the energy derivative of the
self-energy:

∑ ∑

∑

ρ η
η

ρ η
η

Σ

= | | | ̃ − ϵ − ϵ + Ω
ϵ − ϵ + Ω + ̃

+ | | | ̃ − ϵ − ϵ − Ω
ϵ − ϵ − Ω + ̃

ϵ

⎛

⎝
⎜⎜

⎞
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⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

n d E
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[( ) ]

m i
m

n i m

n i m

a
m

n a m

n a m

c

2
2 2

2 2 2

2
2 2

2 2 2

n

(84)

4.4. Details of the Implementation.Calculating theG0W0-
quasi-particle energies can now be performed in three steps. First
a ground state DFT-calculation is performed providing the KS-
orbitals and energies ψ(0) and ϵ(0). It is followed by a TDDFT-
calculation providing the response of the system in terms of the
expansion coefficients (X + Y)ia

m of the excitation densities ρm. In
the final step the G0W0-quasi-particle energies are calculated
according to eqs 80 to 84. The basic quantities needed in these
equations are ⟨n|Vxc|n⟩, Σi(ni|in), and (n ̲n|ρm), and we will now
comment on how to obtain them making optimal use of code
usually already existing in any quantum chemistry package. Our
implementation was made in the TURBOMOLE package.

Evaluation of the matrix elements of the exchange correlation
potential ⟨n|Vxc|n⟩ obviously also occurs in the DFT-calculation
itself. They can therefore be stored after the DFT-calculation has
been finished or be recalculated by calling the existing routine
again. The second quantity, the exchange contribution to the self-
energy Σi(ni|in), is the same as the exchange appearing in a
Hartree−Fock calculation. In this case however, it is evaluated at
KS-orbitals instead of HF-orbitals. Hence, given that algorithms for
HF calculations or hybrid functionals are available, again already
existing routines can be used to obtain the required quantity.
Finally, a routine to calculate the matrix elements (n ̲n|ρm), needed
for the correlation part of the self-energy, can be built from parts of
code used in the TDDFT-calculation. In solving the eigenvalue
problem described in Section 6.2 and Section 6.3 matrix elements
of the same type occur. The remaining task to be implemented is
the evaluation of the sums in eq 83 and 84.
From the three quantities described above the most time-

consuming to calculate is (n ̲n|ρm). We elaborate on it is calculation
to understand the computational scaling and investigate possible
improvements. Expanding the orbitals ψn in a series of local basis-
functionsϕν, in our caseGaussian orbitals,ψn(r) =Σvcνnϕν(r) yields
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The coefficients of the excitation vectors (X + Y)ia
m, which are

the result of the preceding TDDFT-calculation, are available on
file. They are read in blocks of excitations and transformed to the
Gaussian basis, (X + Y)ia

m → (X + Y)κλ
m , eq 86. In the next step the

integrals (νμ|κλ) are calculated and directly contracted with (X + Y)κλ
m

and transformed back to the basis of molecular orbitals, eq 85.

The block size and thus the number of repeated evaluations of
the integrals is determined by the amount of available core
memory, which is given as an input parameter.
For each excitation the step in eq 85 formally scales like NBF

4

(NBF the numbers of basis functions). However, when μ and ν are
based at atoms far apart the integral (μν|κλ) vanishes. By using an
index array the number of integrals that need to be evaluated can be
reduced, and the asymptotic scaling for large systems becomesNBF

2 .
The prefactor of the step in eq 85 can be reduced by a factor

of ca. 10 employing density fitting (also called the “resolution of
the identity”, RI).69,70 In this approach the products of basis
functions are approximated by a series of so-called auxiliary basis
functions P(r) and eq 85 becomes
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The integrals (Q|κλ) are computed and directly contracted with
all excitation vectors (X + Y)κλ

m of the current block of excitations.
The resulting vector is multiplied with the precomputed matrix
(P|Q)−1 and the result with (νμ|P). The formal scaling behavior
then is NBF

3 NoccNvirt, the asymptotic the same as without RI. Fur-
ther acceleration of this time-determining step may be achieved
by neglecting weakly contributing excitation vectors. Moreover,
this step can be parallelized very efficiently.
The calculation of level shifts in eq 83 requires the pre-

calculation of - presently - all excitation vectors (X + Y)m. The
calculation of the excitation vectors is an iterative procedure
where in each iteration, tasks very similar to the calculation of
(n ̲n|ρm) have to be performed. In addition, in each iteration step
the respective exchange-correlation part needs to be calculated,
see Section 3.3. The calculation of the excitation vectors is
therefore much more time-consuming than the calculation of the
quasi-particle energies. Thus, in order to achieve improvement
on the computational effort, further developments have to be
focused on neglecting or approximate treating of weakly con-
tributing excitations. Nevertheless, already with the present
implementation (no parallelization and without exploiting the
molecular symmetry) molecules as large as naphthacene can be
treated with a basis flexibly enough to obtain results converged
within 0.2 eV within 5 days.

5. TOWARD BENCHMARK RESULTS
To test our implementation and give first benchmarks we
performed calculations on a test set of 27 typical molecules
ranging from H2 to naphthacene, see Figure 1. The rest of the
paper will refer to this set as GW27. For most molecules the struc-
tures are taken from the database supplied with the
TURBOMOLE distribution. For certain dimers and the higher
aromatic molecules anthracene and naphthacene, which are not
supplied there, we optimized the structures employing the same
optimization conditions that were used to determine the structures
in the database. The G0W0-results presented in this section have
been calculated starting from DFT using the PBE functional and
applying the TDDFT-screening, see Section 3.3. In the calculation
of the matrix elements of the correlation part of the self-energy,
eq 83 and 84, η was chooses so small that the values were
converged within 0.01 eV. Inmost cases η = 1meVwas used. In all
calculations the RI approximation has been applied,71 the effect of
this, and other, approximations is studied in the next section.
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In order to demonstrate the accuracy of our G0W0-procedure,
one would ideally compare to the results of more consistent
approaches, e.g. GW0, fully self-consistent GW or, optimally, the
exact solution of Hedin’s equations. Such more advanced results
are not available, however, for our entire test set of molecules.93

Therefore, we resort to a common work-around comparing to
experimental values.
5.1. Ionization Potentials for the Test Set GW27. Our

first test observables will be the first, vertical ionization energy/
potential (IP) and electron affinity (EA). We can extract them
directly from the Green’s function because its quasi-particle
spectrum, by definition, corresponds to minus the (vertical,
primary) IP for the occupied orbitals, εi = −IPi, and to minus the
(nonadiabatic) electron affinities for the unoccupied (binding)
orbitals, εa = −EAa. In the assessment of the G0W0-results we will
include a comparison to IP’s and EA’s obtained fromHF and DFT.
It will provide a rough quantitative measure for the improvement
that can be obtained from G0W0 with respect to well-known
procedures. In HF we have direct access to both quantities via
Koopmans’ theorem. In DFT the HOMO energy level can be
associated with minus the first ionization energy.72−74 We will also
use the DFT LUMO energy levels as EA’s in the comparison. In
doing this we neglect the derivative discontinuity.
The DFT-results with the semilocal PBE XC-functional75−78

have an IP undershooting the experimental value by roughly 35%,
see Figure 1. This is a typical well-known artifact of local approxi-
mations in LDA- or GGA-type XC-functionals.15 Most notably,
the approximate treatment of exchange induces a spurious inter-
action of electrons with their own charge distribution, which
artificially enhances, e.g., the HOMO-energies. The effect is most
pronounced for systems with localized charge densities, i.e. small
molecules and transition metals.
On HF level exchange is treated exactly, so the associated IP

exceeds the DFT-estimate considerably. Quantum fluctuations
of the effective medium seen by an electron are completely
neglected in the HF approximation. These correlation effects are
much smaller than the “self-interaction” as long as relatively small
molecules are concerned; roughly an order of magnitude.
Correlation tends to make ionization easier, the neglect of it by
HF hence typically causes an overestimation of the IP, see Figure 1.
The hybrid functional B3LYP75,76,79−82 mixes a fraction of

Fock exchange into the DFT-functional. In this way it reduces
the self-interaction of the orbitals, at the cost of becoming
nonlocal and introducing an extra parameter, a0, that interpolates

between DFT and HF. The value of the parameter, a0 = 0.2, was
determined empirically by optimizing with respect to the
reproduction of the atomic structure for a test set of molecules.82

As can be seen from Figure 1, the increase of IP starting from
the DFT- toward the HF-estimate is roughly reflecting the
admixture-parameter: a0 ≈ (IP

B3LYP − IP
DFT)/(IP

HF − IP
DFT). (Here

we neglect that B3LYP also contains correlation contributions,
i.e., B3LYP at a0 = 1 does not correspond to pure HF.)
So far we have reproduced a well-known hierarchy of func-

tional approximations. The self-consistent GW-approach sub-
tracts the XC-part of the DFT-functional and adds exact
exchange instead. Already on the G0W0-level, much of the
spurious self-interaction of KS-particles is removed in this way.
This is the main reason why the G0W0-IP are seen to increase
substantially toward the HF-estimates in Figure 1. In addition,GW
also provides a part of the correlation contributions that make
the difference between HF- and the true IP. As a consequence of
both observations, the G0W0 HOMO quasi-particle energies of
the GW27 molecules have a root-mean-square deviation from the
vertical first ionization potential of only 0.47 eV.Moreover, they do
not show any systematic under- or overestimation with respect to
the absolute value. This compares to the systematic under
estimation of DFT by 35% (absolute deviations ranging from 1
to 5 eV) and overestimation ofHF by 7%. For the electron affinities
the picture is similar. The G0W0 LUMO quasi-particle energies of
the GW27 molecules have a root-mean-square deviation from the
electron affinities of 0.65 eV, compared to 1.75 eV for DFT (PBE)
and 1.39 eV for HF.
Summarizing, we find that both the absolute values of the

HOMOandLUMOenergies and the trend of theHOMOenergies
(slope in Figure 1 of the HOMO energies with increasing IP) of the
four approaches is best reproduced by theGW-approach. The good
description of the trend ensures that relative energy levels are pre-
dicted accurately. This is very important for the correct description
of the charge transfer that occurs if different molecules are
combined to a larger entity. This encouraging feature is a particular
aspect of GW that does not exist with DFT or HF.

5.2. Higher Ionization Energies of Simple Molecules:
H2O, N2, C6H6. In the following sections we discuss in detail
three typical molecules, H2O, the nitrogen dimer N2, and
benzene C6H6, to assess the accuracy of theG0W0-approximation
for higher ionization energies. Again we compare toHF andDFT
with hybrid and nonhybrid functionals. Additionally, we include
in the comparison the IP’s obtained from DFT total energies

Figure 1.Comparison of experimental (horizontal axis) with theoretical (vertical axis) ionization energies, left, and electron affinities, right. Results from
HF-calculation, DFT with PBE and B3LYP functional, and G0W0 (@PBE using TDDFT-response) calculations are shown. In all calculations the
TZVPP basis set has been used.
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by applying a self-consistent field (ΔSCF) method. In this
approach the first ionization energies are calculated as total energy
differences

= − −I E N E N( 1) ( )P

where E(N) is the total energy of the N electron system. The
ΔSCFmethod is in principle exact and known inmany cases to be
very accurate for approximate functionals, mainly because of error
cancellation. This method can always be used to obtain the first
ionization energy.
To use the ΔSCF method to calculate also the higher

ionization energies requires the calculation of E(N − 1) for an
excited state. Since DFT is only valid for the ground state, it can
formally not be used to obtain the energies of these states. Using
a special recipe we can however often obtain an approximate
value. In this approach the initial guess for the orbitals, from
which the DFT self-consistency cycle is started, is created with a
hole in the spectrum. If this initial point is close to a local self-
consistent minimum and the optimization routine does not take
too large steps, i.e., it stays in the valley of the local minimum, the
energy of an excited N − 1 electron state can be found. From the
energies of these states other primary ionization energies can be
calculated.
5.2.1. H2O.Although being a small molecule the strongly polar

covalent character of bonding gives H2O a nontrivial electronic
structure. Its ubiquitous appearance in almost every branch
of chemistry makes it an important benchmark system for any
computational approach. For the first three IP’s we get an
agreement of G0W0 with both the experimental and the ΔSCF
values that is an order of magnitude better than the average level
spacing, see Figure 2 (left). For the fourth levelG0W0 overestimates
by 2 eV, where ΔSCF overestimates by 1 eV. This implies that in
this case the KS-orbital is a bad approximation for the true quasi-
particle state, which is also reflected in the bad description of the
single occupation of this orbital in the ΔSCF calculation.
5.2.2. N2. The nitrogen dimer is another interesting example.

Already in the seventies it was observed that the order of the HF-
levels has the first two levels reversed with respect to what is
known from experiments (breakdown of Koopmans’ theorem),
see Figure 2 (right).83 This reversal is known to originate from
the large differences in correlation energy of the corresponding
orbitals. The HOMO, a rather compact σ molecular orbital,
has a much higher correlation energy than the HOMO-1 (and
HOMO-2), extended π, molecular orbitals. The difference in this

case is so large, 0.9 eV, that the orbital order is reversed if the
correlation contributions are neglected, as is the case in HF; both
DFT and GW show a proper ordering of the levels.
In butane and larger alkanes a different situation occurs, where

now the DFT-ordering is wrong as well. In butane when treated
with approximate DFT-functionals (both B3LYP and PBE) the
HOMO (ag) and HOMO-1 (bg) levels are interchanged, see ref
84 and references therein. It has been shown before that by
including diagrams in the self-energy up to third order with
respect to the HF-reference (ADC(3)), the poles of the Green’s
function do get the right ordering.85 The G0W0-approximation
for the self-energy also includes such important diagrams and
hence also leads to the proper ordering of the levels.

5.2.3. Benzene. We conclude this section with the most
studied test molecule, benzene. The ten lowest primary ioni-
zation potentials are well determined experimentally. Over the
whole range of valence states we observe a good description by
the G0W0-method, where HF increasingly underestimates and
DFT increasingly overestimates with increasing energy, see
Figure 3. In particular, the deviations of the G0W0-results from
the experimental values are smaller than the overall level spacing.
We also observe that theΔSCF method has increased difficulties
for this system since for the lowest two IP’s no metastable self-
consistent solution with a hole in these levels could be obtained.
It does however still make a significant improvement with respect
to the bare KS-values. For the first eight IP’s the ΔSCF values
are shifted with respect to the KS by about 3 eV toward the
experimental values. After this shift there is a residual deviation
of theΔSCF from the experimental values. This deviation mainly
follows the KS-energies, hence, both methods suffer from
the approximate XC-functional in a similar way.94 The G0W0-
results, although being based on the DFT-results, do not follow
this trend.

6. CONVERGENCE TESTS
In this section we perform two types of convergence tests and a
comparison to another implementation of the G0W0-method. In
the first subsection, Section 6.1, we show how well our G0W0-IP’s
are converged for the set of test molecules with respect to the size
of the Gaussian basis set. In particular we show that the results
do converge and that an extrapolation can be used to estimate
a complete basis set limit. For solids the dependence of G0W0-
results on the exchange-correlation functional of the underlying
DFT-calculation has been studied intensively.87,88 In Section 6.2

Figure 2. Deviation of the quasi-particle spectrum, HF- and KS-single particle energies of H2O (left) and N2 (right) from the experimental vertical
ionization potentials (IP), plotted over this value IP. Calculations performed with TZVPP-basis set.
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we demonstrate that already on the G0W0-level the dependency
of the IP’s of the test set molecules on the XC-functional is
strongly reduced. In the last subsection a comparison with results
obtained by anotherGW-implementation is performed. It will be
seen that the two implementations give quantitatively similar
results.
The G0W0-results presented here always contain a full sum

over the occupied and unoccupied orbitals, and over the excita-
tions, the sums over i, a, andm in eq 83 respectively. The effect of
the RI approximation was tested for all systems and found to be
smaller than 0.1 eV in all cases, in most cases smaller that 0.02 eV,
indicating that the quality of the auxiliary basis functions71 is
sufficient for our G0W0-calculations. Increasing the size of the
grid for the quadrature of exchange-correlation terms beyond the
standard size has effects below 1 meV.
6.1. Basis Sets. We start the study of the basis set

dependence of the G0W0-IP’s by comparing, for three small
molecules, H2O, N2, and CH4, the results obtained using both
the def2-SVP, TZVP, TZVPP, QZVP and the cc-pVXZ, X =
D,T,Q,5, basis set series, see Figure 4 left.71 The results can be
extrapolated when plotted against the inverse of the number of

basis functions for both series of basis sets. For the def2 basis sets
the TZVP, TZVPP, QZVP results can be extrapolated by a linear
fit for the three molecules. For CH4 and N2 the SVP result also
falls within this linear fit. For H2O the convergence is so rapid,
that the deviation between the results for the two largest basis
sets is already negligible.
Based on the observation for the three small molecules above,

we extrapolate the def2 results for the entire GW27 test set in the
same way. We extrapolate the results, from the basis sets for
which KS-orbital energy and exchange part of the self-energy are
converged, against the inverse of the number of basis-functions by
a linear fit. The value of this fit at zero is taken as an estimate for the
complete basis set (CBS) limit. The results of the four basis sets
and the estimated CBS limit are shown in Figure 4 right.
The SVP results deviate up to 0.65 eV from the CBS limits.

The largest deviations (≥0.4 eV) are seen for a group of mole-
cules (from left to right LiH, CO2, H2O, NH3, SF4, acetone,
acrolein) with strong polar covalent bonds where the SVP basis
set clearly is not able to describe the bonding very accurately. We
observe that for these molecules already the DFT-HOMO
energy levels show a similar deviation when calculated with the
SVP basis set. The SVP results were for these molecules excluded
from the linear fit to obtain the CBS limit.
The TZVP basis set already brings the deviation below∼0.3 eV.

Especially the group deviating strongly at the SVP basis is
not standing out any more. Adding another set of polarization
functions (applying the TZVPP basis set) brings the deviation
from CBS limit within 0.2 eV for most molecules.95 The
dominating effect of the increase in basis functions above TZVP
comes not anymore from a correction to the binding orbitals but
from an increased number of virtual orbitals, changing only the
correlation part of the GW-self-energy.
From the results presented in this section we conclude that the

TZVPP basis set is a reasonable compromise between numerical
accuracy and computational effort for G0W0-calculations on
molecules. Therefore, the TZVPP basis set will be used for the
comparison between different DFT XC-functionals in the next
section. We mention that for the other functionals a comparison
between the SVP and TZVPP basis gives a similar picture as has
been shown here for the PBE functional.

Figure 3. Data similar to Figure 2 for benzene. It is seen once again that
the performances of ΔSCF and G0W0 are roughly comparable for the
lower lying (six) vertical potentials, while HF andDFT fail to capture the
experimental trend.

Figure 4. Convergence test of the G0W0-ionization potential with respect to the size of the basis set (using the def2-SVP, TZVP, TZVPP, QZVP basis
sets). Left: The G0W0-IP’s of N2, CH4, and H2O plotted against the reciprocal of the number of basis functions. The lines represent the linear fit to the
def2 results used to estimate a complete basis set limit. For H2O results converge quickly; the data for the two largest basis set have deviations already less
than 5 meV. For comparison also the results obtained using cc-pV[DTQ5]Z basis sets are plotted. Right: The G0W0-IP’s obtained using the four basis
sets together with the estimated complete basis set limit results. This plotting highlights the fact that the basis set convergency is relatively homogeneous
over our test set GW27.
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6.2. Sensitivity to XC-Functionals on the G0W0-Level. In
fully self-consistent GW the results do in general not depend
on the DFT-functional used to calculate the initial Green’s and
response function. Interrupting the self-consistency-cycle already
after the first iteration, as we do in the G0W0-approximation, the
full initial spread is reduced, but some residual dependency of the
calculated observables on the choice of the initial XC-functional
prevails. Figure 5 illustrates this.96

As can be seen in Figure 5, right, the spread in KS-energies
obtained with LDA, PBE, or hybrid functionals considerably
exceeds the corresponding one of G0W0-quasi-particle energies.
The GW-results tend to be in most cases within 1 eV of the
experimental value and mostly are even closer to each other. This
suggests that theG0W0 is already close to the self-consistent result.
In some cases the G0W0-results depend significantly on the

DFT-functional. A clear example is LiH (IP = 7.9), and to a lesser
extent, the hydrocarbons with OH groups (IP = 9.7 and 10.11)
and H2O (IP = 12.6). The strong polarization arising from the
large difference in electron affinity seems to be a regime where
the hybrid and nonhybrid functionals lead to significantly dif-
ferent orbitals. This is clear in the case of LiH where the PBE
HOMO-orbital is 50% more delocalized than the B3LYP
HOMO-orbital.
The comparison shows that in many cases one can suffice by

using a (semi) local XC-functional for the underlying DFT-
calculation. This clearly comes with a computational advantage
since in that no exchange integrals have to be evaluated in the
calculation of the response function. One has to be careful however
if strongly polar covalent bonds are present.
6.3. Comparison with Another GW-Approach. Using

the same atomic structures, calculations were also performed
with the FHI-aims code.52,57 The general approach in FHI-aims
differs from that used in TURBOMOLE: in FHI-aims
the basis-functions are strictly local and numerical, in contrast
to the contracted Gaussian orbitals used in TURBOMOLE. More
importantly, the G0W0-implementation in FHI-aims uses the
imaginary time formalism with analytic continuation to perform
numerical energy integrations, while in our approach these can be
performed analytically. The results from both codes should con-
verge to the same values for physical observables with respect to the
used basis functions, accuracy of the analytic continuation and energy
integration grid. The comparison is therefore useful to test both
approaches and implementations. The calculations with FHI-aims

are preformed using ″really tight Tier 3″ settings and a Gaussian
occupation of 10 meV width.97

Besides the mentioned differences the G0W0-implementation
in FHI-aims uses KS-RPA instead of TDDFT-response and
iteratively solves the quasi-particle eq 43, where we use the
linearized quasi-particle equation, 44. To make a proper
comparison we also implemented an iterative solving scheme
and switch to KS-RPA response, see Section 3.2 and Section 3.3.
Solving eq 43 in general increases the HOMO levels by up to
0.1 eV (see Figure 6). This can be seen as a correction to a slight

overshooting of results obtained by using the linearized quasi-
particle equation, 44. Switching from TDDFT to KS-RPA res-
ponse, on the other hand, decreases the HOMO energies, also
up to 0.1 eV. This difference is expected because of a smaller
screening in KS-RPA response and hence, in absolute value,
smaller Σc, less negative, matrix elements.
The overall agreement between the results from the two codes

is encouraging. Some discrepancies remain with FHI-aims that
we mainly ascribe to differences in basis sets used. A more

Figure 5. Left: Sensitivity of the G0W0-quasi-particle energies on the choice of the XC-functional underlying the parent DFT-calculation. Calculations
are performed with the TZVPP basis set. Left: Root Mean Square Deviations of the DFT and G0W0-quasi-particle energies. Right: Sample standard
deviation (SSD) of the G0W0 and DFT HOMO energies using different functionals, LDA, PBE, and B3LYP, plotted against the experimental IP’s. The
inset shows the SSDs of G0W0 data plotted against those of the corresponding DFT-data.

Figure 6. The G0W0 HOMO energy levels, using two implementations
of G0W0 compared to experimental vertical ionization potentials.
Compared are the basis sets TZVPP and Tier 3 basis set. One set of
calculations is performed using the implementation described in this
manuscript, one using the FHI-aims code. The values presented here all
use an iterative solving of the quasi-particle eq 43 and RPA response.
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detailed comparison with FHI-aims, using identical basis sets
and a much larger set of molecules, is currently being prepared in
collaboration.

7. CONCLUSIONS

In this paper we have reviewed theGW-approach and described a
way how to build its most used approximation, G0W0, efficiently
into a quantum chemistry package. The special feature of
the design we followed is the use of spectral representations for
the response and Green’s function. This enables an analytic
evaluation of energy integrals and derivatives. In particular the
matrix elements of the self-energy Σ can be expressed directly in
terms of two electron integrals, which are often readily available
in standard packages. Therefore, the resulting expressions can be
implemented efficiently in any generic quantum chemistry code.
In our implementation in TURBOMOLE the use of a basis set of
contracted Gaussians and the application of the RI method
greatly improve the computational efficiency. We showed that
G0W0 implemented in this way has the potential to treat medium
sized molecules at moderate computational cost.
A second advantage of the approach followed here is that the

analytical evaluation of the energy integrals avoids the use of
further approximations. It avoids the uncertainties that may arise
of the plasmon-pole models often used and prevents additional
computational parameters needed in numerical frequency
integration methods.
Both the vertical primary ionization potentials and the elec-

tron affinities of a test set of molecules have been calculated.
In agreement with previous studies the results were shown to
be mostly within 0.6 eV of the experimental values, at most, in
the GW27 test set, deviating by 1.2 eV.37,38,42,52 Moreover, the
deviations do not grow with the absolute value of the IP or EA.
This strongly contrasts DFT andHF that both show an increased
deviation with increasing IP.
The main approximation in solving numerically the G0W0-

equations lies in the finiteness of the basis set. The dependence
on the basis set was investigated by comparing the hierarchical
series of def2-SVP, TZVP, TZVPP, and QZVP basis sets.71 For
a set of small molecules we tested convergence by including
additionally correlation consistent double to quintuple zeta basis
functions (cc-pVDZ to cc-pV5Z). This showed a convergence
that can be extrapolated to the complete basis set limit to which
the TZVPP results are converged within 0.25 eV. From the
results obtained using the different basis sets we deduce that the
TZVPP basis set is a practical compromise between accuracy and
computational effort.
By comparing the G0W0-results obtained using different

functionals for the underlying DFT-calculation we investigated
the residual functional dependence. It was shown that the spread
in the G0W0-IP’s of the GW27 test set is in general a factor of two
to five times smaller than the DFT ones. Moreover, where the
spread in the DFT-results increases with increasing absolute
value of the IP, the spread in the G0W0-results stays more or less
small and constant. This observation gives hope that the self-
consistency loops contained in the full GW-calculation may
converge under generic conditions very rapidly, so that the
G0W0-results may exhibit deviations from fully converged results
that can be neglected for many practical purposes.
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where the self-energy now is with respect to the residual interactions not
yet included in VHXC. This expression is identical with eq 25 because for
it the Hedin equations should be reformulated in terms of the residual
interactions and then solved self-consistently. In practical terms this is
done by dressing all Green’s functions appearing in the expressions for
ΣKSwith local-potential insertionsVXC. This dressing, effectively, reconverts
ΣKS into the original object Σ plus a shift which is VXC, see eq 25.
(92) The poles reside in the upper and the lower complex half planes.
This representation is inherited from the fact that the constituting
equations refer to causal Green’s functions.
(93) For some of the smaller molecules values do exist at fully self-
consistent GW-level.38 Since however these form only a small subset we
prefer to stick in our comparison to the experimental values as a reference.
(94) This is in accordance with the analysis in ref 86 which concludes
that the KS-levels are approximations to the ionization potentials up to
a shift that is constant within an electronic shell. (The same observation
can be made for H2O and N2; there however the trend is less obvious
due to the limited amount of data points.)
(95) The only exception is SF4. Here even between TZVPP andQZVP
the KS-energy levels change by more than 0.1 eV.
(96) The SSD is calculated in the usual way as s = ((1)/(N − 1)Σi=1N-
(xi − x)̅2)1/2 with x ̅ = (1)/(N)Σixi.
(97) Both benzene and naphthalene were calculated using ″really tight
Tier 2″ settings since the use of a Tier 3 basis set led in these cases to an
overcomplete basis set.
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