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We explore the combination of the extended dynamical mean field theory (EDMFT) with the GW
approximation (GWA); the former sums the local contributions to the self-energies to infinite order in
closed form and the latter handles the nonlocal ones to lowest order.We investigate the different levels of
self-consistency that can be implemented within this method by comparing to the exact quantum
Monte Carlo solution of a finite-size model Hamiltonian. We find that using the EDMFT solution for the
local self-energies as input to the GWA for the nonlocal self-energies gives the best result.
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and provides us a second motivation for improving sys-
tematically the approximation beyond the leading order.

the implementations of GWA in imaginary time or fre-
quency space, the choice and construction of the local
Introduction.—The GW approximation (GWA) [1] is
one of the most successful methods to describe elec-
tronic structure of weakly correlated materials. It in-
cludes the lowest order perturbative corrections in the
screened Coulomb interaction to the electron self-energy.
In real space time, the electron self-energy is given by
the product ‘‘GW,’’ where ‘‘G’’ represents the electron
Green’s function and ‘‘W’’ represents the random-phase
approximation (RPA) screened Coulomb interaction. The
GWA has been successfully applied to the calculations of
quasiparticle spectra of semiconductors and insulators
[2]. (For recent reviews, see Ref. [3].) It describes well
the experimentally observed energy gaps in semiconduc-
tors [3–8].

The GWA self-energies were first calculated as a one-
shot perturbation by using the unperturbed local-density
approximation (LDA) Green’s functions [2]. However, as
we will show in this Letter, the one-shot GWA breaks
down as soon as the correlations are moderately strong, as
expected for a non-self-consistent leading order approxi-
mation. The problem should be solved by including higher
order corrections to extend the scope of the method. This
is the main motivation of our work. The Baym-Kadanoff
formulation [9] of the GWA, which makes the method
automatically conserving, requires one to evaluate the
self-energy, the polarization bubble, and the Green’s func-
tion self-consistently [1].While this has been successfully
implemented [10] and shows improvement on the values
of the total energy, the self-consistent GWA brings up a
debate over whether the full self-consistency improves
the spectra [6–8,11–14]. This is due to the fact that the
vertex correction, which is omitted in GWA, shows a
tendency to cancel the self-energy insertion when the
full Green’s function is used in calculating the exchange
self-energy [15–17]. As a result, the one-shot GWA or
partial-self-consistent ones (in which, e.g., one fixes the
W obtained from the LDA input while solving G self-
consistently) are favored sometimes [11–13]. This issue
entails the usage of higher order self-energy diagrams
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In this Letter, we extend the GWA by using the ex-
tended dynamical mean field theory (EDMFT) [18–21],
which treats all the local polarization, self-energy, and
vertex corrections in closed form, following the ideas
proposed in Refs. [20,21,22]. According to these ap-
proaches, the local polarization and self-energy should
be solved by EDMFT nonperturbatively, while the non-
local ones should be solved via GWA. The cancellation of
the self-energy insertion and the vertex correction is
carried out locally to infinite order within EDMFT.
However, the same ambiguity of implementation (with
or without self-consistency) remains in the nonlocal
GWA part. This question can not be addressed without
benchmarking the different schemes.

Main Results.—We compared and contrasted the dif-
ferent implementations of combining EDMFT with GWA.
Our numerical calculation suggests that the schemes us-
ing the EDMFT solution of the local self-energies as
input to the GWA for the nonlocal self-energies give
the best result. In other words, it is favorable not to
allow the feedback of the nonlocal GWA on the local
EDMFT self-energies due to the different nature of the
two methods, GWA being perturbative and EDMFT
nonperturbative. On the other hand, when using the
EDMFT result as input, it makes little difference whether
one performs GWA with a single shot or partial self-
consistency (it is partial because the local polarization
and self-energy from EDMFT are fixed). This supports
the picture [21,22] that, in a correlated phase far away
from a phase transition, the temporal correlations re-
flected through the local polarization and self-energy
are dominant and should be treated nonperturbatively,
while the spatial correlations are weaker and can be
handled perturbatively.

Lattice Model.—In comparing different GW ap-
proaches, many of which apply to realistic materials,
one always encounters the problem that there are as
many important differences in the implementations as
in the GWA methodologies themselves. These include
 2004 The American Physical Society 196402-1
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basis set, and the further approximations like the plas-
mon-pole approximation [3]. In order to compare the
many-body schemes without additional complications, it
is desired to employ simple model systems on the lattice
[11,23]. Following the same strategy, we study the fol-
lowing generalized Hubbard model:
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where ĉci� (ĉcyi�) annihilates (creates) an electron of spin �
( �"; # ) at the lattice site i. n̂ni is the electron density. We
consider only the paramagnetic phase.

Approximation Schemes.—The self-consistent schemes
are summarized in Fig. 1. [We use �	 	 	�SC for a self-
consistent (SC) loop and �	 	 	�PSC for a partially SC
loop.] The full functional in Fig. 1 can be sepa-
rated into local and nonlocal parts, which are
functionals of the local and nonlocal Green’s func-
tions, respectively: � � �EDMFT�GLocal; DLocal� �
�Nonlocal GW�GNonlocal; DNonlocal�. The local (nonlocal)
self-energies, which are obtained from the functional
derivatives of �EDMFT (�Nonlocal GW), are functions of
the local (nonlocal) parts of the Green’s functions only:
�EDMFT � �EDMFT�GLocal; DLocal� and �Nonlocal GW �
�Nonlocal GW�GNonlocal; DNonlocal� for the electron,
�EDMFT � �EDMFT�GLocal; DLocal� and �Nonlocal GW �
�Nonlocal GW�GNonlocal� for the boson.

The approximation schemes we tested in com-
bining EDMFT with GW are (i) the fully self-
consistent �EDMFT� GW�SC solves the full Dyson
equations for G � GLocal �GNonlocal and D � DLocal �
DNonlocal: G � �G�1

0 � �EDMFT ��Nonlocal GW��1 and
D � �D�1

0 ��EDMFT ��Nonlocal GW��1, with G0 and
D0 the free electron and boson Green’s functions on
the lattice. The non-self-consistent schemes begin with
the solution of the EDMFT, which solves GLocal �
�G�1
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FIG. 1. The potential � of the Baym-Kadanoff functional
[9,19] for �EDMFT� GW�SC. �EDMFT�SC is obtained by re-
stricting the exchange diagram (the second on the right-hand
side) to be local in space, i � j. The first line by itself
represents the standard �GW�SC scheme. In this formulation,
the boson Green’s function D describes the screened interaction.
The boson self-energy plays a similar role as the electron-hole
bubble in GWA.

196402-2
(ii) �EDMFT�SC � GW uses the local EDMFT
self-energies to calculate the nonlocal Green’s
functions, GEDMFT; Nonlocal � �G�1

0 � �EDMFT�
�1
Nonlocal

and DEDMFT; Nonlocal � �D�1
0 ��EDMFT�

�1
Nonlocal. It

obtains in one-shot the estimation for
�Nonlocal GW��Nonlocal GW�GEDMFT;Nonlocal;DEDMFT;Nonlocal�
and �Nonlocal GW � �Nonlocal GW�GEDMFT; Nonlocal�.
(iii) �EDMFT�SC � �GW�PSC solves for GNonlocal and
DNonlocal self-consistently from GNonlocal � �G�1

0 �
�EDMFT ��Nonlocal GW��1

Nonlocal and DNonlocal � �D�1
0 �

�EDMFT ��Nonlocal GW��1
Nonlocal, with �EDMFT and

�EDMFT fixed.
Benchmark.—To compare and contrast the approxi-

mation schemes, we perform a benchmark calculation
using the model (1) on a 4
 4, 2D square lattice with
periodic boundary condition. We use, for the free electron
dispersion, 
 ~kk � ��1=2��cos�kx� � cos�ky��. The half-
bandwidth is taken as the energy unity. The interaction
is given by v~kk � U� 2V�cos�kx� � cos�ky��. We study the
half-filling case, where the strongest correlation shows
up. We fix the inverse temperature � � 8:0 and the ratio
V=U � 0:25. We vary U from 0.0 to 3.0 for the approxi-
mation schemes. We benchmark the calculation at U �
0:5; 1:0; 1:5 by using direct quantum Monte Carlo (QMC)
calculation via the Hirsch-Fye algorithm [24]. In all the
results we are going to present, the major error of the
calculation comes from the QMC part, in both the exact
solution and the EDMFT impurity solver. In the latter we
solve the EDMFT electron-boson impurity problem by a
hybridized Monte Carlo method [21,25–27], which em-
ploys an additional continuous auxiliary field [28].

At the given V-U ratio, a charge density wave insta-
bility at wave vector ��;�� is present in the one-shot GW.
The breakdown is shown in Fig. 2. In the exact solution,
however, no charge or spin instability is observed up to
U � 1:5. To compare the different schemes on the same
footing, we restrict ourselves to the paramagnetic phase.
Depending on the different schemes, this may mean
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FIG. 2 (color online). In our model system, the one-shot
GWA, using the Hartree-Fock result as input, breaks down at
U ’ 0:825. This is an instability against the formation of a
charge density wave at ��;�� [27]. The other results are plotted
as references.
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FIG. 3 (color online). The energies, the quasiparticle residue (Z), and the nonlocal contribution to the self-energy (Z1) as defined
in the text. The same symbol scheme defined in (a) applies to all the diagrams. Z is the same for �EDMFT�SC � �GW�PSC,
�EDMFT�SC � GW, and �EDMFT�SC, since the same local self-energy is used. For Z1, which reflects the spatial extension of the
self-energy, we are comparing numbers at least one order smaller than those for other quantities.
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studying a paramagnetic metastable solution when the
possible instability appears. We find it allowed for
�GW�SC up to the largest U ( � 3:0) that we studied
and the same for the EDMFT related schemes we de-
scribed, except for �EDMFT� GW�SC in which the self-
consistent solution does not exist at U � 2:5.

Our main results are presented in Figs. 3 and 4, in
which the results from the exact QMC and the �GW�SC are
also plotted. The definitions of the plotted quantities are
as follows: The Ekinetic and Einteraction are the hopping and
interaction energies per site, calculated via the Galitskii-
Migdal formula [29]. Etotal � Ekinetic � Einteraction. The
local electron self-energy of �EDMFT�SC is obtained
directly from the EDMFT solution, while for those with
spatial extension, �local�ipn� � �1=N�

P
~kk�� ~kk; ipn�, with

N � 4
 4. The local Green’s function Glocal�ipn� �
�1=N�

P
~kkf�G0� ~kk; ipn��

�1 ��� ~kk; ipn�g
�1. The quasipar-

ticle residue Z � �1� Im�local�ip0�=p0�
�1. We mea-

sure the spatial extension of the electron-self-energy by
Z1��1=N�

P
~kkImf��� ~kk;ip1���� ~kk;ip0��=�p1�p0�gcoskx.
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From the overall features of the results, we see
that (i) the �EDMFT�SC � �GW�PSC gives the best results
up to the largest benchmarked U at 1.5 times the half-
bandwidth. (ii) The difference between �EDMFT�SC �
�GW�PSC and �EDMFT�SC � GW is small quantitatively,
since the local self-energies from �EDMFT�SC is domi-
nant. (iii) �EDMFT� GW�SC is not a good scheme in the
sense that it sees an artificial charge density instability
around U� 2:5, where no self-consistent solution is
found. Even before reaching that regime, the �EDMFT�
GW�SC shows significant deviations from the exact solu-
tion. (iv) From the plottings of Z and Z1 in Fig. 3, we
see that �GW�SC misses the crossover to localization at
large U, while the EDMFT based calculations cor-
rectly capture this feature. Actually, all the EDMFT
related schemes give results close to each other at U �
3:0 since the spatial extensions of the self-energies
are no longer important. Our results show that, with
moderate and strong correlations, one needs to include
higher order contributions beyond GWA. The schemes,
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lf-energy at U � 1:5. The same symbol scheme defined in (a)
e. The fermion Matsubara frequency pn � ��=���2n� 1�.
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�EDMFT�SC � �GW�PSC and �EDMFT�SC � GW, offer a
reliable solution towards this direction.

Conclusion.—To summarize, we presented a many-
body scheme that handles the local self-energies non-
perturbatively via EDMFT and the nonlocal ones
perturbatively via GWA. As an improvement over the
leading order GWA, the new scheme better captures
the effects of correlation. We described several imple-
mentations, which perform self-consistency at different
levels, and benchmarked them by comparing with the
exact solution of a finite-size model system. We found
that �EDMFT�SC � �GW�PSC and �EDMFT�SC � GW
gave very close results. For the model we studied,
�EDMFT�SC � �GW�PSC gave the best result.

Finally, we should point out that, similar to the self-
consistent GWA [13,16], our scheme has the problem that
the polarization does not have: the proper asymptotic
behavior in the long wave length limit �limk!0P�k;!� /
�k=!�2�. Since the schemes combining EDMFT with
GWA include local vertex corrections nonperturbatively,
this violation is less severe than that in GWA [27,30].
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