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Investigation of the full configuration interaction quantum Monte Carlo
method using homogeneous electron gas models
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Using the homogeneous electron gas (HEG) as a model, we investigate the sources of error in the
“initiator” adaptation to full configuration interaction quantum Monte Carlo (i-FCIQMC), with a
view to accelerating convergence. In particular, we find that the fixed-shift phase, where the walker
number is allowed to grow slowly, can be used to effectively assess stochastic and initiator error.
Using this approach we provide simple explanations for the internal parameters of an i-FCIQMC
simulation. We exploit the consistent basis sets and adjustable correlation strength of the HEG to
analyze properties of the algorithm, and present finite basis benchmark energies for N = 14 over a
range of densities 0.5 < r; < 5.0 a.u. A single-point extrapolation scheme is introduced to produce
complete basis energies for 14, 38, and 54 electrons. It is empirically found that, in the weakly
correlated regime, the computational cost scales linearly with the plane wave basis set size, which is
justifiable on physical grounds. We expect the fixed-shift strategy to reduce the computational cost
of many i-FCIQMC calculations of weakly correlated systems. In addition, we provide benchmarks
for the electron gas, to be used by other quantum chemical methods in exploring periodic solid state

systems. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4720076]

. INTRODUCTION

The simulation-cell homogeneous electron gas (HEG),
consisting of N electrons in a finite and periodic box of length
L, with a uniform neutralizing background, should be a com-
pelling choice of model system for quantum chemical stud-
ies. Any determinant comprised of plane waves is an exact
Hartree-Fock solution as well as the exact natural orbital rep-
resentation for the gas,l and Hamiltonian matrix elements are
analytically computable.”> A single tunable density parame-
ter (ry) controls the strength of coupling, and the gas is then
representative of wide range of weakly to strongly correlated
electronic problems.”

The complete one-particle space comprises of an infinite
set of plane waves, and a common choice of wavevectors in
a finite basis is a gridded sphere centred on the origin of re-
ciprocal space. Since it provides a basis set tunable with only
one parameter, a reciprocal space radial cutoff k., the limit
k. — 00, corresponding to the complete basis set (CBS) limit,
can be approached systematically and straightforwardly, with
no need to re-optimise the orbitals between changes in basis
set, since the Fock operator does not couple any spin orbitals.

In spite of these apparent advantages, there has been
little investigation of HEG using quantum chemical methods.
Perhaps one drawback preventing such work is that expec-
tation values of such a finite N-electron gas differ from that
of the infinite system and as such the thermodynamic limit,
N — oo with the density held constant, needs to be found
to converge on physical characteristics accurately. Small-N
simulation-cell gases suffer from so-called finite size effects,
which can produce non-physical behavior in simulations.>*
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Nevertheless, finite size corrections have been developed that
allow physical electron-gas behavior to be observed for in-
creasingly low electron numbers.>>-%

The “exact” solution to the electronic Schrodinger equa-
tion for a finite basis can be solved by expanding the wave-
function as an optimized linear combination of all Slater de-
terminants that can be formed from rearranging N electrons in
M basis functions. If these are found by an exact diagonaliza-
tion, this method is referred to as full configuration interaction
(FCI) and scales combinatorially in N and M.° Truncated CI
techniques, restricting the calculation to a subset of the space,
although potentially polynomially scaling, would yield zero
correlation energy per electron in the thermodynamic limit
due to lack of size extensivity.'? This makes treatment of the
HEG of a modest size in even a tiny basis set intractable.

FCI quantum Monte Carlo and its “initiator” adaptation
(i-FCIQMC) are novel methods developed in a series of re-
cent papers!!~!¢ in which the FCI equations are simulated by
representing the determinant coefficients as a set of walkers
evolving over discretized imaginary time. This allows much
larger Hilbert spaces to be studied, with the largest space
accurately sampled to date being 10'%, in a previous study
of the 54-electron gas.'® In this study, the high-density gas
was explored using i-FCIQMC to yield energies of, in prin-
ciple, FCI accuracy. The error incurred by using a finite ba-
sis was removed by an extrapolation scheme proposed by the
authors and to be expanded on in a forthcoming paper. Com-
parison between our energies and those of recent diffusion
Monte Carlo (DMC) calculations, based on a similar method-
ology as the famous study of Ceperley and Alder,!” were con-
sistent with the claim that modern DMC energies for finite
electron gases are thought to be accurate to within 1mE;, per
electron.'® 1

© 2012 American Institute of Physics
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It is our intention to continue to explore the use of
i-FCIQMC to study the electron gas. In this paper we seek to
use the advantages presented by the HEG to better-understand
the method itself, and its potential application to periodic sys-
tems. In particular, we show that the only approximation made
in i-FCIQMC , arising from using a finite number of walkers,
is rigorously controllable and can be removed in a systematic
fashion with the use of the fixed-shift strategy. This is a minor
adaptation to the current algorithm to achieve FCI accuracy
reliably, and comparatively cheaply compared to a previous
study. In doing so, we will also expose some of the benefits of
using the HEG for studies using quantum chemical methods,
and provide much-needed literature benchmarks.

Il. FClQMC

We seek to find the ground state wavefunction and en-
ergy of the N-electron HEG in a simulation cell with peri-
odic boundary conditions in the plane-wave representation.
The single particle states are given by,

1 .
Vi) =y, o) = \/;E’k""r&,-,m Y]

specified by a set of reciprocal lattice vectors {k;}, where
Q is the real-space unit cell volume of a cubic cell. Impos-
ing a cubic symmetry to the simulation cell allows k to take
values of ZT” (n, m, ) where n, m, and [ are integers. We then
use a single cutoff parameter, k., to confine our basis set to
be the M spin orbitals resulting from those plane waves of a
kinetic energy less than 1k2.

The simulation-cell HEG Hamiltonian can be written us-
ing second quantization as:

N - 1 i 1
H =Ztija['aj + 3 Zvl{‘;ajaj'-azak + 7 ZvMajai, 2)
ij ijki i

where i, j, k, and [ refer to single-particle plane waves. The tij
matrix elements are due to the kinetic energy operator,
; 1
J o2
i ==z VilJ)
1
2
= Eki 8ij,
which is diagonal in the plane wave representation. The
two-particle operator, containing electron-electron interac-
tions, electron-background interactions, and the background-
background interaction, is represented by,

3

ab

Vij = Vedgk,—kOg ks> “)
where,
1 47
=, 870
Vg = g ’ )
0, g = 0

and where g is the change in the one-particle momentum due
to the excitation ij — ab. The remaining term, vy, is the
Madelung term, which represents contributions to the one-
particle energy from interactions between a point charge and
its own images and a neutralising background.®? This is an
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artifact of performing a simulation-cell calculation and van-
ishes in the thermodynamic limit. The term in vy also cancels
between the total FCI energy and the Hartree-Fock energy,
making the (FCI) correlation energy independent of its value.

The FCI solution to the Schrodinger equation expressed
in a basis of spin orbitals can be written as an optimized linear
combination of Slater determinants,

v =Y "GID), 6)

which are antisymmetrized products of N normalized spin-
orbitals,

Di = A[yi(x)¥;(X2)... ¥ (Xn)] - )

All determinants formed from the rearrangement of the N
electrons in the 2M spin orbitals are included in the sum over
i, which uniquely labels each determinant.”! In the FCI ap-
proach to this problem, the coefficients are found by diago-
nalization of the Hamiltonian matrix.

In a recently developed quantum Monte Carlo algorithm,
termed full configuration interaction QMC (FCIQMC),'! the
ground state wavefunction and energy are found by a long-
time integration,

Wy = lim e "(H-E0) p,. (8)
T—>00
This can be re-cast in terms of the Hamiltonian matrix as a set
of coupled equations for the determinant coefficients
dC;

——— = (Hq — Ewe — $)Ci + ) HyC;, ©)
J#

where Eyr is the Hartree-Fock energy and an arbitrary energy
“shift,” S, has been introduced. These equations are then re-
garded as a set of master equations governing the dynamics
of the evolution of the determinant coefficients in imaginary
time, with elements of H being non-unitary transition rates.
The sign problem in this form of quantum Monte Carlo is
generally different compared with diffusion Monte Carlo.??

These dynamics are simulated by introducing a popula-
tion of N, “walkers,” which, when distributed over the de-
terminants, represent the sign of the coefficients in the FCI
expansion for the purposes of the simulation,

Ci oc (Ni(1)), 10)

where each walker can have a positive or negative sign. The
walker population is then allowed to evolve through dis-
cretized imaginary time-steps by spawning, death/cloning and
annihilation events according to Eq. (9) until a steady-state is
reached.

The exact rules for this can be found in Ref. 11, but are
described briefly here:

1. In the spawning step, each walker is considered in turn.
A connected determinant D; is chosen with a normalized

probability pgeq(jli), and an attempt is made to spawn
37| Hjjl

. pge.n(j [ "
are generally restricted to coupled determinants, defined
by Hj; being non-zero, for efficiency. If this value ex-

ceeds 1, the number of walkers spawned is related to the

onto this determinant with probability Attempts
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amount by which this value exceeds 1. The sign is de-
termined as the same as the parent if Hy; < 0 and the
opposite sign otherwise.

2. In the death/cloning step each walker attempts to die or
clone itself with probability §t(Hj — Egr — S), where
the walker dies if this is positive and is cloned if this is
negative.

3. Finally, in the annihilation step each walker is consid-
ered and removed if there is an opposite-signed walker
at the same determinant.

The simulation has two phases:

1. Fixed-shift mode. In this period of the calculation, the
shift (S) is fixed at a constant value. This should result in
an exponential growth of walkers as long as S is greater
than the correlation energy, whose rate depends on the
value of this shift, the timestep and the correlation en-
ergy of the problem. Increasing the value that the shift
is fixed at relative to the correlation energy will result
in faster growth, however, it has been observed in some
cases that this can result in longer equilibration times
once the shift is allowed to vary.

2. Variable-shift mode. When a target walker number has
been reached the simulation proceeds to vary S to keep
the walker number N,, constant. After an equilibration
period, for high enough N,, the determinant popula-
tions equilibrate to a distribution proportionate to the
FCI wavefunction. The parameter S therefore is a popu-
lation control parameter.

The energy can be found in two ways from the simula-
tion. In variable-shift mode, S is updated self-consistently at
equilibrium and oscillates around the correlation energy as ex-
pected from Eq. (9).

However, throughout this work, the projected energy is
used as an energy estimator for the dynamic,

(Nj(7)
(No(0))’

Ercioue = lim > (Dj|H|Dy) (11)
J

where D, is taken as the Hartree-Fock determinant and j is
taken as a sum over doubly excited determinants.

Typically, the walker population is initially grown by
setting S equal to zero, from one walker on the HF deter-
minant. Only populations above a critical system-dependent
size are able to converge to the FCI distribution, and this
size was found to scale linearly with the size of the Hilbert
space.'! Nevertheless, small prefactors to this scaling allowed
the method to be used to achieve FCI accuracy on a range
of systems which were previously out of reach of traditional
diagonalization algorithms.'*

However, in order to alleviate this scaling problem, an
adaptation of this method has been developed, called initiator-
FCIQMC (i-FCIQMC).!>!3:15 The determinant space is in-
stantaneously divided into those determinants exceeding a
population of n,4q walkers, termed initiator determinants, and
those that do not. When considering a determinant whose cur-
rent population is zero, the sum in the second term of Eq. (9),
the term describing net flux of walkers onto that determinant,
is taken to be only over initiator determinants.

J. Chem. Phys. 136, 244101 (2012)

i-FCIQMC has been shown to dramatically accelerate
the convergence of FCIQMC with respect to walker num-
ber. In the large walker number limit, the i-FCIQMC tends
to the FCIQMC algorithm, which itself converges rigorously
to the FCI energy. In previous work, simulations with differ-
ent walker numbers were performed to explicitly demonstrate
convergence towards this limit by finding correlation energies
over an increasing range of walker numbers.'? In the present
work we will show that this limit can be rigorously found from
a single calculation.

A. Previous work on the HEG

In a previous study,'® i-FCIQMC was applied to the 54-
electron HEG at r;=0.5 and 1.0 a.u. to find energies for a
range of N, and M. The N, — oo limit was found by direct
evaluation using separate converged runs at different N,, val-
ues, and the M — oo limit was found by using a 1/M extrap-
olation. Finally, the resultant complete basis set exact energy
compared favorably with DMC results.'®

In these simulations, the walker number was grown in
fixed-shift mode under a set of parameters S, §7, and 7,44 be-
fore being released into variable-shift mode at a certain N,,.
After being allowed to reach equilibrium, the finite walker i-
FCIQMC energy (E (N,)) was found from an imaginary time
average of the projected energy (Eq. (11)) which does not de-
pend on S, since it is collected after equilibration in variable-
shift mode.

The form of the function E (N,) is, however, depen-
dent on the two parameters §t and n,qq4, Which can be modi-
fied and optimized for efficiency. E (N,,) is thought to vary
the most with 7,49, which must be kept at the same value
for a set of simulations. The i-FCIQMC scheme tends to-
wards the original FCIQMC method in the limit of 7,49 = 0 or
Ny, — 00. A typical n,qq chosen is three, and we will analyze
this choice later. In contrast, E (N,,) is somewhat insensitive
to the timestep §t, which is set to avoid too many spawning
events causing unoccupied determinants to immediately form
initiator determinants, since this can cause slow convergence.

In the HEG, the plurality of matrix elements with the
same magnitude means that slow convergence is observed if
any spawning events lead to immediate initiator formation,
and as such, §7 is defined to be within the range,

< pgen(j|i)nadd (12)
| Hijl

This limit is analytically computable for a given N electrons
and M spin orbitals since generation probabilities in this case
are uniform:

2 2
= X
NN—1)M—-N

‘pge“ 7L (13)

Hj;

min

A 8t of ~90% this maximum allowed value is used to main-
tain high acceptance ratios.

The finite walker i-FCIQMC energy, E (N,,), obtained
from a simulation has associated with it a systematic error due
to the initiator approximation, which is rigorously removed in
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the limit of N, — oo when E (N,) — EFCIQMC~ The differ-
ence between E (N,,) and this limit is termed initiator error.

lll. ANALYSIS OF j-FCIQMC AND A FIXED-SHIFT
STRATEGY FOR RAPID CONVERGENCE
OF INITIATOR ERROR

A. Division of initiator error and stochastic error

We now describe a technique that allows us to better re-
solve the sources of error in the calculation and separate out
stochastic error and initiator error. In so doing we will also
place the technical observations of the previous study, de-
scribed in Sec. II A, on a more rigorous footing.

In an i-FCIQMC run in fixed-shift mode, as long as S is
higher than the correlation energy, the walker number grows
exponentially, approximately as e”S~F«r)_ In this mode, the
instantaneous projected energy (Eq. (11)) will tend towards an
increasingly stationary value in the large-N,, limit, and settle
onto the correlation energy for the problem. The ground state
contribution to the wavefunction should always grow faster
than any other excited state, and so regardless of the specific
value of the shift parameter (which can be considered an en-
ergy offset in the Hamiltonian matrix) the ground-state should
be recovered in the long-t limit.

In a simulation where there is steady exponential growth,
there is a one-to-one relationship between values of T and N,,.
The instantaneous projected energy for a single simulation
can be written,

Nj(7)
No(7)’

E.; ()= lim » " (D;|H|Dy) (14)
i

and is therefore a well-behaved function of N,,. We assert that
E. i(t) written in terms of N,, is therefore an approximation
to the finite walker number i-FCIQMC energy E (N,,). This
is only rigorously true in the absence of any need for equili-
bration, when the simulation could be released into variable-
shift mode without a change in the average projected energy.
This will be true as long as the growth in walker number is

— E(Nu)
—0.480

Erciquc

Correlation energy / En
| |
o o
P
© ©
U o

|
o
U
o
o

|
o
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o
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quasi-adiabatic. This estimate can be a poor representation
of E (Ny), since there is a large amount of stochastic error
in each point. As with a normal simulation in variable-shift
mode each point is now serially correlated with the one be-
fore it. However, unlike in variable-shift mode, the correlation
time cannot be assumed to be constant because walker num-
ber is increasing. Therefore, the blocking analysis due to Fly-
vbjerg and Petersen,”® which is used to extract the correlation
time, is no longer appropriate and we must investigate another
method for estimating and minimizing the stochastic error.

Assuming points along E (N,) are unaffected by the
starting point of the simulation, a straightforward way of
finding the stochastic error would be to use several indepen-
dent calculations, with different random number seeds. For N,
seeds we can compute the instantaneous average,

1 &
E(Ny) > Ec(Ny) = 3 Eei (t(Nw), - (15)

where we have now used t (N,,) to indicate that 7 is a function
of N,,. The stochastic error can be estimated from,

N,

1 [E; (T (N,))]?
N, —1 Z N,

€ = —(E: (N))* ). (16)
1
The specifics of each walker growth profile will mean that
due to statistical fluctuations, identical values of N, can
not be assumed for each simulation. Therefore, averages are
taken in intervals for the closest values to a chosen set of
N,,-values.

Figure 1 shows a simulation using this method, illustrat-
ing a way to approximate E (N,,) without needing to obtain
equilibrated energies from separate calculations at a set of
N,, values. To indicate that our estimate of the stochastic er-
ror is unbiased, it is also shown that the stochastic standard
deviation, eSer / 2, is preserved when the number of seeds is
changed for a wide range of N,, (Fig. 1(b)). This verifies that
the stochastic error falls off as N,_]/ 2 which is consistent with
a good, uncorrelated error estimator. Also shown in this plot is
the relationship between N,, and the stochastic standard devi-

—
o,

(05 = &NM?) / En

Stochastic standard deviation

FIG. 1. (a) An example i-FCIQMC simulation performed on the N = 14, M = 186, r; = 1.0 a.u. electron gas with n,qq = 3. In the modified approach proposed
here, fixed-shift mode is used throughout the simulation (in this case S = 0.1Ey). The stochastic error is found by averaging over different pseudorandom
number sequences, started from N, (=120) different seeds. This is assumed to be free from serial correlation. In the high N, limit, the FCI energy for the
problem is recovered in common with the same limit in variable-shift mode. In panel (b), the approach of finding the error from different seeds is justified. The

-12

stochastic standard deviation for various N, agree, implying the standard error decays as N, '~.
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8 e——o Cost of walker growth -

10° 10' 10° 10°

Simulation time / corehours

10"

FIG. 2. Simulation time for N = 14, M = 186, ry = 1.0 a.u., and nyqq = 3
as a function of walker number. The formal scaling cost is O[N,,Log (Ny,)],
but the scaling in the high walker number limit tends towards approximately
O [Ny] (shown by dashed, red line). The logarithmic scale is used to show
the range of the scaling relationship.

ation, and we consider the trend to be of the form N %, where
o takes approximate values over the range shown in Fig. 1(b)
from 0.35 < o < 0.47.

The trend observed in stochastic error is important to un-
derstand when discussing computational costs and scalings of
the method. There are two ways in which the simulation can
be modified to reduce the stochastic error. Either the the num-
ber of parallel runs can be increased or the number of walk-
ers can be increased, resulting in polynomial N, /2 and N,
decay of error, respectively. For a fixed-shift calculation, the
simulation cost increase of walker growth is ~O [N,,] in the
high N, limit (Fig. 2), with the memory cost also being lin-
ear in N,, (for more discussion, see Sec. IV B). The cost in
terms of memory and runtime of more N, also scales linearly.
As separate copies of the program are run simultaneously, the
parallelization over N, is perfectly linear. It is therefore more
cost-effective to reduce the stochastic error for systems for «
< 0.5 using more parallel runs.

However, increasing the number of walkers also de-
creases the initiator error. In practice, the rapidity with which
initiator error decays still means that the N,, — oo limit can
be found by running the simulation at higher walker num-
bers until the energy does not change significantly with N,,.
Thereafter, provided o < 0.5, the stochastic error can be re-
moved by using more random seeds. In the limit of converg-
ing onto the FCI wavefunction, « = 0.5 due to increasingly
fine discretization of W, and these two methods of decreasing
stochastic error become equivalent.

B. The role of the shift parameter, S

We now wish to compare fixed-shift and variable-shift
calculations for efficiency, and as such we now frame our
discussion in terms of whether E (N,,) is best derived from
fixed-shift or variable-shift calculations. A crucial difference
that this introduces is that E (N,,) estimated from a fixed-shift
calculation is dependent on the S that the simulation is fixed
at. As such we will denote this E; s (N,,, S), to make clear this
dependence the energy now has on the choice of fixed shift.

J. Chem. Phys. 136, 244101 (2012)

Comparison between E (N,) and E; s (N, S) for a va-
riety of shift values shows empirically that as S is reduced
towards the correlation energy the estimate gets closer to the
variable-shift estimate for that given walker number. This is
because, as S is reduced in fixed-shift mode, growth of the
population is slower and a greater amount of equilibration can
occur between each increase in walker number. In the limit
that S = Eorr, the population never grows and should be able
to equilibrate perfectly, and therefore become equivalent to
variable-shift mode in terms of the quality of the wavefunc-
tion generated at a given walker number. We can therefore
make the equivalence E (N,) = E; s (Ny, S = Econr)-

When choosing the shift for a simulation, there is a trade-
off between lowering the shift, so that the convergence to the
large N, energy is faster, and the runtime penalty this in-
curs from slow walker growth. The penalty for having too
high S is exponential in A (Fig. 3), but the time taken to
reach a certain walker number is found to scale linearly with
1/A, A =S8 — E.o, for low A (Fig. 4). There is a minimum
in cost as S is increased at the cross-over between these two
scaling relationships (Fig. 5).

The scaling of the growth rate for low A (Fig. 4), can be
expressed as,

. Ny
Iim — A, 17
Ny—oo T
where 7 is the total simulation time. This is directly related
to the high-N,, walker growth, which proceeds as,

Ny, = eﬁA’ (18)

where B is a system-dependent constant, proportional to the
total elapsed imaginary time. The simulation time is instan-
taneously proportional to N,,, so total simulation time can be
written,

T = /ﬂ N, (B) dB.

ﬁ /
= / eﬂAdﬂ/,

1
= —ePfh. 19
A€ 19)
Therefore, in the high N,, limit % o A as required to yield a

computational cost scaling as 1/A.

C. The initiator threshold parameter, n,qq

The initiator threshold parameter n,qq determines the
number of walkers above which an occupied site is consid-
ered an initiator and as such is an important parameter in
i-FCIQMC. In the limit of N,, — oo¢ all determinants become
occupied and the algorithm returns to the original FCIQMC
algorithm. The FCIQMC algorithm is also recovered in the
limit of n,4q = 0 but this negates the computational advan-
tages of the initiator approximation.

In principal, each value of n,qq should yield a different
form of E (N,,) since n,qq alters the simulation dynamics in
a non-trivial way. However, as Fig. 6 shows, a much simpler
relationship is observed. Although the relationship between
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FIG. 3. i-FCIQMC runs at different values of the shift parameter, S, all per-
formed using N = 54, M = 186, r; = 1.0, nagg = 3, and N, = 8. These
estimates of E (N,,) tend towards the independent variable-shift i-FCIQMC
calculations as S tends towards E.o (panel (a)). The relaxation towards this
limit is observed to be exponentially fast in A =S — Ecor. In the low A
limit, the stochastic error does not change significantly between different val-
ues of S (panel (b)).

energy and walker number is different for each value of n,qq,
this merely seems to rescale N,, linearly.

In this way n,q can be seen to behave as a resolu-
tion parameter. Imagine comparing two simulations with
{Nuw 4, Naga,a} and {Ny g, naaa ). If Nyp=2N, 4 and
Nadd, B = 2Madd. 4, and assuming that there was a one-to-one
mapping between determinant populations, N; 4, — 2N; g, the
energy estimate at all paired values of N}, ; = Ny, /n,q4qa would
be the same. This is demonstrated schematically in Fig. 7.
Although more walkers would normally lead to less stochas-
tic error, the on-site and between-site flux would be rescaled
with n,gq (Fig. 6(b)). This analysis and explanation should
only hold in the high n,44 and N,, limit, and it just so happens
that n,q9 = 2 is high enough to display this behavior for the
54-electron r; = 1.0 a.u. HEG.

Finally, in these simulations, §T was set according to
Eq. (12). However, the form of E; (N,) is independent of
8t for these systems provided the inequality Eq. (12) is met.
Since the run-time of a simulation is proportional to §7, this
is simply maximized. We note that this approach might not

J. Chem. Phys. 136, 244101 (2012)

10 T T T T 7 T
i K
s | ;
X et
1 8 ' ’
g s
T 6 1
§ :
~ 4 : i
s |
E
o :
s |
3 2 1
g : —— Rate of growth
<
S EirciQMe
54 6 & 10
S/Eh

FIG. 4. i-FCIQMC runs in fixed-shift mode at different values of the shift
parameter, S, all performed using N = 54, M = 186, ry = 1.0, naqq = 3,
and N, = 1. The rate of growth of walkers per corehour was measured from
the linear, high N,, limit (Fig. 2). Error bars were found on the fit on the
order of 0.01%. The speed of growth in the low § limit grows linearly in
A = § — Ecorr from theoretical zero-rate growth at S = E¢or (red dashed
line). The next leading order term appears to be exponential, but this might
be due to lack of convergence for the high-shift values (Fig. 3). Nonetheless,
linear growth rates are demonstrated for high N,,.

work for small systems, where diagonal matrix elements have
more of an effect on timestep.

D. Summary

To summarize, in this section we have looked at a num-
ber of the simulation parameters for an i-FCIQMC calcula-
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FIG. 5. i-FCIQMC runs in fixed-shift mode, at different values of the shift
parameter, S, all performed using N = 54, M = 186, ry = 1.0, naaq = 3,
and N, = 1. The relative cost of converging to the large walker limit for a
given shift value is estimated from a combination of the cost of growth from
Fig. 4 (dashed blue line), and the higher N, needed to converge a given
initiator error seen in Fig. 3 (which is approximately exponential in A for
small A). As such, there is a broad minimum in compound cost for a range
of A, which we expect to be highly system-dependent.
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FIG. 6. i-FCIQMC runs at different values of the nyqq parameter (N = 54,
M =186, ry = 1.0, N, = 8). To illustrate the apparent effect of changing n,4d,
the N,, axis has been rescaled by dividing through by n,44, causing the lines
to be overlaid.

tion within the context of the problem posed by the HEG,
and generalized where possible. From consideration of iso-
lated “initiator” error arising from the finite number of walk-
ers sampling the space, a new strategy was detailed whereby
the calculation remains in fixed-shift mode to reach high
walker limits, while obviating the need for lengthy equilibra-
tion times in variable-shift mode. These limits are required
to demonstrate an effective elimination of this initiator error.
This new simulation method was shown to be equivalent to
previous schemes where separate converged calculations were
performed for a variety of walker numbers. The cost of this
strategy was critically analyzed in terms of speed of walker
growth and decay of random errors, providing optimal values
for the fixed shift, and initiator threshold parameter, n,44. In
cases where this initiator error is challenging to converge, this
strategy is presented as an appealing alternative. We mean this
both in terms of effectively directing computational effort to
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FIG. 7. Schematic diagram demonstrating how n,qq acts as a resolution pa-
rameter. In moving between the top and the bottom diagrams, n,4q has been
doubled, but N,, has also been doubled. This has no effect to the energy es-
timate, unless the ability to resolve low-weight determinants is important. In
the high Ny, and n,4qq limit this is unlikely to be the case.

ameliorate initiator and stochastic error, as well as provision
of insight into the dynamics of the FCIQMC simulation in the
space.

IV. APPLICATION TO THE HEG

We now present an application of FCIQMC to the elec-
tron gas with the aim of producing results for the finite-
basis 14-electron gas, and then also in the complete basis
set limit with N = 14, 38 and 54 electrons. Buoyed by
various techniques to ameliorate the high scaling of quan-
tum chemical methods, such as explicitly correlated basis
sets,?*2% local approximations®’~>° and others,’>3! quantum
chemists are beginning to tackle the problems presented in
the solid-state. However, these efforts have generally ex-
cluded an examination of the HEG. In producing high-
accuracy literature benchmarks for the 14-electron gas, we
hope that this will encourage the comparison of other tech-
niques intended for application to solid state systems in
the growing community looking to use quantum chemical
techniques.’?-3%

We now introduce an approximate extrapolation tech-
nique to efficiently calculate complete basis set limit esti-
mates, with it in mind that these results can then be com-
pared with DMC calculations. DMC calculations have been
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extremely successful in treating the HEG, with the most
famous study being that of Ceperley and Alder.!” Recent stud-
ies have tended to use the fixed-node approximation which
intrinsically has an error associated with it, but that error is
both thought to be small and unquantifiable.> These results
are widely regarded as the best estimates of energies in the
HEG over a range of densities. DMC has allowed for a large
range of properties of the electron gas to be calculated, in-
cluding phase diagrams,'”-3° the effective mass,”*’ the reno-
malization factor,*! spectral moments,*? and the momentum
distribution.>*3#* Unfortunately, since to the best knowledge
of the authors no low-N simulations exist in the literature for
DMC, comparison between FCIQMC energies and DMC are
left largely as an open question. It is intended that these re-
sults ultimately be used to compare between the initiator er-
ror of FCIQMC and the fixed-node error remaining in modern
backflow DMC results.

A. Basis set incompleteness error

Having dealt with the internal parameters that are impor-
tant to the FCIQMC method, we now discuss the remaining
parameter M, the size of our underlying one-electron basis,
equal to twice the number of plane waves enclosed by a
sphere centered at the origin of reciprocal space of radius
k.. Using this single parameter, the complete basis set (CBS)
limit can be found by taking the limit of the correlation
energy as k. — oo.

The difference between the energy retrieved by a quan-
tum chemical method in a finite basis, and the theoretical limit
of this energy reached in a complete basis is termed basis set
incompleteness error. Although a method may be a good ap-
proximation to exact results in principle, chemical accuracy is
typically only achievable in the CBS limit. As such, there is
much literature for how this limit is approached for molecular
basis sets, and it has been shown both analytically and numer-
ically that this limit is approached in X, the cardinal number
of the basis set, as 1/X3.%

In a separate paper yet to be published by the authors,*®
the CBS limit is shown to be approached as 1/M for plane-
wave wavefunction methods. This is in agreement with the
corresponding trend when using Gaussian expansions since
the number of spin orbitals used scales as X°. Figure 8 shows
using this approach to obtain CBS limit energies for the
ry = 1.0 a.u. 14-electron gas.

B. Basis set scaling

An important aspect of any new method is the computa-
tional scaling of this method with parameters of the systems
that are being studied. One such parameter of interest is basis
set size, M. Since FCIQMC is a relatively new method, very
little scaling work has been considered. Here, we present an
initial analysis of basis set scaling as applied to the weakly
correlated N = 14, r, = 1.0 a.u. electron gas.

Since FCIQMC is a stochastic method, the factors affect-
ing the time required for the simulation can be crudely broken
down into three considerations:

J. Chem. Phys. 136, 244101 (2012)
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FIG. 8. i-FCIQMC results for N = 14, ry = 1.0 showing a 1/M convergence
to the CBS limit. These results were found to be converged with respect to
initiator error at N, ~ 107—108. Stochastic error bars are plotted but gener-
ally too small to be seen.

1. The number of walkers required to converge the calcu-
lation. This is primarily to eliminate initiator error, but
number of walkers also aids in convergence of stochas-
tic error. Initiator error estimates are very difficult to
quantify due to, in principle, the N,, — oo limit need-
ing to be reached for comparison. Moreover, since the
CBS estimate comes with a stochastic error, as do other
points along the initiator error graph, the initiator error
becomes rapidly lost in stochastic noise (Fig. 9). How-
ever, initiator error seems to decay very rapidly for sys-
tems studied and graphs of E (N,,) with characteristic
decays can be compared.

2. The simulation time taken to grow the number of
walkers. Although this is O[N,Log(N,)] in the cur-
rent implementation, the difference between this and a
linear scaling is relatively small. Moreover, the algo-
rithm could be theoretically optimized for linear-scaling
growth at all N,, but this is thought to have a more costly

10°
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FIG. 9. Graph comparing initiator and stochastic error for N = 54, M = 186,
rs = 1.0 a.u., S = —0.1 Ey, and N, = 8. The full curve of energies is shown
in Fig. 3.
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FIG. 10. Initiator and stochastic error for i-FCIQMC runs at different basis
set sizes, N =14, r, = 1.0, N, = 8, and S = 0.1. Panel (a) shows that initiator
error does not change significantly with an increase in basis set size in the
high M limit for this system, since all curves are simply a shift in energy from
each other. Error bars are only shown for M = 114 for clarity and dotted lines
show asymptotic limits. In panel (b), the stochastic error as a function of a
given population on the HF determinant (Nyr) does not change significantly
with increase in basis set size in the high M limit for this system.

prefactor. As such, this will be generally discussed as
linear-scaling in NV,,.

3. The simulation time taken to reduce the stochastic er-
ror. This is best achieved from the point of view of the
present work by increasing the number of seeds for the
simulation N,.

The number of walkers on the Hartree-Fock determinant
required to converge the calculation, from the point of view
of initiator error, is startlingly invariant with respect to M
for the system studied here (Fig. 10(a)). Initiator error plots
appear essentially identical in the high M limit. In addition,
the stochastic error decays at the same rate for each M with
respect to the population on the Hartree-Fock determinant
(Nug), as shown in Fig. 10(b). However, the simulation time
taken to reach the number of walkers required, however,
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FIG. 11. Trends in the i-FCIQMC wavefunction for N = 14, ry = 1.0 a.u.
(a) Change in fraction of the population at the Hartree-Fock determinant with
walker population for a variety of basis set sizes. (b) The ratio of the popula-
tion at the Hartree-Fock determinant to the total population of doubly excited
determinants changes with basis set size but not with N,, at convergence.

increases as O[M] because the connectivity of the space
grows as this factor, and therefore 4t is reduced to maintain
the same quality of sampling. This factor seems to be the lead-
ing order scaling in M.

Although Nyp would be expected to grow proportion-
ally to N,, at convergence, it only grows as (N,,)" for y < 1
for typical HEG simulations. This can be seen from the ra-
tio of the population on the Hartree-Fock determinant to
the total walker population, which should be constant for
y =1 (Fig. 11(a)). This trend actually predicts y >~ 0.76 since
a number of walkers at any time reside on low amplitude de-
terminants, which are generally very large in number, pushing
Nyg/N,, down. Although this would indicate a lack of con-
vergence, the ratio of Nyp to the population at the double ex-
cited determinants, Ngoubs, 18 approximately constant within
stochastic fluctuations when a calculation has converged
(Fig. 11(b)). These are the only contributing determinants to
the projected energy, the energy estimate used in this study,
and so it makes sense that when there is a stationary distri-
bution of walkers across these determinants, the simulation
would be converged.

Returning to the question of scaling with M, the frac-

tion % is shown in Fig. 12, and generally behaves as 1/M,

w
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FIG. 12. When the initiator error is converged, for the N = 14, ry, = 1.0 a.u.,
the fraction of the walker population that is at the Hartree-Fock determinant
falls as 1/M for large basis set sizes.

for high walker numbers. The total number of walkers taken
to reach a given “target” population at the HF determinant
is therefore N, = M%, where A and B are constants. The
leading order contribution to this in the high M limit is O [1].
This, then, should be multiplied by the cost of walker growth,
O [M] due to the required decrease in §t, to give O [M], or
linear scaling, overall. This linear scaling is only physically
realistic if we consider that the basis functions in the high-
energy parts of the space are completely decoupled from one
another. This could well be very reasonable for the high M
limit of a weakly correlated system.

The final consideration to make is to comment that we
have only observed this behavior for the relatively small
system of N = 14, and the relatively weakly correlated
rg = 1.0 au. How transferrable are these findings? It is
probable that the observation of a constant initiator error
with M will not hold for larger, or more correlated, sys-
tems. Indeed it has already been shown that for the N = 54
electron gas that there is a significant change of initiator er-
ror with basis set size,'® although it is likely that the high
basis set limit is reached much more quickly for N = 14.
Notwithstanding this, it is hard to think that computational
effort would scale in any way other than exponentially
in M, since the size of the space to be sampled is growing
as O [M!], but that the prefactor might be low enough that
this is never observed within the desired random error.

In spite of this somewhat surprising scaling relation, the
14 electron problem is not a trivial one for quantum chemi-
cal methods and upon entering the linear scaling regime, the
remaining basis set incompleteness error is still of the order
~0.01 E; (Fig. 10(a)). As such the finding that the high M
limit of this system can be captured as O [M] is important.
The apparent lack of growth of initiator error on increasing M
shows that the sparsity with which the space to be sampled
does not grow significantly with M, which may well apply to
other systems.

C. Comparison of electron densities (rs)

FCIQMC energies obtained for r; = 0.5-5.0 a.u. are
given in Table I, which we present as new small-system
benchmarks. To our knowledge, systems of this small an elec-
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FIG. 13. Graphs of correlation energy retrieved with respect to walker num-
ber with different ry, M = 186. The N,, — oo limit corresponds to the corre-
lation energy for each of the systems. Convergence to this limit is slower in
N,, for larger ry-values.

tron number but with nonetheless vast Hilbert spaces, have not
been studied to date and as such we have no values to compare
to. In a previous study, however, we showed that FCIQMC re-
sults are highly competitive with DMC results in the complete
basis limit.'%

As ry is raised, the difficulty of the problem for i-
FCIQMC rises sharply, which we can see from the en-
ergy retrieved against walker number in Fig. 13. Whilst the
ry = 0.5 calculation for the basis set shown is converged at
10* walkers, the r; = 5.0 calculation takes 10° walkers to
converge. We can attribute this to the lowering of the spar-
sity of this representation of the wavefunction due to stronger
correlation effects at larger r;. We anticipate that the r, pa-
rameter would behave similarly in a conventional FCIQMC
calculation to the Hubbard U parameter, whose effect on the
sign problem in FCIQMC has been analysed in detail.>> The
extrapolation to the complete basis set limit for these densi-
ties is shown in Fig. 14, and indicate that the onset of the 1/M

TABLE I. i-FCIQMC correlation energies for N = 14. The number in brack-
ets corresponds to the stochastic error in the preceding digit. The M = oo re-
sult is based on extrapolations shown in Fig. 8 from which its error estimate
derives.

rs (a.u.)
M 0.5 1.0 2.0 5.0
114 —0.5169(1) —0.46111(9) —0.3842(2) —0.2645(3)
186 —0.5589(1) —0.50093(9) —0.4207(3) —0.2928(4)
358 —0.5797(3) —0.5189(1) —0.4355(4) —0.3017(7)
778 —0.5893(3) —0.5265(2) —0.4410(5) —0.304(1)
1850 —0.5936(3) —0.5294(3) —0.4431(5)
2368 —0.5939(4) —0.5305(5) —0.4430(7)
00 —0.5969(3) —0.5325(4) —0.4447(4) —0.306(1)
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FIG. 14. Basis set incompleteness error for 0.5 < ry; < 5.0 a.u. for a vari-
ety of basis set sizes. Convergence is of 1/M form (dotted black lines) in the
limit of M — o0, and the rate of convergence to this limit does not appear to
change as r; is raised. This is partly because the magnitude of the basis set in-
completeness error decreases with increasing ry, and therefore an estimate of
the complete basis set result is less sensitive to the precise form and behavior
of the extrapolation.

scaling regime is relatively insensitive to this density. This is
also demonstrated later in Fig. 17.

D. Using a single point extrapolation of the projected
energy to achieve complete basis set estimates

In a separate study of basis set convergence in plane wave
wavefunction methods by the authors, yet to be published,*® it
was shown that it is possible to use a single large basis set cal-
culation to yield an estimate of the CBS correlation energy for
the HEG. This is achieved by dividing the contributions to the
energy from a single large basis set calculation into regions
of momentum space, producing smaller, effective basis sets
from which the CBS limit can be estimated by extrapolation.

Starting from the formulation of the FCIQMC correla-
tion energy that we are using, the projected energy (defined in
Eq. (1)),

Epoj= <Dj|H|Do>§—:), (20)
i

where j refers to double excitations of the Hartree-Fock de-
terminant. We can divide this into individual contributions
from sets of four k-points, which uniquely define the four
one-electron states for each double excitation ij — ab, where
ij are occupied in the Hartree-Fock determinant and ab are
unoccupied,

occ virt

Econ = Z Z Xll:ﬂli(jb- (21)

ij ab
with,

K.k
Kk _ Sk,
ek, = (lJIIab)—C0 . (22)
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Recalling that this set of k-points is bounded by a maximum
kinetic energy, and thus has a basis set size (M) associated
with it as defined at the start of Sec. II. The upper limit on the
virtual space sum is therefore modified,

occ M
Ecorr,k (M) = Z Z X]l:,.“]:(fh- (23)
ij ab
We propose to regroup these energy contributions according
to their arrangement in reciprocal space and use the behav-
ior of the coefficients to provide an estimate of the complete
basis set limit. In doing so, we will construct energies of an
effective basis sets of a smaller size, which can be viewed as
groups of plane waves that lie on concentric spheres in recip-
rocal space, from a single large basis set calculation. Via ex-
trapolation from all of these smaller effective basis set sizes,
an estimate for the CBS energy can then be obtained without
the need for further calculations.
In order to regroup these coefficients, we construct mask-
ing functions P, equal to either O or 1, to effectively remove
some of the terms in the sum in Eq. (23),

occ M
Ecomett (M) =) Y i/ P (ks Kp),  (24)
ij ab
out of spherical step functions,

L K| <k

Ok — k)= (25)

0, otherwise
such that these step functions, and hence the masking func-
tions, have associated with them a kinetic energy cutoff anal-
ogous to the original energy cutoff for the calculation. These
are then multiplied by the coefficients of the projected energy
and re-summed at different new energy cutoffs that are gen-
erally smaller than the original kinetic energy cutoff that the
simulation was performed.

In contrast to the original basis sets defined here, we con-
struct these effective basis sets by using cutoffs based on the
momentum transfer of each excitation. For ij — ab, this is
given by,

k,=k +g ky,=k;—g, (26)
or, equivalently,
ki=k;—¢g: ky=k +¢, (27)

due to conservation of momentum (k; + k; = k; + k3). The
masking function we have found to be most successful is,
Py(g. 8 My) = O(g — go) + O(8" — o)
—0(g — 808" — go). (28)
which denotes the union of the set of k-points enclosed by two
spheres of radius g, centred on the arguments of the function,

g and g'. This leads to an expression for the energies of an
effective basis set size M', due to different effective cutoffs g,

occ

M

k.kp

Ecorr,eff(M, M) = Z Z ink,-’
ij ab

X Py(ki — kg k; —Kg; M), (29)
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FIG. 15. i-FCIQMC results for N = 14, r; = 0.5 showing a 1/M or /M’
convergence to the CBS limit for two schemes. In the conventional scheme,
calculations are run at different basis set sizes and extrapolated to the CBS
limit (Sec. IV A). However, it is also possible to find a CBS estimate from
single point extrapolation (solid blue line) of the projected energy, where
the points along this line derive from a single calculation at an overall basis
set size M=1850 (see text). As such, they share a single stochastic error bar
(dotted blue line). These results were found to be converged with respect to
initiator error at Ny, ~ 10°-107.

This effective basis set size M’, denotes a truncated basis
which encompasses twice the number of k-points enclosed by
a sphere of radius g. centred at the I"-point. The behavior of
the energies due to these effective basis sets, in the limit that M
is large enough to completely enclose all possible excitations
of length g, is also of form 1/M’. However, convergence on
this linear behavior is much faster and we are able to compute
approximate CBS limit estimates from only one calculation.
We therefore call this single point extrapolation.

In Fig. 15 we show an example of this technique being
used to compute a CBS limit estimate from M = 1850. This
agrees well with the CBS estimate from a normal extrapo-
lation as in Sec. IV A, however, this single point extrapola-
tion scheme is found to converge at lower basis set sizes M
(Fig. 16) as well as providing a reliable extrapolation at each
point. Errors in this technique arise from coefficient relax-
ation, due to the changing value of Xll:,-al:(,- " as M is varied. How-
ever, we find that there is cancellation of errors between the
approximate effective basis energies and the resulting 1/M’
gradient, and so convergence is rapid.

It is worthwhile pointing out that this scheme is a marked
contrast to the extrapolation scheme mentioned before in
Sec. IV A where separate calculations, each variationally the
lowest energy achievable in a one-particle basis set, were used
to extrapolate to the CBS limit. It is more common in the
quantum chemical literature to take this previous approach
and as such single point extrapolation goes against the pre-
vailing literature. We accept that these results will only be
entirely accurate in the CBS limit of M — oo, but note that
this limit can be found systematically, and as such our results
should be treated as CBS estimates. Furthermore, in the HEG,
there is no orbital relaxation in the Hartree-Fock orbitals as M
increases, since they are exact. We nonetheless believe this
approach to be a reasonable one to take in plane wave sys-
tems, where there is great flexibility in the basis set size, slow
basis set convergence, and in particular, is the most practi-
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FIG. 16. Comparison between results obtained by conventional i-FCIQMC
calculations with CBS estimates from either normal extrapolation, described
in Sec. IV A, or single point extrapolations (see text). At each value of M
an i-FCIQMC simulation was run to yield an energy. This energy was then
either extrapolated directly or a single-point extrapolation from this value of
M was used to estimate the CBS limit using the masking function described
in the text.

cal approach in terms of computational cost for the systems
studied. Moreover, in real solid state systems, it is currently
necessary to use an auxiliary basis set to find results at the
complete basis set limit.3?

In FCIQMC, the benefits of using a single point extrap-
olation are substantial, due to the effects of the initiator ap-
proximation. The approximate form of the curve in Fig. 16
appears to converge very rapidly with respect to walker num-
ber, in particular allowing for an estimation of where the
linear regime begins at very low computational cost. Further-
more, once a basis size has been chosen to perform a sin-
gle point extrapolation from, the initiator error in the coef-
ficients should be consistent for all effective basis set sizes,
somewhat mitigating errors due to change in initiator error
across different basis sizes in the more traditional extrapola-
tion scheme.

It is also possible to calculate an estimate for the CBS
limit on the fly during a simulation, when the region of lin-
ear 1/M’' behavior is known, allowing for the production of
an easily computable, rapidly convergent, stochastic correc-
tion. Furthermore, it is possible to probe the convergence in
a variety of orbital subspaces using different masking func-
tions, which may be useful in the future to help understand
the nature of the initiator approximation from the point of
view of the one-particle basis set. Taken together, these ex-
tend the practical use of such a technique, however, extensive
study of this is beyond the scope of this paper.

We therefore conclude by presenting a set of correlation
energies in Table II. We are confident that all 14 electron re-
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TABLE II. i-FCIQMC complete basis set total correlation energies for a
variety of N and ry, estimated using the projected energy single point extrap-
olation technique described in the text. The source of the error estimate is
stochastic error. The results compare well with DMC results obtained by Rios
et al.,'® which are comparable to those found by Kwon et al.'® For further
discussion of this comparison, see Ref. 16.

s Ecor S Ecorrpmc  CPU time
(auw) N (a.u.) Ny M (au.) nagq (a.u.) (corehours)
0.5 14 —0.5959(7) 10° 1850 0.0 3 200
38 —1.849(1) 108 922 01 3 4000
54 —24357) 107 922 0.1 3 —2387(2) 4000
1.0 14 —05316(4) 107 1850 00 3 2500
38 —1.590(1) 108 922 01 3 8000
54 —2.124(3) 108 922 0.1 3 —2.125(2) 6000
20 14 —0.444(1) 107 1850 —02 3 2500
38 —1.22512) 10° 922 01 3 16 000
50 14 —0.307(1) 10 778 —02 3 40 000

sults are free from both initiator and basis set incomplete-
ness error, although we cannot rule out this possibility for
the higher electron numbers. Convergence of the E,-cutoff
extrapolation at a range of rg-values is shown in Fig. 17 and
Table II. M is assumed to be large enough for the single-point
extrapolation to remove the basis set incompleteness error.
This is supported by agreement (within stochastic error bars)
with energies presented in Sec. IV A, in which the CBS limit
is achieved from a conventional 1/M extrapolation, and with
values published in a previous paper on the 54-electron prob-
lem. They also compare well with the most accurate DMC
calculations to date,'®!” in particular, yielding a lower en-
ergy at N = 54 at r; = 0.5, again consistent with our previous
paper.'® We also note that computational cost of these new
CBS i-FCIQMC energies is ~100 times smaller than previ-
ously mentioned.*’
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FIG. 17. Basis set incompleteness error for 0.5 < rg < 5.0 for a variety of
effective basis set sizes. In contrast to Fig. 14, the M’ label here refers to
an effective basis set size derived during single point extrapolation of the
projected energy. Convergence is of 1/M’ form (dotted black lines) in the limit
of M' — oo and this limit does not appear to be approached more slowly in
M’ as ry is raised, although the curvature is more pronounced at high r. The
basis set size M for these calculations is given in Table II.
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V. CONCLUDING REMARKS

In this paper we have applied i-FCIQMC, to the simula-
tion cell HEG at a variety of system sizes, N = 14, 38, and
54 electrons, over a range of correlation strengths 0.5 < r
<5.0a.u.

We develop the use of a fixed-shift strategy to examine
convergence of the calculations to the large walker limit. The
i-FCIQMC method has associated with it two sources of er-
ror when trying to calculate FCI accuracy energies. These are
stochastic error, arising from the evolution of the discretized
wavefunction coefficients through imaginary time, and initia-
tor error, arising from using a finite number of walkers for the
simulation. We investigated these two sources of error and
showed that, with a small modification to the current algo-
rithm, they can be independently reduced, removed, or quanti-
fied systematically. In so doing we also gave an explanation of
the internal parameters within an i-FCIQMC simulation and
how these can be optimized for computational efficiency.

Making use of the easily-tunable basis set of the HEG, we
demonstrated that the basis set scaling for the very large basis
sets of a weakly correlated system (N = 14, ry = 1.0 a.u.) was
approximately O [M]. We could find no evidence in the very
high basis set limit for an exponential scaling, as previous
studies of molecular systems have identified,'>!> although
note that our conclusion would almost certainly change with
system size and strength of correlation.

Finally, we applied the newly-developed single point ex-
trapolation for the projected energy, which uses information
from a single large-basis-set calculation to extrapolate to the
complete basis set limit, and successfully yield complete basis
set energies for a range of N and r;. We note that in combi-
nation with the fixed-shift strategy, this leads to a 100 fold
saving in computational cost in producing complete basis set
energies for the 54-electron problem.'®

In so doing we hope that we have demonstrated both that
the HEG is a versatile and useful model system, providing
benchmarks for the future application of quantum chemical
techniques, and also more rigorously analyzed some of the
open methodological questions surrounding i-FCIQMC.
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