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Full configuration interaction perspective on the homogeneous electron gas
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Highly accurate results for the homogeneous electron gas (HEG) have only been achieved to date within a
diffusion Monte Carlo (DMC) framework. Here, we introduce a recently developed stochastic technique, full
configuration interaction quantum Monte Carlo (FCIQMC), which samples the exact wave function expanded
in plane-wave Slater determinants. Despite the introduction of a basis-set incompleteness error, we obtain a
finite-basis energy, which is significantly and variationally lower than any previously published work for the
54-electron HEG at rs = 0.5 a.u., in a Hilbert space of 10108 Slater determinants. At this value of rs , as well as of
1.0 a.u., we remove the remaining basis-set incompleteness error by extrapolation, yielding results comparable to
state-of-the-art DMC backflow energies. In doing so, we demonstrate that it is possible to yield highly accurate
results with the FCIQMC method in periodic systems.
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The homogeneous electron gas (HEG), described by a sim-
ple model Hamiltonian, encapsulates many of the difficulties
with modern electronic-structure theory. To date, the only
truly successful ab initio methods to yield accurate ground-
state energies at a range of densities have been quantum
Monte Carlo techniques, in particular, diffusion Monte Carlo
(DMC).1–6 The most famous of these were the results of
Ceperley and Alder from which the local density approxi-
mation (LDA) functionals of density functional theory were
parametrized.1,7 Diffusion Monte Carlo would be an exact
technique but for the fixed-node approximation, which requires
the nodes in the wave function due to fermionic exchange
to be specified in advance by some trial wave function. In
general, the fixed-node approximation lacks a method of being
systematically improved to find the exact result. Attempts
to go beyond the fixed-node approximation have been met
with some success, however, complete elimination of this
error has not been achieved.1,2,4,6 In particular, the release
node (RN) method is practical only in systems for which
the bosonic ground state is close in energy to the fermionic
one. In the HEG, this is only true at low density. At high
densities, the RN-DMC is unstable, and fixed-node DMC with
backflow corrections is the most viable option. This leaves
open the question of the magnitude of the remaining fixed-node
error.

Full configuration interaction (FCI) aims to find the
wave function expressed as a linear combination of Slater
determinants, formed from rearrangements of N electrons in
an underlying one-electron basis of M spin orbitals.8,9 This is
equivalent to an exact diagonalization of this space. Since such
a basis set of Slater determinants scales as ( M

N )2, benchmarks
from FCI are extremely difficult to produce. There has been
surprisingly little work undertaken with polynomially scaling
high-accuracy quantum chemical techniques, even though it
has recently been shown that finite systems ranging from as
few as 54 electrons can begin to capture the physics of the
three-dimensional (3D) HEG accurately.10,11 In part, this might
be due to the required size of the one-electron basis and that,
on approaching the thermodynamic limit for metals, many
approximate methods find divergent energies.12 In contrast,
truncated configuration interaction will tend toward zero
correlation energy.

We present a first application of a new method, FCI quantum
Monte Carlo (FCIQMC),13–16 which stochastically samples
the exact wave function providing the accuracy of exact
diagonalization at a greatly reduced computational cost, to the
high-density weakly correlated 54-electron HEG at rs = 0.5
and 1.0 a.u. This is the regime in which backflow corrections
to FN-DMC are the largest.4,6

Model. We seek to find the ground-state wave function
and total energy of the N -electron HEG simulation-cell
Hamiltonian

Ĥ =
∑

α

−1

2
∇2

α +
∑
α �=β

1

2
v̂αβ + 1

2
NvM, (1)

where the two-electron operator v̂αβ is the Ewald interaction

v̂αβ = 1

�

∑
q

vqe
iq·(rα−rβ ), vq =

{
4π
q2 , q �= 0

0, q = 0.
(2)

vM is the Madelung term, which represents contributions to the
one-particle energy from interactions between a point charge
and its own images and a neutralizing background,10,17,18 and
� is the real-space unit-cell volume.

We use an expansion of the wave function in a Slater
determinant basis

� =
∑

i

Ci|Di〉, (3)

where each determinant is a normalized, antisymmetrized
product of plane waves:

Di = A[ψi(x1)ψj (x2) . . . ψk(xN )], (4)

ψj (x) ≡ ψj (r,σ ) =
√

1

�
eikj ·rδσj ,σ . (5)

The i index, which uniquely labels each determinant, is its
normal-ordered string.19 The wave vectors k are chosen to
correspond to the reciprocal lattice vectors of a real-space
cubic cell of length L:

k = 2π

L
(n,m,l), (6)

where n, m, and l are integers. The Hartree-Fock determinant
is the determinant occupying N plane waves with the lowest
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FIG. 1. (Color online) Plots showing calculation of the i-
FCIQMC energy for N = 54, M = 682, rs = 0.5 a.u. The result is
reached in the limit of long time (iteration number) and large walker
number Nw . (a) A typical i-FCIQMC run. At τ � 3.8 a.u., the shift
S was allowed to vary to keep the walker number at an average of
20 million. From this point, an average was taken of the total energy.
(b) i-FCIQMC calculations with nadd = 3 are run at increasing Nw

values, with the aim that the limit Nw → ∞ is found by the simulation
at maximum walker number.

kinetic energy. The full basis set for our calculation is
constructed of all Slater determinants that can be made from
M/2 plane waves (M spin orbitals) forming a closed shell
of orbitals in k space with a kinetic energy lower than an
energy cutoff 1

2 k2
c . Plane waves are convenient because taking

a single cutoff parameter to infinity makes the one-electron
basis set complete. Moreover, plane waves are natural orbitals
for the electron gas, implying that a FCI expansion is rapidly
convergent in this basis.20

The determinant expansion given in Eq. (3) can be inserted
into the imaginary-time Schrödinger equation, yielding a set
of coupled equations for the determinant coefficients

−dCi

dτ
= (Hii − S)Ci +

∑
j�=i

HijCj. (7)

Setting dCi/dτ = 0 and solving for S by exact diagonalization
yields the total energy for the problem in a given basis.

In a recently developed quantum Monte Carlo, termed
full configuration interaction QMC,13 Eq. (7) is regarded
as a set of master equations governing the dynamics of
the evolution of the determinant coefficients in imaginary
time, with elements of H being nonunitary transition rates.
These dynamics are simulated by introducing a population
of Nw “walkers” distributed over the determinants, which
are signed to represent the sign of the coefficients within
the simulation Ci ∝ 〈Ni(τ )〉. The walker population is then

(a)

(b)
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 u

.
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.

FIG. 2. (Color online) Convergence of initiator error for N = 54
is shown for a variety of basis sets for (a) rs = 0.5 and (b) rs =
1.0 a.u. The infinite Nw limit is estimated from approximately 40
million walkers and 100 million walkers for each rs , respectively.
Each line is labeled with the spin orbital number M and was calculated
with nadd = 3. As the basis-set size grows, so the size of space
and the number of walkers required to sample the space accurately
grows.

allowed to evolve through discretized imaginary-time steps by
spawning, death/cloning, and annihilation events according to
Eq. (7) until a steady state is reached. The exact rules for this
can be found in Ref. 13.

The parameter S, termed the shift, is a population con-
trol parameter, which can be updated self-consistently at
equilibrium to oscillate around the total energy. However,
throughout this work, the projected energy is used as a
stochastic correlation energy estimator

EFCIQMC = 〈E(τ )〉 =
∑

j

〈Dj|H |D0〉 〈Nj(τ )〉
〈N0(τ )〉 , (8)

where D0 is taken as the Hartree-Fock determinant and the
sum j need only be taken over the O(N2M) doubly excited
determinants of D0.

Typically, the system is initially grown by setting S to
some positive value and allowing evolution from a single
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FIG. 3. (Color online) i-FCIQMC total energies for a basis of M spin orbitals for (a) rs = 0.5 a.u. and (b) rs = 1.0 a.u. Each basis set
corresponds to a kinetic energy cutoff, with M = 2838 corresponding to 208 Ryd at (a) rs = 0.5 a.u. and 52.1 Ryd at (b) rs = 1.0 a.u. Each
calculation used 40 million walkers for rs = 0.5 a.u. and 100 million walkers for rs = 1.0 a.u. The blue dashed line is an extrapolation to
M → ∞ based on the expected form 1/M using the data set with the largest number of walkers, shown with error bars in the inset. The DMC
results, taken from Rı́os et al. (Ref. 6), do not suffer from basis-set error and are shown as two horizontal lines representing the mean plus and
minus one standard deviation. Almost identical backflow results can be found for rs = 1.0 a.u. in a study by Kwon et al. (Ref. 4).

determinant to allow an unbiased evolution of the population.
Only populations above a critical system-dependent size are
able to converge to the FCI distribution, and this size scales
linearly with the size of the Hilbert space.13

In order to alleviate this problem, an adaptation of this
method has been developed, called initiator-FCIQMC (i-
FCIQMC).14–16 The determinant space is instantaneously
divided into those determinants exceeding a population of nadd

walkers, termed initiator determinants, and those that do not.
When considering a determinant, the current population of
which is zero, the sum in the second term of Eq. (7), the
term describing net flux of walkers onto that determinant, is
taken to be only over initiator determinants. This effectively
introduces a survival of the fittest criterion for survival of
newly spawned walkers. If a walker has been spawned from
a determinant with an instantaneous population exceeding a
parameter nadd, the child is allowed to survive. However, if
the parent walker is a determinant with a population smaller
or equal to nadd, then the child only survives if it has been
spawned to a currently occupied determinant. This i-FCIQMC
has been shown to dramatically accelerate the convergence
of FCIQMC with respect to walker number. Note that in
the large walker number limit, the i-FCIQMC tends to the
FCIQMC algorithm, which itself converges rigourously to
the FCI energy. Figure 1 illustrates an i-FCIQMC energy
calculation in this way. Previous work has shown that the
rapid convergence to this limit can be examined by finding
correlation energies at increasing walker numbers Fig. 1(b).16

As the basis set size grows, so the number of walkers required
to recover the total energy to a given level of accuracy increases
(Fig. 2).

Basis-set extrapolation. Although i-FCIQMC is able to
produce exact results in a finite-basis set, these are only

upper-bound estimates to the true ground-state energy. This
error in the energy, termed the basis-set incompleteness error,
is absent in DMC results, which do not have a substantial
dependence on a basis set.21

Extrapolation of the correlation energy to the complete
basis-set limit is performed regularly in molecular systems
for which scaling laws have been investigated extensively.22

In plane-wave systems, a 1/M extrapolation is used for the
basis-set incompleteness error in methods employing the
random phase approximation and second-order Møller-Plesset
theory.23,24 We note that analytic expressions can be derived
with these methods for the HEG that also show a 1/M

relationship. Figure 3 illustrates that by using this fit at
high basis-set sizes, complete basis-set exact diagonalization
energies can be obtained that compare well with most recent
high-accuracy DMC results.6

Results and Conclusions. Results of i-FCIQMC calcu-
lations performed on the 54-electron gas, for basis sets
containing between 162 and 2838 spin orbtials, are shown
in Fig. 3 and Table I. In these calculations, Hilbert spaces
ranging from 1039 to 10108 Slater determinants (Fig. 3) were
sampled to produce high-accuracy energies for the HEG.

TABLE I. i-FCIQMC total energies for M spin orbitals. The error
estimate for the finite-basis corresponds to stochastic error. The M =
∞ result is based on extrapolations shown in Fig. 3, from which the
error estimate derives.

rs FCI M = 2838 FCI M = ∞
(a.u.) (a.u. per electron) (a.u. per electron)

0.5 3.22086(2) 3.2202(2)
1.0 0.53073(4) 0.5300(3)
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For rs = 0.5 a.u., we obtain a variational finite-basis result
that lies below the backflow DMC result. These are observed to
be largely free of initiator error, although this error can not as
yet be quantified if it is thought to be of the order 10−4 a.u. per
electron [Fig. 2(a)]. Our extrapolated energy falls significantly
below the lowest DMC result found to date, suggesting residual
fixed-node error in the backflow DMC energies is of the
same order as the backflow corrections themselves. This is
a similar amount of energy lowering suggested by variance
extrapolation.4

For rs = 1.0 a.u., we obtain a finite-basis result that lies
just below the fixed-node DMC result, with the extrapolated
energy agreeing well with backflow DMC energies. This is
in spite of having initiator error, which is below 10−3 a.u per
electron [Fig. 2(b)], the largest source of error in these results.
Nonetheless, these are thought to be upper-bound estimates
of the exact energy due to the observed variationality of the
initiator error in large basis sets (Fig. 2).

We observe that there is an increase in difficulty in converg-
ing the rs = 1.0 a.u. result compared with the rs = 0.5 a.u. re-
sult [Figs. 2(a) and 2(b)], which leaves a larger error remaining
in the rs = 1.0 a.u. result. We believe this is consistent with in-
creased strength of correlation at lower-density electron gases.
We suspect the growing difficulty of the FCIQMC method as rs

is increased, which DMC does not seem to suffer, is due to the
use of a Jastrow factor, which aids in a compact wave-function
representation compared with a purely multideterminantal
expansion. We also note that our computational cost is
O(105) core hours and, in comparison, that of modern DMC
calculations isO(102).25 Nonetheless, the strength in FCIQMC
method is in its exactness and systematic improvability, and
the ability to validate the accuracy of DMC results.

The significance of these results extends beyond the sheer
size of the many-electron basis, which is being effectively
sampled without error. The fact that the results can be taken as
exact in principle within the designated basis set allows them
to be used to benchmark other, more approximate, methods
in this system. Our method can also easily be extended to
examine other properties of the HEG, in particular, momentum
distributions and Fermi-liquid parameters, which is the focus
of many current studies.2–6,11
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