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Density-Functional Theory of the Energy Gay
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The energy-band gap of an insulator is obtained from the eigenvalues of the one-particle
density-functional equation for the ground state and a finite correction due to the discon-
tinuity of the functional derivative of the exchange and correlation energy. This correc-
tion is expressed in terms of the improper self-energy and the density-functional ex-
change-correlation potential. It is evaluated for a two-plane-wave model including ex-
change only.
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In the density-functional theory, ' the ground-
state energy of a many-electron system is treat-
ed as a functional of its density distribution n(r).
It may be separated' into the electrostatic poten-
tial energy, the kinetic energy T, [n] of a non-
interacting electron system with the same n, and
the remainder, E„,[n], termed the exchange-
correlation energy. The variation principle yields
a single-particle Schrodinger equation with the
potential given by the sum of the electrostatic po-
tential e„due to the external and electronic
charges and the exchange-correlation potential
v„, given by t5E„,/5rz. The self-consistent solu-
tion of this so-called Kohn-Sham (KS).equation
gives the density distribution and the ground-
state energy. The local-density approximation'
(LDA), where E„,[ ]nis given in each small
neighborhood by the exchange and correlation en-
ergy of the homogeneous electron gas at the local
density, makes the self -consistent computation
no more difficult than the Hartree approximation
and has proved to be of satisfactory accuracy for
ground-state properties of atoms, ' molecules, '
metals, ' semiconductors, ' surfaces, ' and defects. '
However, when the eigenvalues of the KS equa-
tion are taken to be the single-particle excitation
energies, the reliability varies. While it is rea-
sonably satisfactory for metals, ' the errors in
semiconductor band gaps" can be as large as5'

Two approaches may be taken to rectify this
situation. One has been forewarned' that the
eigenvalues of the KS equation are not justified
to be the excitation energies (except for the chem-
ical potential in a metal) and that the proper
procedure is to obtain the one-particle excitation

from the self-energy operator constructed as a
functional of the density. An approximate con-
struction of the self-energy which takes into ac-
count the band gap has recently been given by
Wang and Pickett. ' The alternative approach is
to examine if a full knowledge of the exchange-
correlation potential v„, would lead to the cor-
rect energy gap.

Here we take the second approach and note that
the fundamental gap for an N-particle insulator
ground state (N - ~) is given by

where E~ is the ground-state energy of M par-
ticles. If & -denotes the energy gap obtained from
the exact KS equation for the N-particle ground
state, then consideration of the density function-
als of the energies on the right-hand side of Eq.
(I) leads to the correction for the gap,

(2)

where

(3)

with the change in density distribution bn, (or
6m ) resulting in an increase (or nonincrease) in
the total number of electrons. ~„, is the ap-
propriate potential for the N-particle ground
state KS equation.

One implication of Eq. (2) is clear. Improve-
ment of the exchange-correlation potential over
LDA, such as gradient corrections" or modifica-
tion of the exchange-correlation hole, ' might im-
prove e, but yields zero for 4, In the following,
we shall establish the existence of the discon-
tinuity of the functional derivatives of E„,for an
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insulator" and also provide a formula for ~ by
the many-body perturbation theory. In this paper,
we restrict our consideration to spin-compensat-
ed systems. There is a similar problem for the
band splitting of ferromagnetic systems. " Our
work can be straightforwardly extended to include
the spin density.

We.shall also be only concerned with extensive
systems with N —~ so that it is understood that
relative errors of O(N ~) with p )0 are neglected.
We establish first the discontinuity of 5T, /5n for
a noninteracting system with an insulating ground
state,

5T, /5n+ —5T, /5n (4)

by taking the limits of the variational equation'

5T /5ni~ +v = p,~, (5)

number of electrons. Similarly for 5v with

Jdr 5n-(r) &0, p must be fixed just above e„.
Since

y, [n] =P, O(W —e, )J dr y, *(-—,
' V')y, ,

the discontinuity in 5T, /5n comes from the 5( p,

—e~) term, with the two values of p,.
The first proof of Eq. (4) may similarly be

followed to deduce Eq. (2) by taking the limits of
the version of the variational equation for the
interacting system and by noting the property for
the extensive system

E~-E~-|= &~+O(& ') ~

This procedure shows that the true gap is equal
to the sum of the discontinuities in 5T, /5n and
in v„, but does not demonstrate that there is
necessarily a nonzero discontinuity in v„,. The
second proof of Eq. (4) can be extended to estab-
lish the discontinuity of v„,. This follows from
an expression for E„,[n J obtained by the many-
body perturbation theory in terms of the unper-
turbed Green's function G, which has the same
sort of discontinuity in its functional derivative
as T, in Eq. (7) for exactly the same reason of
having the chemical potential fixed at two differ-
ent values for 6n, .

The unperturbed Green's function 6, is given
in terms of the self-consistent potential v„+v„,& ~

where the second term:is given in Eq. (3). The
perturbation can be treated by standard field
theoretic techniques to obtain a coupling-constant
integral for E„,." One can further deduce d la
I uttinger and Ward"*"

for M particles with M tending to K from below
and tending to %+1 from above, and subtracting
one limit from the other. While each term 5T, /
Sx, is position dependent, the difference is a
position-independent functional of the density.

Alternatively, we note that the Hohenberg-Kohn
theorem' establishes the functional relationship
between the N-particle density n~(r) and one of
the three sets of functional variables: (i) the ex-
ternal potential v(r) (excluding the knowledge of
an additive constant vo) and the total number of
particles N, (ii) v(r) (excluding vo) and the chem-
ical potential p, , or (iii) v(r) including vo with p
fixed. If we choose (iii), then the density of the
noninteracting system is given, in terms of the
wave function g, and energy ~„by

n=Z. ~(~-&.) lt. l',
E„,[n] =i Trjln(l —ZGO) +EGA+ I'„,',

with p, fixed anywhere between the conduction-
band minimum e, and the valence-band maximum

If we wish an infinitesimal change of the den-
sity 5n, with Jdr 5n+(r) )0 to correspond to an
infinitesimal change of the external potential 6v,
we xnust fix p, just below c, so that the original
state contains 1V electrons while 5v increases the

where Tr stands for trace, Z for the self-energy,
and G for the full Green's function. P„,' is -i
times the sum of all exchange and higher-order
energy diagrams in terms of the full Green's
function and the Coulomb interaction only. Func-
tional derivative of Eq. (9) yields the equation for
the "exact" exchange-correlation potential v „„

r, dr2 Go(r, r„& ) 2'„,( rr„u) G(r2r; u),dc'
(10)2n. Go(r, r', ~)G(r', r; ~) =r'v„,(r'

where Z„ is the exchange-correlation part of the self-energy, which, in contrast to v„, is nonlocal
and energy dependent. Equation (10) also follows from the Dyson equation for G. From Eq. (10), v„,
in LDA is easily obtained. If only the exchange term is kept in Z„and if G is replaced by G, in Eq.
(10), we obtain the local potential in the Hartree-Fock approximation" "(see the numerical example
below).

Let n„(&) be the density obtained by summing M orbitals in the KS equation of the interacting &-
electron ground state. The energy gap from Eq. (1) is given in terms of energy functionals by

&, = &I ns. i(N + I) ] —2& [n~(&) ]+&[npr i(& —I) J
= &[n~.i(&) ] —2&[n~(&) 1+E[n~-i(&)],
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where the error incurred by the density replace-
ments is guaranteed by the variational principle
to be O(N '). The differences in total energies
may now be evaluated to yield

6= J dr/, *fv„, +~ —u„, &jy, , (12)

where g, is the eigenfunction of the KS equation
for the conduction-band minimum. Equation (12)
is equivalent to Eq. (2) if we note that the term
within the curly brackets is position independent.

To obtain the positive change in density 6n,
equal to

~ g, ~', we fix p just below e, . The cor-
responding change in G, is

5G,(r, r', e) = 2@i5(~ - e, )g, (r) g, *(r') . (13)

Equation (9) may then be used to evaluate Eq.
(12), resulting in

a = jdr J dr ' g, *(r)Z(r, r'; e, ) g, (r'), (l4)

where

Z={Z„,-u„,~ ~)(l+GOZ).

This relation may alternatively be derived by
considering the solution of the Dyson equation
for G in terms of Gp.

Estimates of 6 for model systems and for
semiconductors are underway. If one assumes
that I DA gives a good approximation for e„,& ),
then the gap correction would have to be of the
same order of magnitude as e, . Although we do
not have rigorous arguments which show the cor-
rection to be this large, there are three indica-
tions why it cannot be zero:

(1) The LDA for the self-energy' can be used to

0.5—

give, for slowly varying densities,

~ - ~, [(m*(n(r)) ),-' - I j.
This amounts only to a 5/p correction for Si and
is an underestimate for 4 because of the absence
of a, gap in the I.DA for the self-energy. "

(2) Equation (12) relates b, to the discontinuity
of the fundamental derivative of E„,. It is unlike-
ly that this discontinuity will vanish when the
functional derivative of T, [n] is discontinuous.

(3) We have calculated the gap correction for a
two-plane-wave model including exchange only.
The Brillouin zone is taken to be a cylinder of
equal length and diameter. Each state is a mix-
ture of two plane waves connected by the recipro-
cal-lattice vector in the direction parallel to the
axis of the cylinder. The self-energy Z is given
by the lowest-order Hartree and exchange dia-
grams. The lowest-order approximation of Eq.
(10), with G replaced by G„ is then solved to
give the sole Fourier component of the exchange
potential ~„(G). Note that the LDA has been
avoided. In Fig. 1, the gap correction 4 is plot-
ted against the density functional gap e,. c, is in
units of 8'and 6 is in units of Wr„where Wis
the valence-band width and ~, is the conventional
mean electron radius. The two-plane-wave ex-
change-only model illustrates how the density-
functional equation underestimates the Hartree-
Fock gap. The correction is of the order of the
gap itself. Correlation contributions to the gap
correction will alter the numerical values but
not change the qualitative picture.
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FIG. 1. The gap correction & vs the density functional

gap q for a two —plane-wave model in the Hartree-Fock
approximation.
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