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Self-consistent Dyson equation and self-energy functionals: An analysis and illustration
on the example of the Hubbard atom
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Perturbation theory using self-consistent Green’s functions is one of the most widely used approaches to study
many-body effects in condensed matter. On the basis of general considerations and by performing analytical
calculations for the specific example of the Hubbard atom, we discuss some key features of this approach. We
show that when the domain of the functionals that are used to realize the map between the noninteracting and
the interacting Green’s functions is properly defined, there exists a class of self-energy functionals for which the
self-consistent Dyson equation has only one solution, which is the physical one. We also show that manipulation of
the perturbative expansion of the interacting Green’s function may lead to a wrong self-energy as a functional of the
interacting Green’s function, at least for some regions of the parameter space. These findings confirm and explain
numerical results of Kozik et al. for the widely used skeleton series of Luttinger and Ward [Phys. Rev. Lett. 114,
156402 (2015)]. Our study shows that it is important to distinguish between the maps between sets of functions
and the functionals that realize those maps. We demonstrate that the self-consistent Green’s functions approach
itself is not problematic, whereas the functionals that are widely used may have a limited range of validity.
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I. INTRODUCTION

In quantum many-body theory observables can in principle
be calculated as expectation values or weighted sums over
expectation values of operators, using many-body wave func-
tions. However, a many-body wave function for more than a
few electrons is a huge object, much too large to be calculated
or even stored [1]. Therefore several ways have been developed
to avoid the explicit calculation of wave functions. One of the
strategies is the use of functionals: It relies on the insight
that observables can in principle be expressed as functionals
of some quantities Q that are more compact than the full
N -body wave function �(r1, . . . rN ). The problem is then
split in three parts: first, to find the quantity Q that encodes
sufficient information to calculate the wanted observable O,
then to work out the functional relation between Q and O,
O = F [Q], and, finally, to determine the value Q̃ that a
system takes, such that Õ = F [Q̃] can be calculated. The
most striking example is density functional theory (DFT),
where the charge density n(r) plays the role of Q. Although
n(r) has much less degrees of freedom than �(r1, . . . rN ),
the Hohenberg-Kohn theorem guarantees that the knowledge
of n(r) is sufficient to completely identify the local external
potential of the specific system from which it arises. Moreover,
the Kohn-Sham approach provides a handy tool to get a
highly accurate estimate of n(r) for any system. However, the
explicit expression of almost all observables in terms of n(r)
is unknown. An alternative to n(r) is the equilibrium one-body
Green’s function G(r,σ,t,r′,σ ′,t ′). Contrary to the density, it is
nonlocal in space, spin, and time (or frequency dependent, for
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its Fourier transform), but it is still much more compact than
the many-body wave function. Moreover, it has the advantage
that all expectation values of one-body operators, as well as the
total energy, have a simple, known expression in terms of it.

To determine the value that the one-body Green’s function
takes for the system of interest, a common approach is to solve
the Dyson equation [2] For emphasizing the algebraic structure
of the equations, spin indices, space and time coordinates,
as well as integrals and summations, and exact numerical
coefficients will be omitted henceforth in this section. This
will also apply to Eqs. (1)–(6) and (31)–(33) of later sections.
G = G0 + G0�G, where � is a nonlocal and frequency-
dependent function, called self-energy. Perturbation theory
offers a way to calculate the (formal) perturbative expansion of
� in the Coulomb interaction v, yielding a series of functionals
of v and the noninteracting Green’s function G0, � =
vG0 + vG0vG0G0 + · · · . Alternatively, one can consider the
self-consistent Dyson equation (SCDE) G = G0 + G0S[G]G,
with S the so-called ‘self-energy functional,’ giving rise to
the self-consistent approach [3]. Its formal justification can be
given in terms of Legendre transformations [4], while the refer-
ence computable scheme is the one proposed by Luttinger and
Ward [5], in which the self-energy functional is explicitly built
as an infinite sum of Feynman diagrams (sometimes referred
to as the ‘skeleton series’) obtained by formal manipulation of
the perturbative expansion of the Green’s function.

Due to the unknown properties of the perturbation expan-
sion, the Luttinger-Ward approach has not found solid math-
ematical foundations yet. In fact, recent numerical tests per-
formed by Kozik and collaborators on various Hubbard models
[6] showed clear signs of its failure in regimes of strong inter-
actions. Their results were soon connected to earlier numerical
evidence of possible pathologies in the diagrammatic approach
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by Schäfer and collaborators [7–9]. First investigations on an
entirely analytical level were carried out by Stan and collabora-
tors [10], and Rossi and Werner [11], who independently man-
aged to qualitatively reproduce the results of Kozik et al. using
two analytically treatable toy models. Those models, however,
only bear the algebraic structure of the original quantum
mechanical problem and cannot be directly related to a Hamil-
tonian. It would be then desirable to have a less system-specific
view on the general problems of the self-consistent approach
on one side, and a complete, analytical treatment of at least
one of the particular Hamiltonians used in the work of Kozik
et al. on the other side. This is the double goal of our work.

In order to achieve this goal, we first recall and discuss the
conditions under which the self-consistent approach can be set
in general. This is done in Sec. II, where we briefly review the
current understanding of the foundations of the self-consistent
approach and its connection to its practical realization pro-
posed by Luttinger and Ward. We then concentrate in Sec. III
on the Hubbard atom, which is one of the systems studied by
Kozik et al. [6]. In order to arrive at an analytical treatment,
which makes a detailed and unambiguous analysis possible,
we introduce functionals that realize the maps between the
noninteracting and the interacting Green’s functions on the
physical domain of this specific model. It is very important
indeed to make a clear distinction between the maps and the
functionals that are used to realize the maps. In particular, the
numerical results of Ref. [6] are understood as being due to
a limitation of the skeleton series and the connected problem
of the definition of the physical domain, whereas it remains
still possible to build a valid self-energy functional and use the
self-consistent approach.

More in detail, after the discussion in Sec. II, the presenta-
tion of the results and analysis for the Hubbard atom in Sec. III
is organized as follows: After an introduction Sec. III A we
present the Hubbard atom Sec. III B, prove the one-to-one
correspondence between the G0’s and G’s arising in this
model Sec. III C, present explicit formulas for the functionals
realizing those maps Sec. III D, and use those to solve the
SCDE Sec. III E and the inverse problem of finding G0 given
G Sec. III F; then we define the ‘one-frequency–skeleton’
series Sec. III G, which, in analogy to the standard skeleton
series, when evaluated at the exact G, converges to the
correct self-energy only in a subregion of the entire parameter
space; finally, we introduce the ‘one-frequency–SIN’ series
Sec. III H, which converges to the correct self-energy wherever
the one-frequency–skeleton does not, therefore offering the
possibility to maintain the self-consistent approach for any
interaction strength. Conclusions will be drawn at the end.

II. THE SELF-CONSISTENT APPROACH

A. Green’s functions and self-energies

While DFT offers a computationally cheap way to get
a good estimate of the charge density and several other
observables, the lack of a known systematic way to connect
the density to any given observable represents a serious limit
of the method for those who are interested in other quantities.
On the other hand, the Green’s function formalism profits
from perturbation theory, which gives a systematic, although

expensive, way to write any N -body Green’s function, and
hence any observable, in terms of the noninteracting one-body
Green’s function G0 and the interaction, at least at a formal
level. For instance, the one-body Green’s function (from now
on, simply ‘Green’s function’) is written, in a simplified
notation (see Ref. [2]), as

G = G0 + G0vG0G0 + G0vG0G0vG0G0 + · · · . (1)

One difficulty of this expression is the need to properly
define G0, which is far from obvious in the presence of
degeneracies; the latter point is tightly linked to the problems
of perturbation theory based on the Gell-Mann-Low theorem at
zero temperature for systems with a degenerate noninteracting
ground state (see Ref. [12] and references therein). Even when
this can be sorted out, the above expression must be regarded
as a formal expression, and several problems may occur in
practice. In particular, the series may have a finite radius of
convergence and hence not be suitable for strongly interacting
regimes; worse yet, it may have zero radius of convergence and
be asymptotic at best (see Ref. [13] and references therein).
Furthermore, the fact that we can write (1) does not guarantee
that also nonperturbative effects can be written in terms of G0

only, for more information may be required.
It has been recognized early that at least some of the terms

must be summed to infinite order to avoid divergent behavior.
In particular, in the homogeneous electron gas one has to sum
all so-called bubble diagrams, which express the polarizability
of the system [14]. Along this line, one widely used way to
incorporate at least some of the diagrams to all orders is to
recast (1) in the form of a Dyson equation [15]

G = G0 + G0�G (2)

in which �, the ‘self-energy,’ is calculated via its perturbation
expansion

� = vG0 + vG0G0vG0 + · · · . (3)

A further step on this route is the self-consistent approach,
based on the ‘self-consistent’ Dyson equation (SCDE) in
which the self-energy is substituted with a functional of the
Green’s function:

G = G0 + G0S[G]G. (4)

This approach has been put forth by Luttinger and Ward [5],
who proposed a formal expression for S by manipulation
of the perturbative series (what we call the Luttinger-Ward
approach). The resulting functional is itself in the form of a
series, sometimes called ‘skeleton series,’ which we denote by

SLW[G] ≡ vG + vGGvG + · · · . (5)

The skeleton series has the property of naturally leading to
approximations to S that fulfill conservation laws for particle
number, momentum, and energy [16,17], which (3) would not
guarantee. Moreover, since it involves the fully interacting G,
rather than G0, one may hope that (5) has a faster convergence
than (3), leading in turn to better approximations to G than
(3) when truncated at the same order. However, apart from
a few further developments [4], very little is known about
the consistency of the Luttinger-Ward approach. In fact, the
recent results of Kozik and collaborators [6] provide numerical
evidence for its failure for certain regimes.
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B. On the self-consistent Dyson equation

Being derived within perturbation theory, the Luttinger-
Ward approach formally applies to all quantum field theories.
However, neither the original perturbative derivation, nor
further nonperturbative developments fully guarantee that the
self-consistent approach always leads to the Green’s function
of the original Hamiltonian problem. For this to happen, four
conditions have to be fulfilled:

(1) given a certain interaction, all information about the
specific system of interest is encoded in G0, the sole input of
(4);

(2) given G and G0, there exists a � such that G = G0 +
G0�G holds;

(3) there exists a functional S such that S[G] = �.
Those three conditions guarantee that X = G is a solution

of the equation

X = G0 + G0S[X]X. (6)

However, the equation might have other, spurious solutions,
which could be either an excited state solution, a Green’s
function of another system, or a function that does not
correspond to any ‘physical’ Green’s function. This would
not threaten the theoretical foundations of the approach, it
would, however, represent a serious obstacle for its practical
use. Therefore we formulate a forth condition:

(4) the functional S should be such that (6) has only one
solution, namely X = G.

In the following, we shall make these four conditions more
precise and put them in the context of current knowledge.

First, we need to give a definition of physical Green’s
function. Given an interacting Hamiltonian, the N -body
Green’s functions are unambiguously defined as 2N -point
correlators. For example, for the zero temperature, equilibrium
one-body Green’s function, we have

G(1,2) ≡ −i〈�|T [ψ̂†(1)ψ̂(2)]|�〉, (7)

where |�〉 represents the ground state of the Hamiltonian
at fixed particle number, T the time-ordering operator, ψ̂

the field operator in the Heisenberg representation, and 1,2
compact arguments representing space, spin, and time degrees
of freedom, 1 ≡ (r1,σ1,t1). The definition (7) does not depend
on the chosen Hamiltonian. A specific G is obtained when
the Hamiltonian, in its parametric form, is decided, specific
values for those parameters are chosen, and all information
required to fully identify the state (in particular the number
of particles) is given. When dealing with the electronic many-
body Hamiltonian, we say that all ‘systems’ are characterized
by the same interaction (the Coulomb interaction) and they
are distinguished by the external potential. We generalize this
notion in the following way. Given any (parametric) Hamilto-
nian, different systems are obtained by varying the value of the
parameters appearing in the noninteracting part, while keeping
the value of the interaction fixed. This allows us to introduce
the notion of ‘physical Green’s function’ as follows. Given a
certain Hamiltonian with fixed value of the interaction, the set
{G} of physical Green’s functions is represented by all and
only the functions obtained by evaluating formula (7) on all
possible systems. Since the set may change with the value of the
interaction, a more precise notation would be {G}v . Working

always at fixed v, however, we shall omit the subscript v, for
sake of notational economy. In the out-of-equilibrium case an
analogous definition holds, while, in case of finite temperature,
one should take into account that different systems are also
characterized by different values of temperature. Obviously,
there is no guarantee that any arbitrary function of two
(multi-dimensional) arguments f (1,2) belongs to {G}, i.e.,
that it corresponds to the Green’s function of some system.
Moreover, the set {G} may change according to the interaction
and the type of Green’s function (zero/finite temperature,
in/out of equilibrium) considered. Finally, we note that here
we consider the case of the electronic many-body problem, in
which the interaction is fixed once for all to Coulomb, but our
discussion would not change if a different choice were made.

In the following we shall refer to elements of {G} as
‘physical Green’s functions’ or, simply, ‘Green’s functions,’
all other functions of two arguments being ‘unphysical Green’s
functions’. In an equivalent fashion, the set of ‘physical
noninteracting Green’s functions’ {G0} can be established.
It should be emphasized that this is an important difference
with other works, like Ref. [6], in which this distinction is
not made, and the term ‘Green’s function’ seems to include
any function of two arguments, covering both ‘physical’ and
‘unphysical’ ones.

This definition allows us to reformulate the first point
of our list of conditions in the following way: Given a
certain Hamiltonian (with fixed value of the interaction, but
all possible values of its parameters), the corresponding set
{G0} must identify all elements of the set {G} completely and
without ambiguities. In other words, the map {G0} → {G}
must be surjective.

The second point concerns the existence of the self-energy
�. Formally, one can write � = G−1

0 − G−1, where the
inverse functions G−1 and G−1

0 , from now on collectively
shorthanded with G−1

(0) , are defined by

∫
d3G(0)(1,3)G(0)(3,2)−1

=
∫

d3G(0)(1,3)−1G(0)(3,2) = δ(1,2). (8)

For a self-energy to exist it is therefore enough that G−1
(0) exists.

The third issue is the existence of a functional S with
S[G] = �. For this we need that {G0} → {G} is also injective,
which makes {G0} ↔ {G} a one-to-one map. This indeed
would allow us to build a functional L such that L[G] = G0

and S as S[f ] ≡ L[f ]−1 − f −1, where the inverse [in the
sense of (8)] L[f ]−1 is guaranteed to exist for at least f = G

by the existence of the inverse of G0.
Concerning the nonrelativistic electronic problem in par-

ticular, because of the simple relation connecting the charge
density to the Green’s function n(1) = −iG(1; 1+), one can
use theorems developed in the framework of density functional
theory [18–21] to establish the relation between {G0} and {G},
which, in DFT wording, are the set of all v-representable (non-
interacting and interacting, respectively) Green’s functions.
As one can see in Fig. 1, a simple argument points indeed
to a one-to-one map between the two sets, at least in the
zero-temperature equilibrium case. For the finite temperature,
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FIG. 1. As mentioned in Ref. [10], for zero temperature, equi-
librium Green’s functions G, defined by (7), the Hohenberg-Kohn
theorem, which connects the external potential vext to the corre-
sponding (nondegenerate) ground-state wave function � (link 1)
and to the density n (link 2), guarantees that there is a one-to-one
correspondence between vext and G in the following way: If we know
vext, we can build � (link 1) and hence G (link 3); on the other hand, if
we know G we then know n via −iG(1,1+) = n(1) (link 4) and hence
vext (links 2,1). Since such a correspondence {vext} ↔ {G} holds also
in the noninteracting case {vext} ↔ {G0}, it follows that {G0} ↔ {G}.

a proof of one-to-one-ness, for a more general Hamiltonian,
was given by Potthoff (see Appendix A of Ref. [22]).

Finally, given a functional S such that S[G] = G−1
0 − G−1,

we have to distinguish two situations. If the domain of S is {G},
then the above conditions ensure that the SCDE has one and
only one solution. If the domain of S extends beyond {G} then
a problem of multiple, spurious solutions might occur. The
skeleton series, for instance, takes as entry any function of
two arguments, unless specified differently. Since in the case
of the electronic many-body problem {G} does not cover the
entire space of functions with two arguments [for instance,
−iG(1,1+) corresponds to the charge density, which cannot
be negative] the SCDE with the skeleton series could have
spurious solutions, even when the series, evaluated at a certain
G, gives the correct �. To better understand this situation, let
us discuss a few subtleties. First, consider the map {G0} →
{G}, for which there exists a functional, say F , that takes
elements of {G0} to the corresponding element of {G}, or, in
formulas, F [G0] = G. If {G0} is only a proper subset of all
possible functions of two arguments, then F is not the only
functional that realizes that map, for another functional F ′ such
that F ′[G0] = G and yet F [f ] �= F ′[f ] if f /∈ {G0} can exist
(Fig. 2). Since the map is supposed to be one-to-one there must
also be a functional or, better, a family of functionals realizing
the inverse map, namely L[G] = G0. Given two functionals
such that F [G0] = G and L[G] = G0, we cannot conclude
that L = F−1, since it might be that L[f ] �= F−1[f ] if f /∈
{G} (see Fig. 3). Different functionals L implementing the map
{G} → {G0} would obviously lead to different S functionals,

FIG. 2. Pictorial representation of two functionals F and F ′ that
correctly realize the map {G0} → {G}, but have different behavior
outside the set {G0}. In particular, in the present example F is injective
(F [f ] �= F [g] for all f,g in its domain) while F ′ is noninjective (there
is at least one G0 and one f /∈ {G0} for which F ′[G0] = F ′[f ]).

FIG. 3. While F realizes the map {G0} → {G}, L and L′ realize
the opposite map {G0} ← {G}. L is injective on its entire domain,
while L′ is not. Both L and L′ are equal to F −1 on the domain limited
to {G}, but they are different from F −1 when the entire domain is
allowed.

as shown in Fig. 4. For S[f ] = L[f ]−1 − f −1 the equation
X = G0 + G0S[X]X is equivalent to L[X] = G0. Therefore,
it has only one solution in the set {G} but can have other
solutions outside that set, the number and nature depending on
the features of the chosen L. Those spurious solutions can be
avoided in two ways: Either we build S on an L that is injective
on its entire domain (i.e., there are no two f and g for which
L[f ] = L[g]) or we restrict the search for solutions to the set
{G}. Unfortunately, neither option is easy to realize, the first
one for a lack of methods to build L with the desired properties
and the second for a lack of a complete characterization of the
set {G}.

For instance, it was suggested [23] that the spurious
solutions found by Kozik et al. could have been identified as
unphysical by looking at their analytic structure in frequency
space, which for physical Green’s function is expected to
be a sum of poles [24]. Although this might be true in this
specific case, more generally, for what is known, the pole
structure is only a necessary feature of physical Green’s
functions, therefore we cannot exclude situations in which
spurious solutions arising in other contexts come in the form
of a sum of poles. In the case of nonrelativistic electrons,
for instance, the problem of a complete characterization of
the set {G} covers the more specific problem of finding all
necessary constraints to the charge density (in DFT context
called v representability), which to date remains unsolved
(see Ref. [25] and references therein).

FIG. 4. Left outer set: physical Green’s functions; right outer set:
physical self-energies. S and S ′ are two distinct functionals for which
S[G] = S ′[G] = �. SLW represents the skeleton series introduced by
Luttinger and Ward. It satisfies SLW[G] = � but not for all physical
G’s. The equality holds only for the left inner set mapped to the right
inner set.
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C. On the inverse problem

If {G0} ↔ {G} holds and we are given a functional F such
that F [G0] = G, one may want to use it for solving the inverse
(or ‘embedding’) problem: F [X] = G, in which G is given and
G0 is to be found. In general, F can be noninjective over its
entire domain, and one can run into spurious solutions (see
F ′ in Fig. 2). Unless the domain of F is properly restricted,
this may happen, for instance, if one attempts to solve the
Dyson equation with a self-energy evaluated in perturbation
theory [Eqs. (2) and (3)]. On the other hand, if the functional
F relies on solving a SCDE, then the corresponding inverse
problem has always only one solution, the physical X = G0,
irrespective of the properties of the S appearing in the SCDE
and of possible restrictions on the search for solutions. This
is because the SCDE as an equation in G0, rather than G,
namely G = X + XS[G]G, is a linear equation whose unique
solution is X = (S[G] + G−1)−1 which readily simplifies to
X = (L[G]−1 − G−1 + G−1)−1 = L[G] = G0.

III. SELF-CONSISTENT APPROACH TO
THE HUBBARD ATOM

A. Introduction

The previous section has set the general frame. In particular,
it emerges that in order to avoid spurious, unphysical solutions
to the SCDE, one must either use a self-energy functional
S[f ] ≡ L[f ]−1 − f −1 with L injective over its entire domain,
or restrict the search of solutions to the set {G} where L is
injective; physical Green’s functions must lie within this set.

In order to illustrate these quite abstract considerations, and
in order to use them to explain current problems in the literature
and search for potential solutions, we are going to analyze the
self-consistent approach on a simple, solvable model: the finite
temperature, half-filled Hubbard Atom which is defined in the
next subsection.

The Hubbard atom has been one of the systems studied
in the recent work by Kozik and collaborators [6]. In their
Letter the outcome of several numerical tests performed on
Hubbard models was reported. One set of tests is devoted
to probe the number and nature of solutions of the inverse
problem, defined in Sec. II C. They found one physical and one
unphysical solution. The remaining tests concern the skeleton
series, which, when evaluated at the exact G, converges to
the correct self-energy only for weakly interacting systems.
On the basis of these numerical results, two main conclusions
were proposed: (i) the map G0 → G is not invertible; (ii) the
skeleton series has two branches, and one may talk about the
“nonexistence of the Luttinger Ward functional.”

In the following (Sec. III C) we shall prove that, at least
in the Hubbard atom, the map {G0} ↔ {G} holds. This will
establish the self-consistent approach as an exact and closed
rewriting of the original problem to determine the Green’s
function given the Hamiltonian. Furthermore, we shall present
an actual realization of the approach. We will first present two
explicit functionals FW and LW that, limited to this model, re-
alize the map {G0} → {G} and {G0} ← {G}, respectively. The
functional LW will then be used to build a functional SW that
allows us to write down the SCDE in an explicit form. We shall
then prove that such a SCDE has one and only one solution in

the set of physical Green’s functions. On the other hand, the
functional FW will be used to show that the inverse problem
F [X] = G has spurious solutions if F is noninjective and the
search of solutions is not restricted to the set of physical nonin-
teracting Green’s functions. Moreover, the formal perturbative
expansion of FW will allow us to build the ‘one-frequency–
skeleton’ series, in analogy to the standard skeleton series. The
one-frequency–skeleton series evaluated at G will be shown to
converge to the correct self-energy only in a subregion of the
parameter space. Finally, we shall construct a second series
(‘one-frequency–SIN’) that complements the one-frequency–
skeleton, in the sense that, when evaluated at G, it converges
to the correct self-energy wherever in the parameter space the
one-frequency–skeleton does not, and vice versa.

B. The Hubbard atom

The Hamiltonian of the Hubbard atom is

Ĥ = U

2

∑
σ,σ ′=↑,↓

ĉ†σ ĉ
†
σ ′ ĉσ ′ ĉσ , (9)

where ĉ(†)
σ is a fermionic annihilation (creation) operator and

U > 0 is the interaction parameter. In order to establish a
close connection to [6], we calculate the finite temperature
one-body Green’s function in the grand canonical ensemble,
which is defined as [15]

Gσσ ′(r,τ ; r′,τ ′) = Tr{e−β(Ĥ−μN̂ )T [ψ̂†
σ (r,τ )ψ̂σ ′(r′,τ ′)]}

Tr{e−β(Ĥ−μN̂)} ,

(10)

where N̂ is the number operator, μ is the chemical potential, T
orders operators according to their value of τ , ψ̂α(x,τ ) is the
field operator and β = 1/(kBT ) with T the temperature, and kB

is the Boltzmann constant. The frequency Fourier transform to
imaginary frequencies yields the Matsubara Green’s function
[15]. For the Hubbard atom (9) we have

Gσσ ′(z) = δσσ ′

e2βμ + 2eβ(μ+U ) + eβU

×
(

eβ(μ+U ) + eβU

μ + z
+ e2βμ + eβ(μ+U )

μ − U + z

)
. (11)

Choosing the chemical potential to be μ = U/2 yields
Gσσ ′(z) = G(z)δσσ ′ with

G(z) ≡ 1

2

(
1

z + U/2
+ 1

z − U/2

)
(12)

= 1

z

1

1 − U 2/(4z2)
(13)

and

z ≡ iωn and ωn ≡ kBπT (2n + 1), n ∈ Z. (14)

Following Kozik et al., we define the corresponding noninter-
acting Green’s function by setting U to 0, which yields

G0(z) ≡ 1

z
. (15)
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The self-energy is then defined as

�(z) ≡ G0(z)−1 − G(z)−1 = U 2

4z
. (16)

Strictly speaking, the noninteracting Green’s function should
be calculated at the same chemical potential as the interacting
one [namely by setting U → 0 in (11) and then choosing the
chemical potential μ = U/2] and should therefore read

G0(z) = 1

z + U/2
. (17)

With this choice, the self-energy would contain an additional
term −U/2 with respect to (16), stemming from the difference
of the inverse of the two noninteracting Green’s functions.
This is simply a constant shift, which has no influence on
our discussion. Here we adopt the definition of Kozik et al.,
namely (15), in order to facilitate the comparison with that
work.

C. The map {G0} ↔ {G}
In a Hubbard model with N > 1 sites at finite temperature,

what identifies a specific system, and hence the corresponding
Green’s function, is the value of the temperature T , the
chemical potential μ and the value of the hopping expressed
in units of the interaction strength U as t/U . Sometimes the
hopping parameter t is fixed to 1 and U let to vary. However,
in case of one site, no hopping is possible, so U is simply a
constant that sets the energy scale. Moreover, in our case the
chemical potential is also fixed, leaving the temperature T as
the only parameter that really characterizes a system.

We then say that the set of physical Green’s functions {G(z)}
is defined as the set of all and only the functions in n ∈ Z
obtained from (12) and (14) by varying T ∈ (0,∞). In other
words, any function of n that cannot be written as (12) for a
certain value of T will be considered an ‘unphysical’ Green’s
function. The set of physical noninteracting Green’s functions
{G0(z)} can then be defined in an analogous way.

The parametrization of the two spaces in terms of the
temperature T is quite convenient in view of the analysis
of the map between them. In fact, if we define the space
of physical temperatures {T ; T > 0}, the one-to-one-ness of
the map {G0(z)} ↔ {G(z)} can be proved as a consequence of
the one-to-one-ness of the maps {T } ↔ {G0(z)} and {T } ↔
{G(z)}, as follows.

Let us first look at {T } ↔ {G0(z)}. Since we have that
physical G0’s are defined starting from physical temperatures
(i.e., for any physical temperature there is one physical G0(z):
{T } → {G0(z)}), we need to prove that every physical T

corresponds to only one G0(z). If T ′ and T gave rise to the
same G0(z) we could write

1

i(2n + 1)πkBT
= 1

i(2n + 1)πkBT ′ . (18)

But this simply reduces to T = T ′, so there are no two physical
temperatures leading to the same physical noninteracting
Green’s function.

Concerning the map {T } ↔ {G(z)}, we have that {T } →
{G(z)} is again realized by definition, while for the inverse

map we must solve the equivalent of (18) which reads:

1

2

(
1

i(2n + 1)πkBT ′ + U
2

+ 1

i(2n + 1)πkBT ′ − U
2

)

= 1

2

(
1

i(2n + 1)πkBT + U
2

+ 1

i(2n + 1)πkBT − U
2

)

(19)

which per se has two solutions:

T ′ = T and T ′ = U 2

4π2k2
B(2n + 1)2T

. (20)

However, the second one is not a valid physical temperature,
since it is a function in n rather than a positive number. This
means that a physical interacting Green’s function corresponds
to only one physical temperature. Since {T } ↔ {G0(z)} and
{T } ↔ {G(z)} holds, one can then conclude that {G0(z)} ↔
{G(z)}.

D. Explicit functionals

Both sets {G0(z)} and {G(z)} are only a subset of the set of all
rational functions or the even bigger set of analytic functions.
It follows that there can be different functionals realizing the
maps {G0(z)} ↔ {G(z)}, characterized by inequivalent results
outside those sets. A specific functional realizing the map
{G0(z)} → {G(z)} is

FW (n,[f ]) ≡ f (n)

1 − f (n)2 U 2

4

. (21)

FW is in fact a simple function which has the same structure
of the ones studied by Rossi et al. and Schäfer et al. [8,11]
and first introduced by Stan and collaborators [10] in the
context of the so called one point model (OPM) [26,27].
The functional takes as input any function f (n), not just
noninteracting Green’s functions. It cannot accommodate,
however, all possible variations, for example, with respect to
a spin-dependent external potential; so it cannot give rise to
the Hubbard atom Green’s function of, for instance [28], and
cannot be used to explore the vertex of the Bethe-Salpeter
equation, like in Ref. [8]. However, it is is perfectly sufficient
for the purpose of our work here. A functional realizing the
inverse map {G0(z)} ← {G(z)} is

LW (n,[f ]) ≡
⎛
⎝i(2n + 1)

U

2

√√√√−
1
3 + f (−1)

f (1)

3 + f (−1)
f (1)

⎞
⎠

−1

. (22)

Note that LW carries an explicit dependence on n, while FW

does not. For economy of notation, in the following we shall
denote all functionals by O[f ], rather than O(n,[f ]), omitting
to indicate a possible dependency on n.

The functionals FW and LW are different from the corre-
sponding ones built in perturbation theory. They have restricted
capabilities, for they give the correct result only when applied
to Green’s functions of the Hubbard atom, viz. (12) and
(15). A difference that will play a central role in our later
discussion (Secs. III F to III H) is that FW is completely local
in (Matsubara) frequency space (the value of FW [G] at a
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FIG. 5. A self-energy functional S realizes the map {G} → {�}
for all physical G’s (black sets). Just like the skeleton series SLW

satisfies SLW[G] = � only for certain G’s (blue subsets), so does SW

for which SW [G] = � (green subsets). Contrary to SLW, the subset for
which SW [G] = � (orange subsets) includes all G’s of the Hubbard
atom.

specific n = n0 depends only on G(n′) at that n′ = n0), while
perturbation theory prescribes convolutions on frequencies.
On the other hand, LW is characterized by a universal (i.e.,
f -independent) function, namely (2n + 1), which encodes the
structure common to all G0(z)’s, and a prefactor that depends
on f in a nonlocal way, which, evaluated at f = G, extracts
the information about the specific system.

E. Self-consistent Dyson equation

Using LW we can define the functional

SW [f ] ≡ LW [f ]−1 − f (n)−1

= i(2n + 1)
U

2

√√√√−
1
3 + f (−1)

f (1)

3 + f (−1)
f (1)

− 1

f (n)
. (23)

From that we can build the SCDE

X = G0(z) + G0(z)SW [X]X (24)

with X an unknown function of n (see Fig. 5). As pointed out
in Sec. II B, (23) with (24) are equivalent to G0(z) = LW [X].

LW is not injective: For instance, LW [X] = LW [X + f ]
with f any function for which f (−1) = 0. It follows that,
given G0(z), this equation has multiple solutions. However,
Eq. (24) has only one solution if we restrict our search to the
set {G(z)}. To see this explicitly, we use the expression for
G0(z):

1

i(2n + 1)kBπT
= LW [X]. (25)

We enforce the correct domain on X by considering only
functions belonging to {G(z)}. We therefore look at

1

i(2n + 1)kBπT
= LW [fx(n)] (26)

with

fx(n) ≡ 1

2

(
1

i(2n + 1)πkBx + U
2

+ 1

i(2n + 1)πkBx − U
2

)
,

(27)

- 14

- 12

- 10

- 8

- 6

- 4

- 2

FIG. 6. Left panel: third panel of Fig. 3 from Ref. [6], repre-
senting the physical (red) and the unphysical (black) self-energies
corresponding to the physical and the unphysical solutions to the
inverse problem FQMC[X] = G, with FQMC the functional defined by
the Quantum Monte Carlo code used in Ref. [6] to calculate G from
a given G0. Second and third panel: physical (red) and unphysical
(orange) self-energies corresponding to the physical and unphysical
solutions to FW [X] = G, for two different values of U .

where x is an unknown temperature. The evaluation of LW

defined in (22) on fx(n) leads to

LW [fx(n)] = 1

i(2n + 1)kBπx
. (28)

We can then write (26) as

1

i(2n + 1)kBπT
= 1

i(2n + 1)kBπx
(29)

from which we can determine x without ambiguities to be

x = T . (30)

Plugging this value back in fx(n) gives the final, correct
answer:

X = 1

2

(
1

i(2n + 1)πkBT + U
2

+ 1

i(2n + 1)πkBT − U
2

)
.

F. Inverse problem

We now look at the problem FW [X] = G(z), in which G(z)
is known and G0(z) is to be found. The inverse problem
has two solutions: the correct X = 1/z and a spurious one
X = − 4z

U 2 , which we will denote by Gu(z). Since there is no T

such that G0(z) can be written as Gu(z), Gu(z) /∈ {G0(z)}, Gu(z)
is an unphysical solution, as expected. The correct solution
is therefore identified without ambiguity by restricting the
domain to {G0(z)}. If, like in Ref. [6], the domain is not
properly restricted, the spurious solution survives, leading
to a problem of ‘multiple solutions’ [10,23]. As anticipated,
number and nature of the spurious, unphysical solutions
depend on the specific functional one uses. Since our local
functional is different from the functional of Kozik and
collaborators, we expect that our Gu(z) does not correspond to
the unphysical solution found by these authors. Since Ref. [6]
provides no direct information on their spurious solution, but
only a plot with the imaginary part of the corresponding
self-energy, in Fig. 6 we also plot the imaginary part of
the self-energy arising from our spurious solutions, namely
�u(z) ≡ Gu(z)−1 − G(z)−1. The comparison between the two
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self-energies shows that indeed the two spurious solutions are
different.

G. Local-skeleton series

We will now turn to the convergence of the skeleton series,
motivated by the numerical evidence provided by Kozik et al.
for the fact that the skeleton series may converge to a wrong
functional. An analytic proof and analysis for the full LW
skeleton series is currently out of reach. However, we can
obtain and analyze a qualitatively equivalent result by studying
the behavior of the ‘one-frequency–skeleton’ series, built as
follows.

In standard perturbation theory, the skeleton series arises as
a formal manipulation of the terms of the expansion of the fully
interacting Green’s function in terms of the noninteracting one
[5]. One way to proceed can be summarized as follows: we
first start with the perturbative expansion of G:

G = G0 + vG3
0 + v2G5

0 + · · · , (31)

We then use (31) to write G0 in terms of G:

G0 = G − (
vG3

0 + v2G5
0 + · · · )

⇒ G0 = G − (
v
(
G − (

vG3
0 + v2G5

0 + · · · ))3 + v2G5
0 + · · · )

⇒ G0 = G − vG3 − v2
(
G5

0 + GG4
0

) − · · · (32)

· · ·
⇒ G0 = G − vG3 − v2G5 − · · ·
which is then used in the perturbative expansion of the self-
energy (3) to get the formal definition of the skeleton series
SLW:

� = vG0 + v2G3
0 + · · ·

⇒ � = vG − v2G3 − · · · ≡ SLW[G]. (33)

This simplified notation hides the fact that what here looks
like an algebraic multiplication is in fact an integral/sum
over the space/time/spin degrees of freedom of the Green’s
function, and each term corresponds to many terms with
different combinations of multiplications or integrals over
arguments. In the case of the Hubbard Atom, for instance,
each term of the perturbative expansion of the Green’s function
containing a certain number of G0’s would involve sums of the
variables n,n′,n′′, . . . on which each G0 depends. This means
that Perturbation Theory gives rise to a series of nonlocal
functionals of G0.

However, one can also write down a different, simpler
perturbative expansion. With G(z) = FW [G0(z)], expanding
FW in powers of U yields

G(z) = G0(z) + G0(z)3 U 2

4
+ G0(z)5 U 4

16
+ · · · . (34)

Note that this involves now actual multiplications, not con-
volutions. The nonlocal character of the general expansion
prescribed from perturbation theory is lost, as the above
expression presents a local dependence of G(z) on G0(z); in
other words, at a given value of z, G(z) only depends on G0(z)
evaluated at the same z. Obviously, such an expansion is valid
only for the Hubbard atom and is not as general as many-body

FIG. 7. The physical self-energy �(iωn) = −iU 2/(4ωn) (in red),
the unphysical �u(iωn) = −iωn (in orange) and various orders of the
one-frequency–skeleton series Sof s[G(iωn)] (35) (in shades of green)
are represented. Sof s[G(iωn)] converges to the physical self-energy
only in the region U 2 � 4ω2

n (in gray).

perturbation theory. Nevertheless, it allows us to define a local
series, by following the steps analogous to Eqs. (31)–(33). This
leads to

Sof s[G(z)] = U 2G(z)

4
− U 4G(z)3

16
+ U 6G(z)5

32

−5U 8G(z)7

256
+ 7U 10G(z)9

512
+ · · · (35)

which defines the series of functionals

Sof s[f ] ≡ U 2f

4
− U 4f 3

16
+ U 6f 5

32
− 5U 8f 7

256
+ · · · . (36)

This formal manipulation of the local series (34) allows us
to qualitatively reproduce the results of Kozik et al. for the
skeleton series. In our case, the one-frequency–skeleton series
Sof s converges partially to the correct self-energy, partially to
a spurious �u(z), as shown in Fig. 7. As in the case of Kozik
et al., the unphysical self-energy corresponds to the unphysical
solution of the inverse problem, �u(z) = Gu(z)−1 − G(z)−1

(see also Fig. 6).
Contrary to what was reported in Ref. [6] about the standard

skeleton series, the convergence of Sof s to the correct result
always occurs in a finite range of ωn at fixed U :

Sof s[G(iωn)] = �(iωn) for U 2 � 4ω2
n

(37)
Sof s[G(iωn)] = �u(iωn) for U 2 � 4ω2

n.

because of the local character of Sof s .
Finally, it is important to emphasize that a convergence of

the series to an unphysical self-energy does not necessarily im-
ply that the corresponding SCDE X = G0(z) + G0(z)Sof s[X]X
has, in the same region, a spurious solution. In fact, the Dyson
equation with a wrong self-energy functional may have no
solutions at all.

This is indeed our case, where, similar to [8,10,11], the
series that defines Sof s in (35) converges to

Š[f ] ≡ −1 +
√

1 + U 2f 2

2f
(38)
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as long as |f | � 1/U , which is always the case for physical
Green’s functions. Therefore,

Š[G(iωn)] = �(iωn) for U 2 � 4ω2
n

(39)
Š[G(iωn)] = �u(iωn) for U 2 � 4ω2

n,

where the functional Š is defined over a larger domain than
Sof s . We can therefore study the Dyson equation:

X = G0(iωn) + G0(iωn)Š[X]X, (40)

which is satisfied by X = G(iωn) for U 2 � 4ω2
n, also outside

that region. To do that, we look at the corresponding equation
in one complex variable x:

x = 1

iω
+ 1

iω

(
−1 + √

1 + U 2x2

2x

)
x (41)

with ω ∈ R. If (41) has no solutions in a certain region of the
parameter space, neither will (40). We recast (41) as

2ω

U
= − i(

√
ξ 2 + 1 + 1)

ξ
, (42)

with ξ ≡ xU . Since we are looking at the region defined by
U 2 > 4ω2

n, we can write

1 >

∣∣∣∣∣
√

ξ 2 + 1 + 1

ξ

∣∣∣∣∣. (43)

However, the right-hand side is always greater than 1, therefore
this equation, and hence the original Dyson Eq. (40), has no
solutions, Q.E.D. Clearly, this result relies on the closed-form
character of the functional (38) we considered. The use of a
truncation of the series Sof s , which is always done in practice,
could introduce more spurious solutions; this happens for
example in the simple one-point model of [10] when only
the lowest order contribution is used. However, a complete
analysis of the equation with truncations of a self-energy
functional is beyond the purposes of this work.

H. Local SIN series

In the previous section, we manipulated the perturbative
expansion of a local functional realizing the map G0(z) →
G(z), in a way one would do in perturbation theory to build
the skeleton series. We showed that the corresponding one-
frequency–skeleton series does not always converge to the
correct self-energy. This supports the interpretation that the
numerical findings of [6] do not point to a failure of the self-
consistent approach itself, but are rather due to the fact that
the skeleton series does not converge to the correct functional.
Moreover, it suggests that the seed of this failure lies in the
way the skeleton series is constructed from the perturbative
expansion of G.

The problem of building a correct self-energy functional
demands a solution. Following Stan and collaborators [10], we
attempt therefore, for the simple Hamiltonian here considered,
to build a series that complements the one-frequency–skeleton
Sof s . As outlined in Sec. II B, a self-energy functional S can
be built via S[f ] ≡ L[f ]−1 − f −1 if a functional L is given
such that L[G] = G0. Such a functional can be connected
to a functional F [G0] = G via L[G] = F−1[G]. However, F

FIG. 8. The physical self-energy �(iωn) = −iU 2/(4ωn) (in red),
the unphysical �u(iωn) = −iωn (in orange), and various orders of the
one-frequency–SIN series SofSIN[G(iωn)] (46) (in shades of blue) are
represented. SofSIN[G(iωn)] converges to the physical self-energy only
in the region U 2 � 4ω2

n (in gray).

could be noninjective on a domain bigger than {G0} and one
has to find the correct inverse over {G}. In our case, we start
from FW defined in (21). This functional is not injective: its
inverse is made of two branches,

F−1
1 [f ] ≡ 2(

√
U 2f 2 + 1 − 1)

U 2f
(44)

F−1
2 [f ] ≡ −2(

√
U 2f 2 + 1 + 1)

U 2f
.

Neither F1 nor F2 are in fact a good L functional, for which
L[G] = G0. What one would need is a mixture of the two,
for F−1

1 [G] = G0 and F−1
2 [G] = G0 on two complementary

subsets of {G}:
F−1

1 [G(z)] = G0(z) for U 2 � 4ω2
n

(45)
F−1

2 [G(z)] = G0(z) for U 2 � 4ω2
n.

The local skeleton series Sof s is obtained by expand-
ing (F−1

1 [X])−1 − X−1 in U. Instead, an expansion of
(F−1

2 [X])−1 − X−1 leads to what we shall call the ‘one-
frequency–SIN’ series and denote by SofSIN.

The two series are related by

SofSIN[f ] = − 1

f
− Sof s[f ]. (46)

which can be used to calculate SofSIN once Sof s is provided.
As shown in fig. 8, the one-frequency–SIN series eval-

uated at G(z) converges to the physical self-energy in the
region where Sof s converges to the unphysical one, and
vice versa. It follows that the corresponding SCDE X =
G0(z) + G0(z)SofSIN[X]X admits X = G(z) as solution in the
range U 2 � 4ω2

n. An argument similar to the one presented in
the previous section allows us also to state that outside that
range the equation has no solutions. It should be remarked,
however, that, even in the pertinent range U 2 � 4ω2

n, the
actual solution of the self-consistent Dyson equation is not
as straightforward as in the U 2 � 4ω2

n-range. In particular,
X = G(z) can not be found by simple iterative schemes such as
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X(n+1) = G0 + G0SofSIN[X(n)]X(n+1), and more sophisticated
root-finding algorithms are required.

Finally, we notice that the two functionals Sof s and SofSIN

can be combined to make a proper self-energy functional as

S̃[f ] ≡ θ (zf (z) − 1/2)Š[f ]

+ (1 − θ (zf (z) − 1/2))

(
− 1

f (z)
− Š[f ]

)

= − 1

f (z)
+ 1

2

U 2f (z)

−1 + sgn
(
zf (z) − 1

2

)√
1 + U 2f (z)2

(47)

for which S̃[G(z)] = G0(z)−1 − G(z)−1 on the entire parameter
space, like in the case of SW of (23).

IV. CONCLUSIONS

The self-consistent approach, i.e., the idea of calculating the
one-body Green’s function for a generic Hamiltonian problem
via the self-consistent Dyson equation (SCDE) (4), has
motivated in the past a notable amount of research culminating
in state-of-the-art methods for nuclear and condensed matter
physics. However, while the usefulness of the approach and
the “in-principle-exactness” of the diagrammatic series are
most often taken for granted, a critical analysis and better
understanding are still needed. This is also demonstrated by
a recent numerical study by Kozik and collaborators [6] that
indicates a failure of the only explicit implementation of the
approach at our disposal, the Luttinger-Ward approach.

In the present work we discussed some general features
of the self-consistent approach, and we performed analytical
calculations for a specific Hamiltonian problem, the Hubbard
atom. This model is among those used by Kozik et al. to test the
Luttinger-Ward approach, pointing to failures in some regions
of the parameter space. Our calculations allowed us to analyze
these failures, explain their origin, and give indications on how
the problems might be overcome.

The first question we addressed was about the possibility
to use the self-consistent approach for this model, despite
the failure of the LW approach found by Kozik and collab-
orators. We proved that this can indeed be done. First we
showed that in general the approach can be used, at least
in principle, whenever there is a one-to-one correspondence
between physical interacting and physical noninteracting
Green’s functions; then we proved that such a correspondence
holds indeed in the case under examination. Since the set
of (non)interacting physical Green’s functions does not cover
all possible functions of two arguments (not for the Hubbard
atom, nor for the electronic many-body problem), a distinction
between the map and the functional that realizes it becomes
essential. The same map G0 → G (or G → G0) can indeed
be realized by functionals that take different values when
evaluated outside the set of physical Green’s functions {G0} (or
{G}). The distinction between map and functional also clarifies
the apparent contradiction with the conclusion of Kozik et al.
that “[. . .] the map G0 → G [is] not invertible,” which, in
light of our discussion, has to be read as “the functional
used to realize the map G0 → G becomes noninjective when
evaluated on a domain larger than that of physical G0’s.”

Specifically for the Hubbard atom, we have constructed
explicit functionals FW and LW that realize the maps G0 → G

and G → G0, respectively, on the physical domains of the
model. These are different from the usual functionals obtained
from perturbation theory, and they have the very important
property that all calculations could be done analytically. This
has, among others, the advantage that one can distinguish
problems of convergence from problems of principle. In
particular, these functionals were used to give an explicit
realization of the self-consistent approach (calculating G as
solution to X = G0 + G0S[X]X) and the inverse problem
(calculating G0 as solution of the equation G = F [X]).

Having established that, when provided with some func-
tionals for the maps G0 → G and G → G0, from which one
can build the self-energy functional S to use in the SCDE, the
next question to be addressed was whether the corresponding
SCDE X = G0 + G0S[X]X has spurious, unphysical solu-
tions alongside the physical one. For the general case, we
showed that the SCDE has exactly one physical solution as
long as {G0} ↔ {G} holds. However, since the functional S can
take as input functions outside the set {G}, spurious solutions
can be avoided if either one restricts the search over the domain
of physical solutions or makes sure that the functional L, linked
to S via S[f ] = L[f ]−1 − f −1, is injective over its entire
domain. It should be noted that the conditions to be imposed
on the search of G in order to restrict it to the physical ones are
not known in the general case, which means that one can avoid
spurious solutions in principle, but the problems may persist
in practice. For the Hubbard atom the conditions restricting
G can be formulated in a simple way, which allowed us to
illustrate the uniqueness of the solution, as well as the fact that
spurious solutions appear when the restriction is dropped.

Once we proved that the self-consistent approach can
indeed be used to unambiguously determine G, we moved
to investigate the failure of the LW approach found by Kozik
and collaborators. In practical applications, one usually takes
for the self-energy functional S[X] some approximation to the
Luttinger Ward skeleton series which has been obtained from
rearranging the terms of perturbation theory. It was commonly
supposed that one could approach the correct result by includ-
ing more and more terms of this series. However, a counter-
example was given by the numerical results of Kozik et al.

Having a closed functional FW realizing the map {G0} →
{G} for the Hubbard atom, we expanded FW in powers of U and
derived a perturbative expansion of the Green’s function that
maintains the structure of ordinary many-body perturbation
theory, but does not contain frequency integrations. This
allowed us to build a self-energy functional given as a series
of terms similar to the skeleton series, but local in frequency,
and hence named ‘one-frequency–skeleton’ series. Like FW ,
this functional could again be handled fully analytically. Using
the one-frequency–skeleton series to calculate the self-energy
leads to results that are analogous to those of Ref. [6]; in
particular, the series, when evaluated at a certain G, converges
to the correct self-energy only in a limited range of parameter
space, and it converges to a wrong result outside that region.
We could relate this finding to the fact that the functional FW is
not injective, such that its inverse, which should realize the map
G → G0, has two branches. Both of them are needed to build a
proper self-energy functional, since they both cover only a part
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of the map between the physical domains of G and G0. The
one-frequency–skeleton series corresponds to the perturbation
expansion of one of the two branches and is therefore bound
to fail on the other part of the physical domain.

The complementary branch of the self-energy functional
can also be expanded in terms of the interaction. For the
Hubbard atom we obtained in this way the ‘one-frequency–
SIN’-series. Used in the SCDE, the two one-frequency
functionals both lead to the correct result on their respective
subdomain, and they both yield no result at all when one
tries to solve the SCDE outside those respective subdomains.
However, spurious solutions can appear when the series are
truncated at some order. The one-frequency–SIN functional
is a straightforward generalization of a complementary self-
energy functional derived in the context of a one-point model
in Ref. [10]. This gives hope that it might be possible to
go even further and find a generalized SIN functional that
would complement the standard skeleton series for the general
problem. Of course, the one-frequency–SIN was derived
from the nonperturbative expression we used to realize the
map {G0} → {G}, which for the general problem is not
available. On the other hand, the simple relation linking the
one-frequency–SIN to the one-frequency–skeleton (46), which
has survived the passage from the OPM to the Hubbard atom,

may indicate the possibility of building such a hypothetical
generalized SIN starting from the skeleton series only, or
anyway using the tools of perturbation theory.

This and many more interesting questions demand further
investigation, in particular: For which physical systems will
the skeleton series lead to serious problems? Would the corre-
sponding SCDE always be characterized by an unphysical
solution that we can easily recognize as such? How does
the picture change when, as it will be the case in practice,
truncations of the series are considered? How will it be possible
to restrict the domain of Green’s functions in practice? And
alternatively, is it worthwhile to maintain the self-consistent
approach in view of its difficulties, or should one rather build
self-energy functionals of the noninteracting Green’s function?
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