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ABSTRACT: The recently proposed approach to multireference dynamic correlation
energy based on the adiabatic connection (AC) is extended to an arbitrary spin
symmetry of the reference state. We show that both the spin-free AC approach and its
computationally inexpensive approximation, AC0, when combined with a complete
active space wave function, constitute viable alternatives to the perturbation-based and
density-functional-based multiconfiguration methods. In particular, the AC0 approach,
thanks to its favorable scaling with the system size and the size of the active space, allows
for treating larger systems than its perturbation-based counterparts while maintaining
comparable accuracy. We show the method’s robustness on illustrative chemical systems,
including the elusive tetramethyleneethane (TME) diradical, potential energy surfaces of
which present a challenge to most computational approaches. For the latter system, AC0
outperforms other methods, staying in close agreement with the full configuration
interaction quantum Monte Carlo benchmark. A careful analysis of the contributions to
the correlation energy of TME’s lowest singlet and triplet states reveals the subtle interplay of the dynamic and static correlation
as the key to understanding the shape of the diradical’s potential energy surfaces.

Simultaneous description of different spin-symmetry states of
a molecule is a challenging task, especially if either of the

states is of a multireference character. To obtain, for example,
the correct value of the singlet−triplet (S−T) gap of such a
system, the employed computational method has to be able to
describe both the singlet and the triplet states with the same
accuracy, usually at the level of sub-eV. The underlying difficulty
amounts primarily to simultaneous description of both static and
dynamic correlation effects. One way to tackle this problem is by
combining a sufficiently flexible multiconfiguration wave
function, usually of the complete active space (CAS) ansatz,
with a dynamic-correlation correction.Most popular approaches
(notwithstanding the successes of methods like Quantum
Monte Carlo (QMC)1 or multiconfiguration density functional
theory2,3), such as the Complete Active Space Perturbation
Theory (CASPT2)4,5 and n-Electron Valence State Perturba-
tion Theory (NEVPT2)6,7 use a perturbation-based correction
to account for the dynamic correlation. Even for small systems,
like the methylene molecule, the accuracy of perturbation-based
approaches may prove insufficient for reliable S−T gap
predictions.8−10 The problem becomes particularly aggravated
for large systems with small S−T gaps because both the accuracy
and cost of perturbation correction computations depend
heavily on the quality of the used wave function. Hence arises
the need for new, computationally efficient ways of including the

description of dynamic correlation into multireference ap-
proaches.
Recently, by adopting the adiabatic connection (AC)

formalism, we have derived an expression for the correlation
energy for a broad class of multireference wave functions.11−13

The latter has been assumed to be a generalized group-product
function,14 the CAS function being a special case of such an
ansatz.12 The AC correlation energy expression in the chosen
spin-orbital basis set reads

∫ λ= λE W dcorr
AC
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The expression has been obtained for a particular choice of the
AC Hamiltonian Ĥλ (for its definition, cf. refs 11 and 12), and λ
is a coupling parameter connecting a group-uncorrelated limit (λ
= 0) with the full-correlation limit (λ = 1). ⟨rs|pq⟩ stands for a
two-electron integral in the usual x1x2x1x2 convention. Elements
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{γpq
λ,ν} in eq 2 are one-electron transition reduced density matrix

elements defined as γpq
λ,ν = ⟨Ψλ|aq̂

†ap̂|Ψν
λ⟩, where Ψλ and Ψν

λ are
eigenstates of the AC Hamiltonian, ĤλΨν

λ = Eν
λΨν

λ. In particular,
Ψλ is an eigenstate connecting smoothly with Ψref at λ = 0, Ψref

being a reference wave function, e.g., a CAS function describing
a state of interest.13 The one-electron reduced density matrix (1-
RDM) corresponds to a reference function, γpq = ⟨Ψref|aq̂

†ap̂|Ψref⟩.
The prime sign in eq 2 indicates that the indices of the spin-
orbitals p, q, r, s cannot simultaneously belong to the same group
of orthogonal spin-orbitals.
Until now, the AC correction has been developed and applied

for reference wave functions in singlet spin symmetry. Here, we
extend the AC and its approximation, AC0, to an arbitrary spin
symmetry of the reference state. After carrying out summation in
eq 2 with respect to spin coordinates, one is led to
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where pα and pβ are the spin-up and spin-down components of
the spin-orbital p. At first sight, it seems that for nonsinglet states
one needs to know separately the αα and ββ spin-blocks (and
not only their sum αα + ββ) of the 1-RDM. Notice, however,
that for the CAS function (or, in general, an MCSCF ansatz)
there are only inactive (doubly occupied), active, and virtual
(unoccupied) orbital subsets and only for the active−active
block γαα≠ γββ for a nonsinglet state. Exploiting that γpq elements
are different from zero only if p, q both correspond to either
active or inactive spin-orbitals, it is straightforward to see that
the integrand Wλ depends only on the spin-summed density
matrices, and in the representation of the reference natural
orbitals, it reads
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where

γ γ γ δ= + =
α α β β

n2pq p q p q p pq (5)

and

γ γ γ̅ = +λ ν λ ν λ ν
α α β βpr p r p r

, , ,
(6)

(α and β indicate spin parts).
We have proposed to employ Rowe’s equation of motion

theory15 in the extended random phase approximation
(ERPA)16,17 to obtain transition density matrices. Within
Rowe’s theory, a state |Ψν⟩ is generated from an arbitrary state
|Ψ⟩ upon action of an excitation operator Ôν

†, which in the ERPA
approximation is truncated to include only single excitations

∑ ∑̂ = [ ] ̂ ̂ + [ ] ̂ ̂ν ν ν
†

>

†

>
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p q

pq p q
p q
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The operator Ôν
† written as in eq 7 is, in general, not spin-

adapted. A discussion of spin adaptation provided, e.g., in ref 18
shows that imposing a restriction on αα and ββ elements of the
coefficients X and Y as follows

[ ] = [ ]ν να α β β
X Xp q p q (8)

[ ] = [ ]ν να α β β
Y Yp q p q (9)

results in preservation of the spin symmetry when operating with
Ôν

† on |Ψ⟩, namely, if the total spin of |Ψ⟩ is S, then so is the spin
of the state |Ψν⟩. Notice that the spin-preserving adaptation of
the excitation operator is not the only possible choice. In
general, states of different spin symmetry than S can be coupled
by the ERPA equations and may have a nonzero contribution to
the correlation energy in eq 4. Accounting for them would
greatly complicate and increase the computational cost of the
AC approach, and we limit the space of excitation operators in
the ERPA approximation to the spin-preserving ones defined by
eqs 8 and 9. Employing ERPA approximation to the transition
density matrices following from Rowe’s equation15,19
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together with eqs 8 and 9 allows one to write the integrand in eq
4 as a spin-free formula (the indices pertain to orbitals) reading
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The ERPA vectors [Xν
λ, Yν

λ] follow from the spin-adapted ERPA
equations with spin-free matrices λ and λ defined as [ ]λ

pqrs

= [ ]λ
pqsr = ∑ ⟨Ψ |[ ̂ ̂ [ ̂ ̂ ̂ ]]|Ψ ⟩σ σ

λ
′

† †
σ σ σ σ′ ′

a a H a a, ,p q s r,
ref ref . They are

given solely in terms of the spin-summed 1-and 2-RDMs (for
their explicit form, see the Supporting Information (SI)).
In refs 12 and 13, we have shown that the cost of computing

the AC correlation energy can be greatly reduced, without a loss
in accuracy, by employing the AC0 approximation. The AC0
results from linear expansion of the AC integrand,Wλ, in terms
of the coupling parameter λ.12 The reduction in the computa-
tional cost with respect to AC is huge because the scaling goes
down fromM6, whereM is the number of the basis set functions,
to onlyMactive

6 , whereMactive is the number of the active orbitals.
Taking into account that AC0 requires neither construction of
higher than second-order RDMs nor solving the full ERPA
eigenequation (only diagonalization of small subblocks of λ=0

is performed), the method allows for efficient treatment of large
active spaces (not achievable for perturbation methods). One
should notice that even though the exact AC integrand eq 2
deviates from linearity,20 the AC0 approximation has already
been proven to provide good accuracy for systems of singlet spin
symmetry, cf. refs 11−13. To show the capabilities of both the
AC and AC0methods for other than singlet spin symmetries, we
present results for twomodel systems, in which triplet states play
a significant rolethe oxygen and the nitrogen molecules. We
also apply the AC0 method to singlet and triplet states of the
challenging tetramethyleneethane (TME) diradical. The AC/
AC0 performance is compared with the CASPT2 and the
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recently introduced multiconfiguration pair-density DFT (MC-
PDFT) approach with the tPBE functional.3,21 The latter,
similarly to AC and AC0, requires only one- and two-electron
reduced density functions to capture electron correlation, but
because it employs density functionals, the computational cost is
much lower than that of the other multireference methods and it
is almost insensitive to the choice of basis set while AC and AC0
present a basis set dependence typical for ab initio methods (see
comparison of the basis set dependency of CASSCF, AC, AC0,
and tPBE results in the SI).
Diverse character of the excited states of the N2 molecule

provides a good test of accuracy for the AC and AC0 methods.
For example, it is clear that the first triplet state, 3Σu

+, is already
sufficiently described by the CAS(6,6) wave function (see Table
1). Notice, however, that AC, AC0, and MC-PDFT (specifically

the employed tPBE functional3) enhance the accuracy even
further, unlike CASPT2, which underestimates the excitation
energy by 0.50 eV. For the remaining states, the inclusion of the
dynamic correlation, provided by any of the tested approaches,
improves their description. Both CASPT2 and tPBE tend to
underestimate the excitations, while AC and AC0 slightly
overestimate them. AC0 is clearly the most accurate in the
group, outperforming even its more expensive relative, AC,
which in turn performs better than both tPBE and CASPT2.
Both AC and AC0 are also capable of capturing the entire

dissociation curves for triplet and singlet states of molecules, as
evidenced for the O2 molecule in Figure 1. Unlike tPBE, which
predicts significantly deeper minima of both 3Σg

+ and 1Δg states,
AC, AC0, and CASPT2 produce similar curves. Because the
value of the S−T gap, 0.98 eV,25 is already perfectly captured by
the CASSCF approach (cf. Table 2), let us only mention that
while AC0, AC, and CASPT2 maintain that accuracy (with
−0.04,− 0.05, and−0.03 eV errors, respectively) tPBE performs
slightly worse (with 0.20 eV of error). Because both AC0 and
AC are size-consistent, to obtain the value of the bond
dissociation energy (BDE) of the 3Σg

+ state, we employed the
formula BDE = Eeq(O2) − 2E(O), where the energy Eeq
corresponds to the equilibrium bond length, ROO = 1.2 Å. The
differences in accuracy of computed BDEs are more significant
than those for the S−T gap. While CASSCF gives an error of
−1.02 eV with respect to the experimental value,26 each of the
studied methods manages to improve on this value, with AC
being the best performer (0.00 eV of error) followed by
CASPT2 with −0.12 eV, AC0 (0.22 eV), and tPBE (0.77 eV).
In order to gain better insight into the performance of the AC

and AC0 methods, in Figure 2 we present plots of theWAC and

WAC0 integrands [cf. eq 11], yielding, respectively, AC or AC0
correlation energies. For the hydrogen molecule, we have also
included plots of the exact integrands, Wexact, yielding exact
correlation energies for a given singlet or triplet reference (the
procedure for generating Wexact for two-electron singlet states
has been presented in ref 20, while for triplets we have followed a
similar procedure obtaining the transition density matrices for a
given value of λ by solving the two-electron FCI equation with
the ACHamiltonian). The results in Figure 2 show that typically
the AC0 curve is above the AC one; thus, AC0 recovers slightly
less correlation than AC for both singlet and triplet states. This is
because the WAC integrands are typically slightly concave (one
should notice that this is not the rule, and we have observed also
cases when WAC were convex). Another general observation is
that, similarly to what has been already observed for singlet
states, the curvature of the triplet AC integrands is small, which

Table 1. Signed Errors and the Mean Unsigned Error (MAE)
of the N2 Adiabatic Singlet and Triplet Excitation Energies
with Respect to the Experimental Values,22,23 Given in eVa

CAS AC0 AC tPBE CASPT2
3Σu

+ 0.17 0.02 0.05 −0.11 −0.50
3Πg 2.01 0.08 0.48 −0.33 −0.38
3Δu 0.52 0.06 0.13 −0.22 −0.41
3Σu

− 1.03 0.23 0.23 −0.09 −0.26
1Πg 2.38 0.27 0.63 −0.36 −0.24
1Σu

− 0.82 0.07 0.15 −0.32 −0.35
1Δu 1.19 0.16 0.22 −0.73 −0.25
MAE 1.16 0.13 0.27 0.31 0.34

aAll computations were performed for the CAS(6,6) reference in the
aug-cc-pVTZ basis set.24.

Figure 1. O2 dissociation curves. All computations were performed
with the cc-pVTZ basis set24 using a CAS(12,8) reference. A cross in
the upper panel indicates the experimentally obtained value of the
dissociation energy.

Table 2. Signed Errors of the BDE of the 3Σg
+ State of O2 and

the S−TGap atROO = 1.2 Å with Respect to the Experimental
Values,25,26 Given in eVa

BDE S−T
CAS −1.02 0.01
AC0 0.22 −0.04
AC 0.00 −0.05
tPBEb 0.77 0.20
CASPT2 −0.12 −0.03
FCIQMC −0.12

aAll computations were performed with the cc-pVTZ basis set24 using
(except for FCIQMC27) a CAS(12,8) reference. bNotice that in ref
28 the BDE values of O2 computed with CASSCF (3.83 eV) and
tPBE (5.59 eV, which is closer to the experimental value) differ from
ours, probably due to the use of a single-state CASSCF by Odoh et al.
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provides justification for the AC0 approximation. The exact AC
integrands obtained for the H2 molecule are concave for both
the singlet and triplet states. Evidently, integration of the nearly
linear WAC function yields correlation energies in errors of 2.2
mHa and 1.2 mHa for the singlet and triplet, and consequently,
the S−T gap for H2 is in error of only −0.03 eV with respect to
the FCI value. For the N2 and O2 molecules, one can see that
WAC0 follows rather closely the WAC curves. Consequently, one
expects that the accuracy of the singlet−triplet gaps from both
methods will be comparable. In general, one cannot predict a
priori which of the two methods will be superior. Notice,
however, that AC0 results are obtained at the fraction of the cost
of the AC method. In addition, the AC0 integrand is immune to
potential instability problems in the ERPA equations that can
deteriorate the accuracy of the AC method (cf., for example, the
build-up of instability in theWAC curve for the tripletΠg state of
the N2 molecule, resulting in larger error of the AC excitation
than that of the AC0 presented in Table 1).
Numerical evidence presented in this work shows that both

AC and AC0 provide an excellent description of states of
different spatial and spin symmetries. Moreover, it reinforces our
previous observation12,13 that the AC0 approach is comparable
in accuracy with the much more computationally demanding
AC method. It is therefore well justified to use this inexpensive
method to capture the dynamic correlation in highly multi-
reference states of larger systems.
Our final example is the TME moleculea paradigm system

for multireference methods trying to correctly balance both
dynamic and static correlation.29−35 The first challenge stems
from disjoint biradical character of TMEtwo radical electrons
localize on spatially separated parts of the molecule and the
resulting frontier orbitals interact weakly and are nearly
degenerate. The second challenge is due to the fact that the
molecule may rotate about its central C−C bond and the
multireference character of the singlet state is changing along
this rotation. Correct description of the singlet surface together
with correct ordering of both close-lying states at the entire
range of the torsional potential turned out to be a perfect test for
new multireference methods.30,33 In their seminal work, Pozun
et al.30 applied diffusionMonte Carlo (DMC) and predicted the
magnitude of the S−T gap to be as narrow as 0.02 eV for the
angle of 45°. These findings were later corroborated by full
configuration interaction quantum Monte Carlo (FCIQMC)

calculations of Veis et al.33 and are also in agreement with the
available experimental data.36

The benchmark FCIQMC energy curve for the singlet state of
TME, Figure 3, features a maximum at the torsional angle close
to 45° and has two minima located at 0 and 90°, the former
being slightly more stable. The lack of dynamic correlation in
CASSCF with six π active orbitals leads to erroneous shape of

Figure 2. Exact AC integrandsWexact
λ for the lowest singlet and triplet state of H2 and the AC and AC0 approximations,WAC

λ andWAC0
λ , of the lowest

singlet and triplet states of H2, N2, andO2. Computations were performed in the cc-pVTZ basis set for H2 (RHH = 1.401 au) andN2 and in aug-cc-pVTZ
for O2 (geometries corresponding to the ones in Tables 1 and 2) and active spaces (2,2), (6,6), and (8,12) for H2, N2, and O2, respectively.

Figure 3. Singlet twisting curve of tetramethylethane (upper panel) and
singlet and triplet twisting curves of tetramethylethane (lower panel).
All computations were performed with the cc-pVTZ basis set24 using
(except for FCIQMC) a CAS(6,6) reference. The geometries used are
the same as those in ref 33; they are provided in the SI.
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the singlet potential. Notice that the correct shape is not
recovered even if the active space is extended to 24 electrons in
25 orbitals.33 Both CASPT2 and tPBE improve upon CASSCF
and locate the maximum in the vicinity of 45°. One should note,
however, that these methods significantly underestimate the
twisting energy barrier with respect to the FCIQMC reference
(see also Table S1 in the SI). Furthermore, neither CASPT2 nor
tPBE succeeds at recognizing the E(0°) minimum as the global
one. This results from a too rapid decline in energy in the 45−
90° range. As evidenced in Figure 3, AC approaches perform
best out of the presented methods and correctly reproduce all of
the main features of the singlet twisting potential. In particular,
they are the only approaches that pinpoint the relative energies
of the 0 and 90°minima. The triplet potential curve calculated at
the AC0 level of theory (performance of the AC for triplet state
parallels that of the AC0; see the SI) has the correct shape, and
the resulting S−T gap reaches 0.04 eV in the most narrow point
at 45°, which is only slightly overestimated with respect to the
FCIQMC and DMC values (0.01 and 0.02 eV, respectively).
To gain a better insight into the interplay of dynamic and

static correlation effects in the 1A1 and
3B1 states of TME, in

Figure 4 we plot two quantities: the correlation entropy and the
AC0 correlation energy. The former serves as a measure of the

nondynamic correlation37 and is defined as Scorr =− ∑ n nlnp p p
1
6

(the factor 1/6 comes from the fact that there are six active
orbitals), while the latter corresponds to the dynamic
correlation. Additionally, we plot contributions to the AC0
correlation energy originating solely from the HOMO and
LUMO orbitals. Singling out contributions from a selected
group of orbitals is feasible in AC0 by constraining the ERPA
excitation operator. Upon twisting from 0 to 45°, one observes a
steep rise of the correlation entropy for the 1A1 state that
indicates a pronounced multireference character. This effect is
accompanied by a suppression of dynamic correlation (notice
that lower panels in Figure 4 present relative correlation energy;
thus, the pertinent curve goes up to larger values if the
correlation energy decreases) with a substantial contribution
from the frontier orbitals. Going from 45 to 90° results in a rapid
drop in the static correlation diagnostic, Scorr. The concurrent
increase in dynamic correlation is less pronounced, although the
contribution from the HOMO and LUMO rises quickly. Thus,
the cooperative effects of dynamic and nondynamic correlation
involving frontier orbitals lead to a buildup of a maximum in the
potential energy curve in a singlet state of TME. This resembles
a typical covalent bond-breaking situation. The picture obtained
for the triplet is qualitatively different. The correlation entropy

Figure 4.Correlation entropy (upper panel), relative AC0 correlation energy, and HOMO and LUMO contributions to the correlation energy (lower
panel) for the singlet (left) and triplet (right) structures of TME.
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declines only slightly in the 0−45° range and remains almost
constant in the remaining part of the curve. The dynamic
correlation decreases monotonically by a significant amount,
which guarantees the correct shape of the potential, but the role
of frontier orbitals in this process is practically irrelevant.
Overall, the obtained picture confirms that the closely lying
triplet is dominated by dynamic correlation, which can be
effectively described by single-reference methods.30

In summary, we have derived the spin-free AC correlation
formula for the correlation energy based on spin-preserving
adaptation of the excitation operator. Both AC and AC0
approximations are now applicable to CASSCF reference
functions in arbitrary spin states. The presented numerical
results confirm excellent performance of the less computation-
ally demanding AC0 approach, which agrees with our earlier
observations for closed-shell systems.12 Because the most
expensive steps in AC0 scale as Msec

2 Mact
4 , MsecMact

5 and Mact
6

(Msec and Mact denoting the number of secondary and active
orbitals, respectively), the method is applicable to large active
spaces, where other ab initio approaches such as AC, CASPT2,
or NEVPT2 might not be feasible. At the same time, for all
systems studied in this work, AC0 performs in a more reliable
manner than the density-functional-basedMC-PDFT approach.
We verified the performance of AC0 for the challenging case of
the TME diradical. Our method reproduced the FCIQMC
benchmark outperforming both CASPT2 and MC-PDFT and
proved useful in obtaining additional insight into the interplay of
dynamic and nondynamic correlation in the system.
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(33) Veis, L.; Antalík, A.; Legeza, Ö.; Alavi, A.; Pittner, J. The Intricate
Case of Tetramethyleneethane: A Full Configuration Interaction
Quantum Monte Carlo Benchmark and Multireference Coupled
Cluster Studies. J. Chem. Theory Comput. 2018, 14, 2439−2445.
(34) Lang, J.; Brabec, J.; Saitow, M.; Pittner, J.; Neese, F.; Demel, O.
Perturbative triples correction to domain-based local pair natural
orbital variants of Mukherjee’s state specific coupled cluster method.
Phys. Chem. Chem. Phys. 2019, 21, 5022−5038.
(35) Sinha Ray, S.; Manna, S.; Ghosh, A.; Chaudhuri, R. K.;
Chattopadhyay, S. Multireference perturbation theory with improved
virtual orbitals for radicals: More degeneracies, more problems. Int. J.
Quantum Chem. 2019, 119, No. e25776.
(36) Clifford, E. P.; Wenthold, P. G.; Lineberger, W. C.; Ellison, G. B.;
Wang, C. X.; Grabowski, J. J.; Vila, F.; Jordan, K. D. Properties of
tetramethyleneethane (TME) as revealed by ion chemistry and ion
photoelectron spectroscopy. J. Chem. Soc., Perkin Trans. 2 1998, 1015−
1022.
(37) Ziesche, P.; Smith, V. H., Jr; Hô, M.; Rudin, S. P.; Gersdorf, P.;
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