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First-order derivative couplings between excited states from adiabatic

TDDFT response theory
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We present a complete derivation of derivative couplings between excited states in the frame-
work of adiabatic time-dependent density functional response theory. Explicit working equations
are given and the resulting derivative couplings are compared with derivative couplings from a
pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection
(CI), the two approaches are identical apart from an antisymmetric overlap term. However, if
the difference between two excitation energies equals another excitation energy, the couplings
from response theory exhibit an unphysical divergence. This spurious behavior is a result of the
adiabatic or static kernel approximation of time-dependent density functional theory leading to
an incorrect analytical structure of the quadratic response function. Numerical examples for cou-
plings close to a CI and for well-separated electronic states are given. © 2015 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4906941]

. INTRODUCTION

In the past few decades, great efforts in the field of quan-
tum chemistry have been expended to study nonadiabatic
processes. Going beyond the Born-Oppenheimer approxima-
tion, nonadiabatic processes are ubiquitous and cover many
interesting modern topics—including charge transfer, elec-
tronic excitation quenching, and spin-forbidden transitions.
And, at the bottom, modeling most of these processes requires
computing the derivative coupling.'®

Today, time-dependent density functional theory
(TDDFT)’-!% is a mainstay of computational photochemistry.
The popularity of TDDFT is owed to a compromise between
accuracy and computational efficiency that holds up well in
many (although not all) applications. However, the evaluation
of TDDFT derivative couplings is complicated by the fact
that interacting wavefunctions are inaccessible in TDDFT.!!
This led to a plethora of approaches for evaluating both
the ground-excited state couplings'>'® and excited-excited
state couplings.'®* In 2010, Send and Furche solved the
ground-excited state problem definitively by relating the
TDDFT derivative coupling to a residue from linear response
theory and calculating the residue in a finite atomic orbital
(AO) basis.'® The resulting coupling reduces to the exact
expression derived by Chernyak and Mukamel'? in the
complete basis set limit, which guarantees convergence to
the exact result as better and better approximations to the
time-dependent exchange-correlation (XC) potential are used.
These developments have enabled efficient TDDFT-based
nonadiabatic molecular dynamics simulations for systems in
the first excited state.?’
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In this article, our focus will be exclusively on excited
state-excited state couplings. In this case, TDDFT recovers
the correct dimensionality of a conical intersection (CI)
branching plane?®-?® and should thus be even more useful.
To our knowledge, there have been three different proposed
methods to evaluate TDDFT excited state derivative coupl-
ings. First, Tavernelli et al. proposed evaluating (‘P;I%‘P )
= QL”(‘PAg—; |'¥;), where F is a generalized Kohn-Sham (KS)
Fock operator and Q,; is the energy gap between state J
and state /. In Refs. 29 and 23, we show that the Tavernelli
formalism neither obeys the correct symmetries around a CI
nor agrees with the exact Chernyak-Mukamel expression in
the limit of infinite basis.*

A second approach is the direct differentiation of pseudo-
wavefunctions that we offered in Ref. 23. This approach is
identical to what Li and Liu have recently called the equation-
of-motion (EOM) TDDFT derivative coupling.”> While Li
and Liu hypothesized this approach based on differentiating
the RPA particle-hole operator, we began by guessing a
TDDFT/time-dependent Hartree-Fock (TDHF) ground state
wavefunction of the form

o) ~ (1 +ZX’Y’)|%FT>. (M
7
Here, X! and ¥! are the excitation operators defined as
X'= ZX{“a,-aZ, (2)
ia
Pl= ZYilaaiaZ. (3)
ia

The derivative coupling vectors given by our pseudo-
wavefunction ansatz recover the desired behaviors near a
CI point and agree with the Chernyak-Mukamel equality in
the limit of an infinite basis set near a CI point.

©2015 AIP Publishing LLC
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Finally, the third approach is to calculate TDDFT
derivative couplings via time-dependent response theory. To
date, this is the only known approach that can provide exact
couplings from TDDFT. An added advantage is the straight-
forward treatment of Pulay forces, which is essential when
atom-centered basis sets are used. In July 2014, Li and Liu
presented an abstract approach from time-dependent response
theory for computing the excited states derivative couplings,
which is applicable for TDDFT, but they did not present
working equations or any numerical investigations of the
methodology.?

Our goal in this work is to provide a detailed derivation
of TDDFT/RPA derivative couplings from time-dependent
response theory and to give working equations that can easily
be implemented. (Note that while the present article was
under review, Li and Liu have published a similar article
exploring numerical examples that are in close agreement with
the present manuscript.’!) Moreover, we will also compare
our response theory derivative couplings with those from a
pseudo-wavefunction ansatz. (See also the article by Zhang
and Herbert.3?)

An outline of this paper is as follows. In Sec. II, we
present a self-consistent derivation of TDDFT/RPA derivative
couplings from time-dependent response theory. In Sec. III,
we present a numerical comparison of response theory results
with our pseudo-wavefunction results for two cases: (a) two
electronic states near a CI point and (b) two well-separated
electronic states. In Sec. IV, we conclude. In Appendix A, we
provide some necessary definitions, and in Appendix B, we
demonstrate the equivalence of response theory and pseudo-
wavefunction derivative couplings near a CI point.

Unless otherwise specified, we use lowercase latin letters
to denote spin molecular orbitals (MO) (a, b, ¢, d for virtual
orbitals, i,j,k,l,m for occupied orbitals, p,q,r,s,w for
arbitrary orbitals), greek letters (e, 8,7, 0, A, 0, u, v) denote
AOs. Many-electron excited states are denoted by W (with
uppercase latin indices /, J). We use atomic units and set i = 1.
Q denotes nuclear coordinate and superscript [Q] denotes the
differentiation with respect to Q.

| 2" order Auxiliary
Coupling:
c@a

Evaluated via

[ |
Many-body ‘

wavefunction
guantum mechanics ‘

TDDFT

Calculate the residue at poles
w,=Q, and wg=-Q,
Explicit expression |
for the derivative
coupling

General form of the
derivative coupling

1/

4

FIG. 1. Summary for evaluating the TDDFT/RPA derivative coupling from
time-dependent response theory.
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Il. THEORY

Fig. 1 gives a summary of how derivative couplings
can be calculated with response theory. One calculates the
second-order auxiliary coupling from exact many-body wave-
function quantum mechanics with response theory according
to a sum-over-states (SOS), and then one calculates the matrix
element with TDDFT. By comparing a given residue, one can
extract the derivative coupling.

One might wonder if the thus obtained couplings are phys-
ical, because the time-dependent Kohn-Sham (TDKS) system
is fictitious. However, as long as the Chernyak-Mukamel
expression for the coupling is recovered in the infinite basis set
limit, the couplings converge to the exact result as better and
better approximations are used for the exchange-correlation
functional.

A. Exact many-body wavefunction quantum
mechanics (nothing to do with TDDFT)

1. Zeroth-, first-, and second-order response
of the exact, many-body wavefunction

to a time-dependent field according

to perturbation theory

Consider an electronic system with the perturbed
Hamiltonian

H = Ho+MH,(0), @)
Hy(t) = ) (VI@eiwnt  y(@rerivar), ®)

The time-dependent Schrddinger equation is

.0
HI¥(0) =i [¥(0). ©)

Here, |¥(¢)) is the exact time-dependent wavefunction for the
perturbed system (to the second-order) and can be expressed
perturbatively as

[¥(@0)) = [¥O0) + MYV ) + P @)+ (D)

To construct |¥(z)) in terms of {|¥;)}, the eigenstates of Hy,
we take the following steps.

1. The zeroth-order wavefunction is obtained by turning off
the field (V@ — 0)

H PO = 15 1%, ®

[¥00)) = e y), ©)

where |¥y) is the unperturbed ground state.
2. The first-order wavefunction is obtained by equating all
terms linear in A on both sides of Eq. (6),

Hi()YO10) + Hol P V(1)) = igI‘P“)(I))- (10)

Here, the first-order wavefunction |¥(V)(¢)) does not contain
the contribution from |¥y) and can thus be expanded in the
basis of eigenstates of Hj as follows:

[wO(@) = e 50 B0, (11)

I1#0
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where the first-order coefficient b(Il)(t) has the form

b(Il)(f) — Z W](l)(wa)eiwat + W;l)(_wa)e—iwat. (12)

a

Plugging Eqgs. (9) and (11) into Eq. (10), one has
e~ 1EO Hy ()| o) + e EO" )" B () Hol Wr)

I1#0

=i "EO’Zb(')(I)l‘P ). (13)

1+0

Left-multiplying by (¥;| gives (after relabeling the indices)

(¥ H (1) o) + Q6 (1) — i b%) 0, (14)

where Q; = E; — Ey is the excitation energy for state 1.
Now substituting b(Il)(t) with the expression in Eq. (12)
and collecting the coefficient of e'“e! one obtains the
expression for W;l)(wa),

(P7|V @)

(1

W w,) = - , 15

Vi (wa) Q +w, (15)
¥, V@),

Wi (-wq) = —w. (16)
1~ Wy

3. Second order: the second-order equation can be written as
Hi(0)Y™(0) + Hol¥(2)) = Urw I‘I‘(z)(t» (17)

where [P@)(t)) is the second-order wavefunction with the
expansion coefficient b(lz)(t),

WD) = e E0 )" BP0, (18)
I1+0
b(IZ)(t) — Z [W1(2)(wa’ wﬂ)ei(waﬂuﬁ)t
ap

" WI(Z)(a)a,—w/;)ei(“"’_“’ﬁ)’
+ WI(2)(_wm wﬁ)ei(—w(ﬁwﬁ)t
+ W (—wa—wp)e’ 0P| (19)

Similar to the first-order case, the following expression for

W;z)(wm wg) can be obtained by comparing the coefficients
of e[(w(frwﬁ)t:

1
Q, tWwe+wp

XZ (VO ) (71 [VPy)
Q; +wp

W[(Z)(o‘)(l7 "-)B) =

J#0

. (s [V o) (¥ VD))
QJ +wy '

(20)
Similar expression exists for Wl(z)(wm —wp), etc.

2. Second-order auxiliary coupling

The second-order auxiliary coupling matrix element is
defined as

J. Chem. Phys. 142, 064114 (2015)

ROE (‘I’(z)(t)l ‘P(O)(l)>+<‘P(O)(l)I ‘P(z)(t»
+<W“><r>| g ¥ @D
= clob (2)(t)+C F2 1)+ i) (22)
and we define
(012 sy = ZC[Q],@)(wm wg)e!@arep)
apB
+Cl2 D, —wpg)e'@awp)t
+clere )(_wm B)et( watwg)t

+ C 0.2 )(_w(ly _wﬁ)ei(—wa—wﬁ)t. (23)

Let us now show that, in most circumstances, the derivative
coupling between state [ and state J can be found by evaluating
the residue of C‘[Q]’(z)(a)m wg) at poles w, = Q7 and wg = Q.
To prove this statement, note that the first two terms in
Eq. 21), CEQ]’(Z)(t) and C&Qm)(t), have residues at w, = +Q;
and w, +wg = +£;; as such, these terms are not expected to
contribute to the pole of C12+P(w,,, wg).

Therefore to isolate the derivative coupling, we will
now focus on Cj 1. (2)(t) which involves only the first-order
wavefunctions. Accordlng to Eq. (11), the nuclear derivative
of the first-order wavefunction can be expressed as

0 0 _;
-~ \P(l) — _ ,-iEpt b(l) p 24
5070 = 55 ; O (24)
- _ iE(l)QJtlmp(l)(t»+e—iEoth(Jl)»[Q](t)|\Pj>
J#0
D WACLF S (25)
J#0

CgQ]’(z)(t) can be obtained after multiplying by (¥)(z)|,

L) = (WO ()| - i ELLY ()
4 e iEot Z(\P(l)(t)u)(;)’ [Q](I)HJJ)

I1#0
+ e E N OO (26)
I1+0

Inserting the SOS representation for the first-order wavefunc-
tion, one has

C3[Q]»(2)(t) — Z (_iE([)Q]tb(Jl)(t)+b(11)»[Q](t)e—iE0t)
1,J#0

B+ Y b OB Ok,
1,J+0

27)

According to the orthogonality of {|\¥;)},

C£Q]»(2)(t) — Z b(Il)*(t)( _ iE(gQth(Il)(t) + b(ll)’[Q](l‘)e_iEot
I+#0

+ Zbg”(t)(\y,MQb). (28)

J#0
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When evaluating the residue of C‘gQ]’(z)(wm wg) at poles w, =y and wg = —£, one finds that only the last term in CgQ]’(z)(t)

contributes. Plugging in the expression of bgl)*(t) and bsl)(t), we find that C‘EQ]’Q)(a)mwB) can be written as (omitting the

non-contributing part)

~101,) _ (Pol VI o)1) (P 1V P wp) o)
} (“’0’ wﬁ) - Z (Ql_wtt)(QJ+wﬁ)

1,J#0

Thus, the residue of C‘gQ]’(z)(wa,wﬁ) at poles w, =Q; and
wg =—L; is therefore

ReS[C}l)QJ’(Z)(OJQ,UJﬁ);QI,_QJ]
= (Pol VO wa) 1) (Fs VP wp) W) (1PN (30)
= VorVro{ ¥ P12h. 31)

Note that the factor 2 is omitted when evaluating all the
residues. The final residue of the second-order auxiliary
couplings is then just the residue of C‘gQ]’Q) (Wa, Wp),

Res[C[Q]’(z)(wa,wﬁ);QI,—QJ]
= Res[C12" D (w,0p): Q0,01 = Vor Vot I ¥Eh. (32

Up to this point, all of the above theory is simple time-
dependent perturbation theory, and we have discussed nothing
having to do with TDDFT.

B. TDDFT

As shown in Sec. IT A 2, a derivative coupling is related
to the residue of the second-order auxiliary coupling at
certain frequencies according to perturbative time-dependent
quantum mechanics. In this section, we will derive an explicit
expression for such a residue via TDDFT.

1. First- and second-order TDKS orbitals

According to the usual TDDFT framework, the general
eigenvalue equation for a closed electronic system is

F|¥per) = EprrlYorr), (33)

where |Wpgr) is the non-interacting Kohn-Sham ground state
with energy Epgr. Here, |WpEr) is

|'¥orr) = [9102...00), 34

where |@;) is the ith non-interacting KS orbital with energy
&;. The Fock operator is

Fpg=hpg+ Y (6psltgd )y (35)

where yg) is the time-independent density matrix

v = (Porrlala,¥orr) = > (610,) ($116s) =67 (36)
J

Now, when a time-dependent field is applied (as in Eq. (6)),
the system is perturbed and the time-dependent KS orbitals

(PPl 4. (29)

(

(denoted by |¢;)) can be expanded as (to second-order)
Bie)y == (g + 16 ) +1670)). (BT

where |¢El)(t)) and |¢E.2)(t)> are first- and second-order orbital
corrections, respectively. The TDKS density matrix is

70 = D 16:(0)(6i(0) (38)
=y O+ 500 +72), (39)

where
700 = (181 +1670) (04l) (40)

1

720 = > (1670) (il + 181 (67 0)]

+ 1 O) ("D + 18 0) (6 @)l). @)

At this point, we want to express the first- and second-order
orbital corrections in terms of first- and second-order density
matrices, 71(¢) and 7?(¢). We perform this transformation
because the density matrices are the central objects in most
TDDFT development.®? Let us define

700 =Y YO wa)e ™ +y N -wa)e . (42)

In the frequency domain, the first-order density matrix
response is

Y0 @) = )y @a)d(w-wa), (43)
Y (wa) = D Kiawa)|pa) ($il + Tia(wa)l i) (Pl (44)

where X;,(w.) and ¥;,(w,) are the virt-occ and occ-virt matrix
elements of y(w,), respectively.’ If we substitute Eq. (40)
for 71(¢) and then sandwich everything by (¢ | and |¢,), we
find

(@ O1ga) = D (Fra@a)e™ " + Fia(—wa)e ™). (45)

Given that X;u(wa) =¥ (-w,),** one arrives at the final
expression for the first-order TDKS orbital correction,

161(0) = ) (Rialwa)e' + Kia(-wa)e ) lda).  (46)

Our next step is to deal with the second-order density
matrix response y® in order to get an expression for the
second-order orbital correction. The time-dependence of y?
is given by
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Y0 = ) P @a wp)e@ten”
ap
+ 'y(2>(w(,,—a)ﬁ)ei(“’”_wﬁ)’

+ 7(2)(_(1)09 wﬁ)ei(_w(r+wﬁ)t

+ Y (~wa,—wp)e @B 47)

Sandwiching Eq. (41) by occ and virt orbitals, one finds the
different components of 72)(t):

1. occ-occ
720 =21l 70): (48)

2. occ-virt
720 = (670l pa): 49)

3. virt-occ
720) = (9aldP1)): (50)

4. virt-virt

~(2)(;) <¢a|¢(1)(t)> <¢(1)(Z)|¢b>+<¢a|¢(1)(l)> <¢(1)(l)|¢b>

61V

From Eq. (51), it is clear that the second-order orbital
correction (|¢(2)(t))) has no explicit dependence on y(z)(t)
According to Egs. (48) and (49) (or (50)), the expression for

¢ () is
67 (0)) = ZZy“)(r)ms >+nyff<r)|¢a (52)

— (2) i(Watwp)t
- EZ yij (OJQ, wﬁ)el Watwp
jap
+ 75 (Wa,—wp)e RN
+ ’yg)(_wa, wﬁ)ei(iw(ﬁrwﬂ)t
2 i (=0 —
+ Y7 (~wa—wp)e B )
+ Z [,y( )(a)a’ a)ﬁ)ei(a)aﬂuﬁ)t
aaf
ot @amwp)e o

+ Y5 (e, wp)e R

+ Y (~wa—wp)e T |g,).  (53)
2. Auxiliary coupling matrix elements
for the TDKS determinant

We are now prepared to evaluate the second-order
auxiliary coupling using the perturbed TDKS orbitals

i = 3 (@01, + (1o
J
+ (0010 (54)
=T1+T2+T3. (55)

Y i v i * 8 ~ .
T3 = Z [Z (Xja(wy)e“"Vt + Xja(—a)y)e—lwyt) (¢a] @ Z (ij(w6)ezw5t i
1223

Jj ay

J. Chem. Phys. 142, 064114 (2015)

Note that the derivative of the exponential part e='%i’ of (1)
(as shown in Eq. (37)) is not included in the above expression
since that term will have no effect on the final result (Wthh
is easy to prove). We will now treat the three terms in Ci QJ @
separately.

[o]
I T1: $ (g7 (10)]¢19)) and T2: 5 4167 (0) )
To evaluate these terms, we plug in the expressions
for |¢(.2)(t)) (Eq. (52)) and T'1 becomes

22 77 005! +Zy<”*(r)0 (56)

where we define the “right” spin-orbital derivative overlap
OR[QJ the same way as in Ref. 23,

Op? = (@plol?h (57)
:(ZCMM)(Z|v>C£2]+Z|v[Q] w,) (58)

T
:ZCM,SWC +ZCM,SR[Q (59)
Sl w
ZC salel Vq—(aL% (61)

Here, C,, denotes the MO coeflicients, ®,, stands for
an orbital rotation matrix, SL%] = (,u|v)[Q] are meaningful
overlap derivatives contributing to Pulay forces, and SE,[,QJ
= (uv12)). 5021 = sl 1581 = J((uvieh) - (ul9llv))
are artificial matrix elements that can be ignored if
we introduce electron-translation factors.> (The detailed
derivation of 0§[qQ] can be found in Ref. 35.) The (w, +wp)
Fourier coefficient of T'1 is

2 2
T1=3 Z% a0 O+ ) Y wa 0p) O,
aj
(62)

where yz)(a)(,,a)ﬁ) and yz(a)a,a)ﬁ) correspond to the

(wq +wp) Fourier transforms of y( )(t) and 7(2)(t)
respectively. Similarly, the (wq +wg) Fourler coeﬂicwnt
for T2 is

_Ix ol
2= EZYU

+ D Vuwa, wp)05° (63)
aj

o wp)+ ZZyjf(wa,wﬁ)oR[Q

Q]
2. T3: 3,000l (0) )
To evaluated this term, we plug in the expression for
the first-order orbital corrections (Eq. (46)) into 73. One
finds

Xjp(—ws)e™ ") )] (64)
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Recall that X;,(w) = fj’;(—w), and it is easy to write down the (w, + wg) Fourier transform of 73,

73 = Z (Fa(wa) X1 (wﬁ>+zna<wa>x,b<wﬁ>0‘“9

The total (w, +wpg) Fourier coefficient of the second-order
auxiliary coupling given by TDDFT can thus be expressed
as

T1+T2+73

2
—Z% ) (war w0 2+ Z M wa, wp)
J

+Z Via(wa)Xjp(wp) + Tia(wp) X p(a)) On!

jab
2 R
+ 3 (¥ war p) =2 wa wp)) O]
Jja

+ ) (X2 @ uwp) + X wp)Fa(wa).  (66)
Jja
As a result of the idempotency of the Kohn-Sham density

matrix,*® the virt-virt and occ-occ pieces of the second-
order density matrix yfg(a)m wg) satisfy

Y2 (War wp) = Z(X,-a(wamb(ww X a(wp)Vip(wa)),

(67)
- Z(Xja(wa)yia(wﬁ) + Xja(wB)Yia(wa))-

(68)

2
751')((‘)(1, (U,B) =

If we apply these expressions to Eq. (66), the total Fourier
coefficient becomes

T1+T2+T3 = Zy< ) (war wp) 0!
+ Z’)/[(lzg(u)(y, wﬂ)Osl[,Q]
ab

+ Z (’y(azj)(wm (U,B) ’yja(wm wﬁ)) Q]
ja

oo )
+ 3 2 [ X wa)Ta(wp)
ja

+X}2J(wﬁ)i}a(w(1) - X‘vja(wa)Yj[aQJ(wﬁ)
- Xja(wp)V| 2 wa)] (69)
=0+XYVY, (70)

where we define

0= Zyﬁ?(wa,wﬁ)Oi{Ql+ nyg(wa,wp)OSLQ‘
+ Z ’yaj(w(h (,L)/;) yja(wd7 wﬁ)) ]7 (7])
ZZ 12 wa) Y a(wp) + X wp) Y a(wa)

- Xju(wa) VPN wp) - Xju(wp) VPN wa)]. (72)

Via(@p) X wa) + > Fialwp) X jp(wa) Onel?). (65)
b

[
3. Residues of the coefficient derivative terms

We must now evaluate the residues of the O and XY
terms.

1. Residue of XY
We begin with the residue of the X(wg) and ¥(wq)
derivatives. Start with the general working equation for

RPA
X(weq) y@
(Y(am) i _<V<">)' 7

s el )

We note that X(w,) and ¥ (w,) can be obtained by

Xwa))_ [(A B 1o\ (ve@ 74
Fwn |~ I\B alt@lo —1)| |y T4

According to Ref. 33, the inverse of the supermatrix is

equivalent to
-1
1 X
. (x 1)
7 Q ]t Wy Y[

Sl )

Therefore, if V(@ = u<") (the dipole operator), X and Y can
be expressed as

Xlulug;) Ylu#(IC(Y))
Xja@a) = Z( 5 : (76)
[T Wq QI — Wy
) vlapgy Xl
Y; = + . 77
ja(wa) Z(QI"'(UU Ql_wa ( )
Thus, the residues of X and ¥ at poles w, =Q; and
wg=—L; are
Res[ X ja(wa): ] = Y/ 47, (78)
Res[¥a(wa): Q1] = X1 47), (79)
Res[ X ja(wa):—Qy] = X1 p), (80)
Res[Tja(wa)i=] = ¥/ 1), 1)
and the derivatives of X and Y are
(@) Ia, (@)[0]
Y[Q](w ): Z Xj ﬂOI X Hor
Ja @ 7 Q] + Wq
(@) (@),[0]
. v/ Wy e
QI —Wq
B X}aug;)Q[IQ] B YIaMIO)Q ]| (82)
(QI +ww)2 (QI _wa)z ’
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Y- QJ/l(a)+Ylu/1(a) ,[0]
~ 07 07
Yj[uQ](wa/) — Z J J

7 QI+Q)Q

la|Q] ((l) Ia,,(@),[0]
X, 1y Xar“m

QI —Wq
Ia, (@)n[0] Ia, (@)n[0]
_Yjaﬂwﬁ _X a“loQ
(Q+w,e)? (Qr—we)? |

+

(83)

where ygj) =Y a(X j’ ay Yj’ “)Vj(")“. We can now write down
the residue of XY at the poles w, =Q; and wg =-Q;,

RES[Xy'QI,—QJ]
ylalQl (a) la, (@),[Q
22[ Y Hio

JalQ] Ja, BLIC] yIa, (@)
+(Xj /‘OJ"'X a'uOJ )Xja:“m

) YJa/JQJ)

Ia, (@) Ja, (B).[0O]
=Yy (Y /‘OJ +Y “py )
_ XJaMOJ (X /1(1(:))+X1a/1(1((l)) [Q]) (84)
_ 1 TayJ TayJ
= EZ[(XJ'“XJ“_Y} /)
(@) (B)[Q] _  (a).[Q] (B)
(/‘10 Moy~ Hyo /‘01)
+ (X-IaXJa[Q]—YIaYJa[ ]_XIH[Q]XJLI
JJ Jo J J
lalQlyJa\ , (@), (B)
+ Y “Fy; a)“l((l) “OJ] (85)
Recalling the orthogonality condition
TayJ layJa) _
2 (xjexfe-ylev/) =61, (86)

Jja
we find that the first term in Eq. (85) vanishes. Taking the
derivative on each side of Eq. (86), one finds (for I # J)

Z(X;G[Q]X}’a_yjla[Q]ija
ja
layJalQ] _ylayJalQl) _
+ Xjax /el _ylaylalel) <o, 87)

Z (_Xj{a[Q]X{a + Y_Ia[Q]YjJa)

_ Z XluXJa

Plugging Eq. (87) into Eq. (85) and taking out the first
term, we get the final result for the residue of XV,

Res|XY;Q;,—Qy]
=3 (xfax/tel
T J J
Ja

2. Residue of O
The residues of the occ-occ and virt-virt part in O
are straightforward. Using Egs. (68) and (78)—(81), the
residues of the occ-occ and virt-virt parts at w, = €2y and
wp=—Q; are just

—y/ay/ael). (88)

J
_leayj a[Q]) #(I((ZJ)#O(’;) (89)

R€S|:Z’y( )(wty,wB)OR[Q Ql, QJ

J. Chem. Phys. 142, 064114 (2015)
:_Z(Xl_luX]‘_/a_i_Y}IaYiJa)O Q]/v‘%)#fﬁ)’ (90)
ija
Res[Z)f (wa,wB)ORIQ QI,—QJ]
_Z XIbX.Ia Yluyjb) Oab /1(1(:))#0(’3) (91)
abj

For the virt-occ (yg,)(wa,wﬁ)) and occ-virt (yé%,)(a)mwﬂ))
pieces of the second-order density matrix, these matrix

elements must satisfy>?
A B I 0 9(%, wp)
+(wo +wg) )
B A 0 -I/|\ vov(Wa,wp)

_ Z‘vo(w(h (1)[;)
- (Zov(wa, wﬁ)). (92)

See Appendix B 1 for explicit expressions of LY(wa, wg)
and L*(wq, wp). Note that LY (wa,wp) and L (wa.wp) are
bilinear in X;,(w,) and ¥;,(wp)* (or some permutations
thereof).

The residue of y\(,?(wa,wﬁ) and 7(()%)(wa, wg)atwy, =Qy

and wg = —€; are ¥} and v}, with
LVO
( g{). (93)
Lij

Vo -1
S
Yy B A 0 -I
LY, and L ‘; are the virt-occ and occ-virt Lagrangians,
LY = Res[L(wa, wp);Q1,—Qy] and LY, = Res[L°(wq,
wp);Q1,—Qy] (see Appendix B 1 for expl1c1t expressions).
Thus, the overall residue of O can be written as

Res[O;QI,_QJ]
TavyJ LayJ R[Q]
- L (xlexjevyfex/) of

ija

IbyJa IayJb\ HRIQO]
+ 3 (x[Pxfesyfan/?) off
abj

Z Y19~ Y11)a

] Ko %4)

C. Final expression for TDDFT derivative couplings

Thus, the total residue for the (w, +wg) Fourier transform
of the auxiliary couplings obtained from TDDFT is

Res[O+Xy;QI,—QJ]
_ TavyJalQ] Iay JalQ]
= [Zxfexeieioyeypee)

Jja

_Z XIaXJa YlaYJa)O”Q]
ija

I1byrJ IayJb\ HRIQ]

+ ) (X x] vl o

abj

(@), (B)

Z?’U 11 0,; ]#13/‘01 ©5)

Comparing Egs. (31) and (95), we can write down the
Response Theory derivative coupling between state / and



064114-8 Ou et al.

RT
state J (d;;),

<\Pl|\I/5Q]> — Z (XiIaXiJa[Q] _YiIaYiJa[Q])
ia

_ Z (XiIanJa + YanYl_Ja) OE[Q]

ija
IbyJ IayJb\ HRIQ]
+ Z(Xj X} +ylev/") oy,
abj
R
+ (-7, 0ne! (96)
Jja
=dY]. 97)

Comparing d5} with our derivative coupling based on a
pseudo-wavefunction ansarz (dbY, Eqs. (18) and (24) in
Ref. 23), we find that the difference between two approaches

is no more than

v R
AT =dY+ > (v -v3y),,0ne. (98)
Jja

This result agrees with the recent work by Li and Liu.??
Plugging in the final expression for dfl’}v (Eq. (47) in Ref. 23)
and the expression of O(]:][.Q] given by Eq. (61), one can write
down df} in a finite AO basis as

(w2
XIpXJ YI pYJ
_ 1 S pigs Y Rin Ry +Rp Roy ) <o)
Q|4 ot +RYI RIS+ RIRY] )1

+ D! Py, 11°)

1 Q15 1J 1J
uvio | E Z S'“V PH“ (DﬁV+DVB) Fa'g

afuv
XIpXJ | pYIpYJ
Rvy Réﬁ +RWR5B
X1 pXJ , pYIpYJ
LS sloip TRop Ry + RopRoy |
) ny Thal | pXIpYJ | pYIpXJ apys
uvapys vy o6 vy "'\B6
X1 pYJ YIpXJ
+Rﬁ5 Rw +Rﬁ6RV,/

RY RS +R)IRES

RERY - RRY]
+R) Ry + R RS
RR IR
RXIRY] + RUIRY
+R35 Roy + RigRay | Eapyore
RURLRIRS |2

1 8
0]
-3 > SP

pvapysd

Gaﬁyé

- Z S,L%]ﬁyhpwr

uvaPBydro
XIpYJ | pYIpXJ
+Rﬁ6Rw+Rﬁ6Rm/
1 [Clp 1J 1J
+3 D SEIPuaPys (Dyf+ DY) Gapys
nvapys

_ Z (XlIaXlJb _ YiIaYin)Cqu#bSﬁ‘[Q]
uviab
1 J 1 J AlQ]
S (e
uvija

+ Z (V}I(} - V(I)})aj Z C;tanjS/é\[/Q]
Jja

uv

J. Chem. Phys. 142, 064114 (2015)

vo ov 1 R
- jza [(71J _Vlj)aj + Q_“Luj] ®a£-Q]~ 99)
After simplifying the orbital response (i.e., those terms
involving QI;E.QJ in the last line of Eq. (99); see Appendix
B 2 for details), and invoking the “z-vector” trick,?’ the final
TDDFT/RPA derivative coupling between state / and state J
given by response theory is then

(¥ Peh

_ QL“{ZD;;/QL%M 3

v uvio

X1 pXJ YI pYJ
R Roy +RipRoy 1\ ~10)
+Rff{ R+ RZ{ RXJ | " wvier

1J [O]
+ DMP(,,,H”W

1 [Qlp 1J 1J
-3 > Si1Pa (DY + DL Fup

afuv

XIpXJ | pYIpYJ
Ry, Rs; + R, Rsp

XIpXJ | pYIpYJ

gloip | TRop Ry + RopRyy |
Z py Tpal | pXIpYJ  pYIpXJ|TeBys
uvapBys vy “'B6 vy "\BS

N =

X1 pYJ YIpXJ
+Rﬁ6 Rw +R56RV7

R} RS +RYIRLT
X1 pXJ | pYIpYJ
1 015 |+Rss Ry +RpsRyy
) Z Suv Pua L RXIRYJ | RYIpXJ Gapys
uvapys YV o v Y6 B

XIpYJ YI pXJ
+R§ V+R5ﬁRyv

X1 pXJ YIpYJ
R(n/ R&B +R(t7Rc§ﬁ
X1 pXJ YIpYJ | =
_ Z S[Q]]‘S WP, +R6,8 Ray +R6ﬂRay ZaBySho
Hy S pAT Vo XIpYJ YIpXJ
uvaBysho +Ra’7 Rﬁé +R‘77Rﬁ6 2
XIpYJ YIpXJ
+Rjs Ray + RpsRay
1 [C]p J 1J
+5 D S PuaPus (D)4 DY) Gapyo
pvapByd

_ Z (XlIaXlJb _ Y;IaYlJb)CyaCHbSﬁ)[/Q]

uviab
1 J I J A[Q]
- D (XX =) Gy
Muvija
Al
#2015~y 2 Cua oSt
ja v

1 vo ov O]
- E + M. 100
20, 4 (71] 71J)b bi ( )

All terms in Egs. (99) and (100) are defined in Appendix A.
This final expression for dl}; is very similar to the one for
dfl’y except for the orbital response terms and the (rather
meaningless) Sﬁ‘[,Q] terms.

D. Spurious poles of the adiabatic TDDFT derivative
couplings

Despite the appeal of response theory, a crucial aspect of
Eq. (100) is unphysical. Consider again Eq. (92), where we
solve for the relaxed part of the second-order density matrix
response, y‘(,%,)(w(,, wg) and yf,%)(w(,, wgp). Because LV(wq, wp)
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FIG. 2. (a) The norm ratio —% and (b) the angle —r—155—
lld; 51l 51l 1l

response theory at various distances to the CI point.

and L*(w,, wp) are bilinear in X;4(w,) and ¥;,(wg) (or some

permutations thereof), the pole structure of y\%)(w(,, wg) (or
(2) :

Yov (Wa,wp)) is of the form

2
Y (@ar wp)
~ Z X}K“ [XiKblN,Z‘;.(a)m wg)+ Yl.KbZZVi(a)m wp)|

ot QK+LL)Q+0.)B
(101)
XE[XEP Ly v L]
— +...,
[ Q= wa)(Q +wp)(Qk +wa +wp)
(102)

where:,~ again, L} = Res[L(wa, wg);Qr,—Qy] and LYY,
= Res[ L™ (wq,wp);21,—€25] (see Appendix B 1 for explicit
expressions). Thus, for adiabatic TDDFT, ygi)(w(,,wﬁ) (or
7(()%)(000,(1)5)) contains products of three poles, which is at
variance with the pole structure of the exact time-dependent
density response—the latter containing at most products of
two poles. The existence of such spurious poles appears
to have been recognized previously by Dalgaard® in the
case of TDHF response theory. We can expect these terms
to be problematic when +Qg +Q;—Q; =0, where Qg is
any excitation energy; at such a geometry, Eq. (92) cannot
be inverted and the interstate transition density matrix will
diverge. To see this effect, a numerical example will be given
in Sec. III B. Note that Li and Liu independently came to the
exact same conclusion in their concurrent paper.’!

lll. NUMERICAL EXAMPLES

A. S¢/S, conical intersection of protonated
formaldimine

To investigate the derivative couplings (dlﬁ) derived
above, we now study two sample cases: (a) a CI when
Q,;— 0 and (b) the case of two well separated electronic
states (€7 > 0). In a previous study,?® we explored the S;/S

0.2

J. Chem. Phys. 142, 064114 (2015)

0 0.05 0.1
Distance moved/Angstrom

(b)

0.15 0.2

between CH,NH; S/S; derivative coupling vectors given by a pseudo-wavefunction ansarz and

derivative coupling of protonated formaldimine (CH,NH})
near its S;/S, CI point and we showed that the derivative
coupling vectors obtained from the direct differentiating our
pseudo-wavefunction ansatz recover all the desired properties
along a loop around the CI point: (i) the derivative couplings
lie rigorously on the branching plane and are perpendicular to
the energy difference gradient direction; (ii) their magnitudes
are identical everywhere on the loop in the proper coordinate
system; (iii) the path integral gives the Berry’s phase. In this
work, we will reexamine this molecule as an example to show
that the derivative couplings for TDDFT/RPA response theory
are identical to those for a pseudo-wavefunction ansatz near
the CI point.

We numerically implemented Eq. (100) in Q-Chem
and ®B97X/6-31G™ is used to get both dlﬁ and dfl’y between
S; and S, of CHZNH; . Taking the g direction as an example,
we gradually increased the distance moved away from the
CI point and computed both derivative couplings at various
distances. Then, we compared the norm and the direction for

39,40

>

K

=

=g

[}

f=

w

o

= 6 E

©

5]

o
4 |
2, E
OW
0 0.05 0.15 0.2

0.1
Distance Moved/Angstrom

FIG. 3. Relative energies for Sp, Sy, and S, states of CHzNH;’ versus the
distance moved from the CI point.
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FIG. 4. S;/S4 TDHF derivative coupling elements for LiH obtained from a pseudo-wavefunction ansatz (PWDC) and response theory (RTDC) as a function of
bond length. In (a), we use a linear scale, and in (b), we use a logarithm scale. Note that the two methods basically agree except at 1.9 A, where RTDC diverges.
The absolute value of the derivative coupling with respect to Li, coordinate is plotted.

two derivative coupling vectors computed at every distance.
As shown in Fig. 2, the agreement between the two approaches
is very good up to a large distance from the CI point. The
relative error for the norm is less than 5% and the angle
between two vectors is less than 1.5°. We also plot the S;/S,
energy gap with respect to the distance in Fig. 3 for reference.
As the distance increased from 0.001 A to 0.2 A to the CI
point, the energies of S; and S, become 4 eV separated.
Even with such a large energy gap, the derivative couplings
given by these two different approaches are just about
indistinguishable.

B. S1/S,; TDHF derivative coupling of LiH

As we have shown in the previous example, the RPA
derivative coupling obtained from the original response theory
and our direct differentiation of a pseudo-wavefunction ansatz

Relative energy/eV

Bond Iengtﬁ/Angstrom
(@)

are practically equivalent near a CI point (and pretty far away
too).

We now study the opposite case: two well-separated
electronic states. LiH is used as the test system and its TDHF
S1/S4 derivative coupling at different bond lengths is computed
with a 6-31G" basis for both approaches. In Fig. 4, we plot the
absolute value of the derivative coupling with respect to the
z direction of Li atom, using both our direct differentiation
of pseudo-wavefunction ansatz and response theory. Relative
energies of Sy, Sy, and S4 are plotted in Fig. 5 as refer-
ence.

As shown in Fig. 4, when the bond length is increased
from 1 A to 3 A, both S;/S4; TDHF derivative couplings
of LiH usually behave similarly. Near 1.9 A, however, the
two couplings behave completely differently. While df)Y
has a relatively consistent value in this range, dlff changes
dramatically in magnitude. This abnormal behavior of dfl{f

4.5

Energy/eV
w
2]

()

25

21 1.5 25 3

2
Bond length/Angstrom

(b)

FIG. 5. (a) Relative energies for Sp, Si, and Sy states and (b) energy gaps between these three states of LiH as a function of bond length. (Q9=Q;-Qy,

Qu=Q-Qp)
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is not hard to explain if we analyze the Sy, Si, and Sy
relative energies of LiH. As shown in Fig. 5, on the left, the
potential energy curves of these three states are smooth and
there is no crossing when the bond length changes. However
on the right, we plot the two energy gaps, Q9 and Q4.
One can see that the two energy gaps cross when the bond
length ~1.9 A, which is exactly the case where the derivative
coupling from response theory is expected to be unphysi-
cal.

IV. CONCLUSION

In this paper, we have presented a detailed derivation for
the RPA derivative couplings based on response theory. The
final expression has been implemented in Q-Chem, and we
have compared the resulting derivative couplings with those
based on a pseudo-wavefunction ansarz (as obtained in our
previous studies*'?%). For small energy gaps between the two
excited states, i.e., close to a CI, both sets of derivative cou-
plings are identical up to an antisymmetric overlap term, see
Appendix B 2.

However, when the energy difference between two excited
states equals the excitation energy of a third excited state, the
derivative couplings from adiabatic TDDFT response theory
exhibit a spurious pole. This unphysical behavior appears to
be a consequence of an incorrect pole structure of quadratic
and higher-order frequency dependent response properties
within the adiabatic approximation,® which neglects frequency
dependence in the XC kernel and its derivatives. This incorrect
analytical behavior also calls into question the validity of
the adiabatic approximation for other non-linear response
properties such as state-to-state transition moments and even
non-linear polarizabilities. For TDHF response theory, which
has the same analytical structure as adiabatic TDDFT, this
problem has been discussed before,* but its consequences
for excited-state properties appear to have been largely
ignored. Li and Liu have independently come to the same
realization.!

An important conclusion of this work is thus that the
adiabatic approximation of TDDFT is less robust for higher-
order non-linear response properties than it has been generally
assumed. The development of practical frequency-dependent
XC kernels beyond the adiabatic approximation is also
essential for states with double excitation character.*?

A remedy of the spurious divergence is to evaluate the
relaxed part of the transition density matrix at frequency zero
instead of Q;; in Eq. (B10). This is exact at a CI, where the
couplings are largest, and recovers the previously proposed
pseudo-wavefunction approximation up to an antisymmetric
overlap term. Thus, in the absence of better XC kernels, the
pseudo-wavefunction approximation to the couplings may be
the best available option for computing excited state to excited
state couplings in a TDDFT framework.
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APPENDIX A: DEFINITIONS FOR TERMS IN EQ. (100)

The final expression for response theory derivative
couplings that we implemented and used throughout this
paper is Eq. (100),

(¥ Peh

_ QL”{;D;%QVM D

uvio

X1 pXJ YIpYJ
RYRY+RIRY\ o)
+Rjj{ RY + R}j{ RXS |7 wvrer

1 ~
+DPAILD |= 5 > S8 Pua (Dfl+ DJj) Fap
afuv

XIpXJ | pYIpYJ
Ry, Rs; + R, Rsp

! 015 | +Rs Ry +RssRY)
) Z Suv Pua RXIRYJ 4 RYIRXJ Gapys
uvapys Ty Res + K,y K s
XIpYJ YIpXJ
+Rps Ryy + RgsRyy
X1 pXJ YIpYJ
R’}’V Rp’é +Ryv Rﬁé
1 015 | TRz Ry +REsR))
) Z Suv Pua +RXIRYJ | Y1 pXJ Gapys
uvapys yv 1YoB yv B
X1 pYJ YIpXJ
+R6[3 R)/v +R5ﬁRyv
X1 pXJ YIpYJ
Ray R(S/S +R(zyR6/3
X1 pXJ YIpYJ | =
_ Z S[Q]IS WP +R55 R‘W +R56R(Y7 ZaBySho
Hy S AT Ve XIpYJ YIpXJ
uvaBysho +R(l’y R,B6 +R(l7Rﬁ‘6 2
XIpYJ YIpXJ
+Rﬁ(5 Ray +R'85R(W
1 N
*5 2, SPuPus(Djj+ D)
uvapys

1
X Gapys— 5 Z(Vﬁ + ?’%)bz‘M};IQJ}
bi

= 3 XX XY S
uviab

= D (KT =) €S
nvija

+ D =)0 D CuaCriSi. (AD)
Jja Hv

Terms in the above equation are defined as follows.

1. One- and two-electron integrals
(a) Total one-electron integral
hpg = hgq +8pq> (A2)
where hgq is the matrix element of the kinetic
energy plus the external potential (Eq. (A3)) and g,
is the first derivative of the XC energy functional
Eye= [drfe(r)” (Eq. (A4)),

hS = (Bplh°¢g). (A3)
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B 0 fxe
8pq = ;/d“ﬁp(r) () $q(r). (Ad)

(b) Total two-electron integral
qusr :Hpqsr+qusr’ (A5)

where Il is the Coulomb term plus whatever
fraction of Hartree-Fock exchange is included in the
DFT functional (cyr in Eq. (A6)), and f,4, is the
second derivative of the XC functional (Eq. (A6))

Hpqsr = <¢p¢q|¢s¢r>_CHF<¢p¢q|¢r¢s>a (A6)
Sogsr = <¢p¢q|f 15

= 3 [aronwse i o 0w a7
pqsr

2. Density matrices
(a) The general density matrices

P/tv = Zcumcvm’ (AB)

ﬁ,uv = ZCMJCVP =
p

Note that we may express the real-space density as

p(l‘) = P,uv¢u(r)¢v(r)~
(b) The RPA excitation-amplitude matrices

P+ Y CuaCra- (A9)
a

RXI= ZCWX} ac,., (A10)

RV = Zc,mylacv, (Al1)

ia
(c) The generalized difference-density matrix
D” Z C#Q(XlaXJb n Yjaylb)cvb
iab
Javyla layJa
= Y Cuix{extsxlv/ e, (A12)
ija
3. Derivative terms

(a) One-electron-integral derivatives

The first derivative of the XC functional g9l is
defined as

g9l =l2l, grIel (A13)

where

[O] o
g2l = / dr g0 205 (1)

p(r)
O fre
o [ rgeo,m0.0)
0% fre
) [ arowam
X Pro(¢r(0)§ (1), (A14)
guv ZPMT fyv?»o‘ (A15)

Here, f 2 denotes differentiation with respect to Becke
weights.
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The total one-electron-integral derivative for
TDDFT can be written as

0
HO) = Q)4 glo)
0
_ Ae 0lo) 51204 gV0)
= 7o)+ griC (A16)

(b) Two-electron-integral derivatives
The second derivative of the XC functional f1€!
is defined as

f}[lgi(f = ~,uv7\(r+fY1[%(r (A17)
where
g [0] 52 -
) ;[t%»o- = / dl‘(b,,(l')(]ﬁv(r)W];)zqﬁ;\(r)qﬁ(,(r)
62 XxXc
[ (00,6 L 000,
2
+ [ o, 00,002 0,016,0)
5 fue
v, (1),
+3 [ om0 52500
X (]50.(1') 6(¢y(r)¢6(r)) (Al 8)
Fro = D Py Eviarys. (A19)
Yo

and Z,,,)sys 18 the XC functional third derivative,

63 xc
E/.lV)\.O"}/(S = /dl‘(ﬁ”(l‘)(ﬁv(r) 0,0{1‘)3

X () o (1) (r)p5(r). (A20)

The total two-electron-integral derivative for TDDFT
can be written as

glel _qiel | ol

uvho — T uvio uvho

_ 1ol 701 Y[Q]
- H,uv)\(r + fuv)\o‘ + fpv)»a'

=Glel + Z oS ioys.  (A21)

(c) The mixed derivative M@ bi

2
0] _ OE o1, PE o]
mQl = h S
bi Z(BG),,[ahw w T a®blaSﬂV "

[Q] (AZZ)

yv)»(r

" Z a®blanm
= _Z ,ubcvi + C,uicvb>h£1Qv]
uv
(CybPVO'CM +C;11PVO'CMJ)G o]

uvho
+ Z ebC/JbCVi +<9iC;4iCVb
,uv

Z Ha,b’yé(P,B/_tpév""PﬁvPéy)
(xﬂyd

X (CaCyi + CaiCyp)|SIEL. (A23)
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APPENDIX B: ORBITAL RESPONSE

1. Definition of Lagrangians

J. Chem. Phys. 142, 064114 (2015)

According to Ref. 33, L(w,, wp) and L*(w,, wp) can be expressed as

Ly@aswp) = ) [(Ria@a)Vjawp) + Vja(wa) Xia(@p)) Gavja+ (Xia(@a) Xja(@p) + X jalwa) Xia(wp)) Gaajp

adj

= D [Fip@a)Valwp) + Fia(wa) Xip(@6) Gatji + (Xin(@a) R ja(@p) + X ja(@a) Xip(@p)) Gai

ajl

+ Z [(Xja(wa)yld(wﬁ) +Y0(0a) X1a(wp)) Batjapi + (X ja(@e) Xia(wp) + Yia(wa)Yia(wp)) Eadjlbi]

adjl

+ 3" (Xalwa)Va(wp) + ¥1(@a) Xa(@)) Gavai—= Y | (Xjawa)ia(@p) + Via(wa) Kia(wp) G jpir,

adj

(BD)

ajl

L3(wa, wp) = Y [(Fa@a)Xja(wp) + Xja(@a)Fia(@p)) Gabja+ (Fia(@a)V;a(wp) + ¥ra(@a)Fia(@p)) Gadps

adj

= D [Oib(@a) X alwp) + K ja(wa)Fin (@) Gatji + (Fin(@a)Via(wp) + Fra(@a)Yin(@p)) Gaisi |

ajl

+ ) [Tiawa) Kia(wp) + X ja(wa)Via(wp)Barjani + (Tia(wa) ia(@p) + X ja(@a) Kia(wp) Eadjini]

adjl

+ Z (Xja(wa)Yia(wp) + YVia(wa) X ja(wp)) Gapai — Z (Xja(wa)Yia(wp) +Yia(wa) Xia(wp)) G ji-

adj

LYY and L} are obtained by evaluating the residues of
LY(Wa, wp) and L (wq, wp) at we = Q; and wg = —Q;. In the

AQO basis, L7 and L} can be expressed as

Jd pYl Id pXJ
+Xi Rva'+Y;‘ Rvo’

RYIXE"+ R
I B

R(XIX‘»Id+RYJY-1d
LZ(Z — Z C'uhC)\d( oV i ov©i Gpvh(r

uvio €
+ > CpCei
uvhoyd
1J
+ Z vaC(riDH)\Gpv)\(r,

uvio
XJyld YIyJd
Ro—in +Ra’in
Gyv)»cr

oV _
Ly; = Z CuvCia L xIdRYJ L yldpXI
uviod i vo i vo

RXJXIb+RYlyjb
_ Z C,ow( ov L ovie G,uv)x@'

oV

+RX1RYJ+RYIRXJ

XI pXJ YIpYJ
RM R +RMR0.V
vo /17\

Eyv)»o'y&
Vo ,uk

(B3)

1b pYJ Jb pX1I
uvio +X[,’ Rwr+Y€ Rvo-

+ > Culsi
uvhoysd
Cy»CoiD]IQ
+ vbLoily seuvio-

uvio

avtuh ovituh

(RXIRXJ+RYIRYJ
XIpYJ YIpXJ
+Rle RW+RMRWT

):uv)x(ryd

(B4)

Finally, we can define a total Lagrangian Ly; = L}, + L;".

(B2)

ajl

2. Behavior near a Cl

In Ref. 23, we showed that derivative couplings con-
structed from our pseudo-wavefunction ansatz are consistent
with the Chernyak-Mukamel equality and time-dependent
response theory near an excited crossing in the limit of an
infinite atomic orbital basis.*!?*12 In this subsection, we
show that this consistency survives in a finite basis. The key
observation is that the only meaningful difference between

d}Y and d¥f] comes from orbital response terms.

a. The orbital response in the pseudo-wavefunction
derivative coupling
According to Eqgs. (47) and (48) in Ref. 23, the orbital

. PW .
response ind; '’ is

1 1
> L@ =Y (pr+ Lyhele  (BS)
QJI e bip QJI bi( bi bl) bi

This term can be simplified via the coupled-perturbed Hartree
Fock (CPHF) equation

PE \!
olol - Y (_PE_\ "o
aj Z 00,00,;) Vi

aj

I _
=~ D (A+ B My
aj

(B6)
(B7)

where MCE?] refers to the mixed derivative terms (Eq. (A22)).
The orbital response in d®} finally becomes
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1
[0l _ - [0]
o Eh. L,0\9'= 50, Eb(A+B)meLb,Mbl . (B8)
i ]az

b. The orbital response from derivative couplings
according to response theory

According to Eq. (99), the orbital response in dl}} is

! RIO]
Z YIS -Y)., +Q—“Laj]®uj . (B9)

Here, L,;= L"V + L"° ¥y and y7Y are given by

-1
Y9 A B I O LY
y'ojv)=— )+ J1 71 (B10)
YiJ B A 0 -I 1J
and one has
VO ov 1 VO ov
711_711=__I[(A+B)(')’1J+71J)+(L +L )] (B11)

If we substitute Eq. (B11) into Eq. (B9), we find that all L
terms are canceled. The orbital response in d}}; can thus be
rewritten as

1
Z Q—“(A+B)jaib(7;(}+7%)bi®$]- (B12)
jaib
After applying the CPHF equation (Eq. (B7)), the final
expression of the orbital response in dRT becomes

1
> Q—<A+B>jaib<y,,+7,,>m ol
jaip =1

= m Z(mw,,)b, (B13)

c. Equivalence near a Cl point

According to Eq. (B10), in the limit of Q;; — 0 (i.e., at a
CI point), one has
(715 +717)=~(A+B) (L5 +L5)) =—(A+B)"'L.  (B14)
Referring to Eqgs. (B13) and (BS), one finds that under such
a condition, the orbital responses in dl}} become exactly
the same as the one in dl;y. Therefore at a CI point, dRT §

equivalent to d®¥ up to a factor of S*1€! (which can be ignored

when applying electron-translation factors®). This proves the
equivalence we hypothesized.
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