
Chapter 8
Memory: History, Initial-State Dependence,
and Double-Excitations

Neepa T. Maitra

8.1 Introduction

In ground-state DFT, the fact that the xc potential is a functional of the density is a
direct consequence of the one-to-one mapping between ground-state densities and
potentials. In TDDFT, the one-to-one mapping is between densities and potentials for
a given initial state. This means that the potentials, most generally, are functionals
of the initial state of the system, as well as of the density; and, not just of the
instantaneous density, but of its entire history. These dependences are explicitly
displayed in Eq. 4.28. Of particular interest is the xc potential, as that is the quantity
that must be approximated. The Hartree potential has no memory, as the classical
Coulomb interaction depends on the instantaneous density only, but since both the
interacting and non-interacting mappings can depend on the initial state, the xc
potential must be a functional of both the initial states and the density.

We use the term memory to refer to the dependence on quantities at earlier times:
initial-state dependence and history-dependence of the density.

In a sense, memory arises because of the reduced nature of the density as a
basic variable: if the wave function of the system was known, there would be no
memory-dependence, since the wavefunction at time t contains the complete infor-
mation about the system at time t, from which we can determine any observable. The
density however traces out much of the information, desirably reducing the descrip-
tion involving 3N spatial variables plus time to a description using three variables plus
time. Analogously to the theories of open systems, from this tracing out of degrees
of freedom emerges memory dependence. In treating open systems bath degrees of
freedom are traced out to get a reduced description in terms of system variables only
(see Chaps. 10 and 11): the effect of the bath is embodied in an influence functional
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that is non-local in time. Much like in open system theory with a low-dimensional
bath, the TDDFT memory of early history persists at long times: time does not wash
it away (as it would if we were tracing out a bath of a continuous spectrum).

In linear response, e.g. calculating spectra, (Chaps. 4 and 7) the system starts in its
ground-state, which, by virtue of the Hohenberg–Kohn theorem, is itself a functional
of its own density, assuming it is non-degenerate. Initial-state dependence is not
explicitly needed in the functionals, provided that the functional space is reduced to
that where the initial state is a non-degenerate ground state. The exact xc kernel has
history-dependence, which translates into non-trivial frequency-dependence when a
time-frequency Fourier transform is done.

In an adiabatic approximation, as discussed in Chap. 4, memory-dependence is
completely neglected: the instantaneous density is input as a “ground-state” density
into a ground-state xc potential approximation. In fact, even before Runge and Gross
(RG) formally established their theory, adiabatic calculations of optical spectra were
performed, that plugged the instantaneous density into the LDA (Ando 1977a, b;
Zangwill and Soven 1980a, 1981); this is the ALDA, Eq. 4.100. The xc kernel in an
adiabatic approximation is proportional to a δ(t−t ′) (Eq. 4.86a), which, upon Fourier
transforming, yields a frequency-independent xc kernel. Since the inception of the
RG theorem, there have been attempts to develop functionals with some memory
dependence, with varying degrees of success and applicability. The earliest and
simplest is the Gross–Kohn approximation (GK) for the xc kernel (Gross and Kohn
1985, 1990). Considering densities that are slowly varying in space, GK bootstraps
the local density approximation to finite frequencies, i.e. the frequency-dependent
kernel is approximated via the homogeneous electron gas response at finite frequency
(Eq. 4.107), a spatially-local but time-nonlocal kernel. In the mid-nineties, it was
realized, however, that a theory that depends on the density non-locally in time must
also depend on it non-locally in space; otherwise, exact conditions, importantly
the harmonic potential theorem, are violated (Vignale 1995a; Dobson 1994a) (see
Chap. 24).

The idea that memory is locally carried by the electron “fluid”, in a Lagrangian
framework, was exploited by Dobson et al. (1997), who essentially applied the GK
approximation in a frame moving along with the local velocity of the electron fluid.
At about the same time, Vignale and Kohn showed that a theory local in space
and non-local in time is possible instead in terms of the current density (Vignale
and Kohn 1996; Vignale et al. 1997). Their functional has begun to be tested on
a variety of systems with mixed successes (see Chap. 24). A fully spatially- and
time-nonlocal hydrodynamic formulation using Landau Fermi-liquid theory was
presented in 2003 (Tokatly and Pankratov 2003—see Chap. 25). Tokatly (2005a,
b, 2007) further developed this, considering many-body dynamics in the co-moving
Lagrangian frame, leading to time-dependent deformation functional theory. In this
frame, xc is spatially local, and all complications, including memory, are contained in
Green’s deformation tensor characterizing the frame. A theory based on a Galilean-
invariant “memory action functional” has also been formulated (Kurzweil and Baer
2004). Noting that functionals of the instantaneous KS orbitals incorporate infinite
“KS memory” leads to another approach, e.g. time-dependent EXX displays memory
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effects near intersubband resonances in semiconductor quantum wells (Wijewardane
and Ullrich 2008). We note none of the functionals proposed so far incorporate initial-
state dependence, although orbital-dependent functionals do have memory of the KS
initial state.

Today, however, almost all applications of TDDFT utilize an adiabatic approxima-
tion, absolutely memory-less. Certainly, an adiabatic approximation will work well
if the system is slowly-varying enough that the system remains in a slowly-evolving
ground-state, but this is hardly the typical case in dynamics.

Most of the rest of this chapter investigates memory properties of the exact func-
tional, with general real-time dynamics and strong external fields in mind (Some
specific phenomena are discussed in Chap. 18). Cases where exact results are avail-
able indicate that memory-dependence can play a vital role. Understanding how
the exact functional behaves should prove a useful tool in constructing accurate
approximations. We discuss history-dependence in the next section, followed by
a section on initial-state dependence. We then show how these two sources of
memory-dependence are entangled, and discuss an exact condition relating the two
in Sect. 8.4. Implications of memory-dependence for quantum control type prob-
lems are then discussed. In the last section, we turn to the double-excitation problem
in linear response, and discuss the frequency-dependent kernel that captures them.
As in Chap. 4, atomic units are used throughout this chapter.

8.2 History Dependence: an Example

Consider a system in its ground state, assumed to be non-degenerate. As discussed
in the introduction, we may then put aside initial-state dependence, and ask how far
back does the system remember its past? How far back in time do observables at the
present depend on the density in the past?

A useful tool to study this question is a time-dependent problem with at least two
electrons, for which both the KS system and the interacting system are exactly, or
exactly numerically, solvable. Two electrons in a Mathieu oscillator provides a good
case (Hessler et al. 2002); the external potential has the form:

vext(r, t) = 1

2
k(t)r2, with k(t) = k̄ − ε cos(ωt), (8.1)

with k̄, ε, and ω appropriately chosen constants. The static version is often called the
Hooke’s atom; a paradigm for studies of exchange and correlation in the ground state
(Taut 1993; Frydel et al. 2000), largely because, for some parameters, the interacting
problem can be solved analytically. For the exact interacting solution of the time-
dependent problem, transforming to center-of-mass and relative coordinates renders
the Hamiltonian separable. Due to the spherical symmetry, one needs only to solve
numerically two uncoupled one-dimensional time-dependent Schrödinger equations.
From the evolving wavefunction, beginning in the ground state, the exact evolving
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density is obtained. Now, the KS wavefunction involves just one doubly-occupied
spatial orbital, evolving in time. By requiring its density to yield half the density of
the interacting wavefunction for all time, one can invert the KS equation to obtain
the KS potential in terms of the evolving density (Hessler et al. 2002).

The exact interacting dynamics has the useful property that the evolving density
breathes in and out while retaining the same (near Gaussian) profile: at each time t,
it is essentially the density of a ground state of a certain Hooke’s atom of spring
constant keff . This spring constant is not equal to the actual spring constant in Eq. 8.1
at time t, except when the latter is modulated slowly enough such that the state remains
an instantaneous ground state. In the general case, the state is not a ground state, but,
at each instant in time, its density is that of a ground state of a Hooke’s atom of spring
constant keff(t). This property allows us to compare the exact calculation with that
of an exact adiabatic one in a relatively simple way.

Many interesting phenomena arise (Hessler et al. 2002); one typically finds signif-
icant differences between the adiabatic approximation and the exact KS case (except
for very slow modulations). For example, the instantaneous correlation energy can
become positive, which is impossible in any adiabatic approximation, since for
ground states Ec is tied down below zero by the variational principle.

We now show that the correlation potential displays severe non-locality in time
due to history dependence. It is convenient to define a type of density-weighted
correlation potential via (Hessler et al. 1999)

Ėc(t) =
∫

d3rvc(r, t) ṅ(r, t), (8.2)

where the dot represents a time derivative. If Ėc(t) depends not just on the density at
and near time t, but also on its earlier history, then vc(t) must too. That is, non-locality
in Ėc directly implies non-locality in the correlation potential vc(t). The top panel of
Fig. 8.1 plots the value of keff(t), which, as discussed earlier, completely identifies the
density profile. The density profiles within a time slice centered near t = 4.8 and one
centered near t = 28.9are almost the same, yet the values of Ėc(t) near those
times are significantly different. Other pairs of time-slices having this feature may
also be found. The density at times near t is not enough to specify vc(t) : in fact
the exact correlation potential vc(t) is a highly non-local-in-time functional of the
density, depending on its entire history. Any adiabatic approximation has no history
dependence and fails to capture this effect.

This example, together with other studies (Ullrich 2006b; Wijewardane and
Ullrich 2008) of dynamics in strong-fields (starting in a ground-state) suggest the
exact functional typically has strong memory-dependence. However, not always:
in strong-field double-ionization, for example, the xc potential appears not to be
significantly non-local in time in a wide range of cases, although this depends on
how the field is ramped on (Thiele et al. 2008). Likewise when a very high-frequency
intense field is turned on very very slowly (Baer 2009).
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Fig. 8.1 Non-locality in
time: the top panel shows
keff (t), middle panel Ėc,

bottom panel Ec. The
parameters in Eq. 8.1 are
k̄ = 0.25, ω = 0.75 and
ε = 0.1
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The instantaneous momentum-density in the Mathieu oscillator distinguishes
time-slices where the instantaneous density is the same (Rajam et al. 2009). This
suggests that memory-dependence is likely gentler in a theory that uses a joint
position-momentum density, or density-matrix, as basic variable.

8.3 Initial-State Dependence

For a given time-dependent density how does the potential that yields this density
depend on the choice of the initial wavefunction? Initial-state dependence has only
begun to be explored (Maitra and Burke 2001, 2002b; Holas and Balawender 2002);
unlike density-dependence, there is no precedent for initial-state dependence in
ground-state DFT. For example, there is no analogue of the adiabatic approxima-
tion that could be used as a starting point for investigations.

One may wonder whether initial-state dependence actually exists. That is, if we
constrain the density to evolve in a certain way, are the implicit constraints on the
initial state enough to completely determine it? If this were the case, then there would
be no initial-state dependence: knowing the history of the density would be enough
to determine the functionals. We shall argue shortly that this is in fact the case for
one electron, but not for more than one.

Let us first rephrase the question: consider a many-electron density n(r, t)
evolving in time under an external time-dependent potential vext(r, t). Can we obtain
the same density evolution by propagating a different initial state in a different
potential?

One electron case. Consider one electron, evolving with density n(r, t). Let the
electron’s wavefunction be ϕ(r, t), where n(r, t) = |ϕ(r, t)|2. An alternate candi-
date wavefunction ϕ̃(r, t) that evolves with identical density (in a different potential)
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must then be related to ϕ(r, t) by a (real) phase α(r, t) :
ϕ̃(r, t) = ϕ(r, t)eiα(r,t). (8.3)

The wavefunction at time t determines not just the density at time t but also its first
time-derivative through the continuity equation:

ṅ(r, t) = −∇ · j(r, t), (8.4)

where the current-density j(r, t) is determined from:

j(r, t) = i

2

[
ϕ(r, t)∇ϕ∗(r, t) − ϕ∗(r, t)∇ϕ(r, t)

]
. (8.5)

Because they evolve with the same density at all times, both ϕ(r, t) and ϕ̃(r, t) share
the same ṅ(r, t). From the continuity equation it follows that they have identical
longitudinal currents, so:

0 = ṅϕ(r, t) − ṅϕ̃(r, t) = ∇ · [n(r, t)∇α(r, t)], (8.6)

where on the right-hand side we have inserted the difference in the currents of ϕ̃ and
ϕ, calculated using Eq. 8.5. Now if we multiply Eq. 8.6 by α(r, t) and integrate over
all space, we obtain

0 =
∫

d3rα(r, t)∇ · [n(r, t)∇α(r, t)] = −
∫

d3rn(r, t)|∇α(r, t)|2 (8.7)

In the last step, we integrated by parts, taking the surface term
∫

S dσen · (αn∇α),

evaluated on a closed surface at infinity, to be zero. This will be true for any finite
system, where the density decays at infinity, while the potential remains finite (or, if
the potential grows, the density decays still faster).

Because the integrand in Eq. 8.7 cannot be negative anywhere, yet it integrates to
zero, the integrand must be identically zero. Thus ∇α(r, t) = 0 everywhere. This
is true even at nodes of the wavefunction, where n(r0, t) = 0 : if ∇α was zero
everywhere except at the nodes, then as a distribution it is equivalent to being zero
everywhere, unless it was a delta-function at the node—but in that case the potential
would be highly singular, and therefore unphysical. So, for physical potentials,α(r, t)
must be constant in space, i.e. the wavefunctions ϕ(r, t) and ϕ̃(r, t) differ only by
an irrelevant time-dependent phase. Thus, only one initial state (and one potential)
can give rise to a particular density: the evolving density is enough to completely
determine the potential and the initial states.

The vanishing of the surface term in Eq. 8.7 can be compared with the require-
ment on the potential in the Runge–Gross theorem, as discussed in Sect. 4.4.1.
In Maitra and Burke (2001), an example of a pathological initial state is given,

http://dx.doi.org/10.1007/978-3-642-23518-4_4


8 Memory: History, Initial-State Dependence, and Double-Excitations 173

where the surface term does not vanish, even though the density decays exponen-
tially at large distances: the potential in which it lives plummets to minus infinity
at large distances, yielding wildly oscillatory behavior in the tails of the decaying
wavefunction, embodying infinite kinetic energy and momentum. Such unphysical
states are beyond consideration!

Many electrons. For many electrons, initial-state dependence is real and alive: one
can find two or more different initial-states which evolve with identical density for
all time in different external potentials.

A few simple examples of this are shown in Figs. 8.2 and 8.3. In Fig. 8.2, the
density (thick solid line) of two non-interacting electrons in one dimension in an
eigenstate (thin solid line) of the harmonic potential is considered (Maitra and Burke
2001; Holas and Balawender 2002). The two orbitals are the thin solid lines. If we
keep this potential constant, the density will remain constant. We then ask, can we
find another potential in which another non-interacting wavefunction evolves with
this same, constant density for all time? There are in fact an infinite number of them,
and one is shown here (dashed lines). The alternate potential was constructed using
van Leeuwen’s prescription (van Leeuwen 1999—see also Chap. 9), and is shown
here at the initial time. It is not constant in time: both the alternate potential and the
alternate orbitals evolve in time, in such a way as to keep the density constant at all
times.

The significance of this for TDDFT comes to light when we imagine the density as
the density of some interacting electronic system. For a KS calculation, we are free to
choose any initial KS state which has this initial density: that is, both the potentials
shown in the lower panel of Fig. 8.2, along with their respective orbitals, are fair
game. The difference between these two KS potentials is exactly the difference in
the xc potential, since the Hartree and external potentials are the same. So depending
on this choice, the xc potentials are very different. Any functional without initial-state
dependence would predict the same potential in both cases.

Figure 8.3 is another example of two different initial states that evolve with the
same density for all time. This example, again of two non-interacting electrons,
demonstrates that there is no one-to-one mapping between time-periodic densities of
Floquet states and time-periodic potentials (see Maitra and Burke 2002a). Consider
a periodically driven harmonic oscillator, containing two non-interacting electrons
in a spin-singlet occupying two distinct quasi-energy orbitals. One can show that the
density then periodically sloshes back and forth in the well. This is illustrated in the
top panels of Fig. 8.3. The middle panel of Fig. 8.3 shows a doubly-occupied Floquet
orbital (real and imaginary parts are the dashed lines) whose density (solid line)
evolves identically to the density of the Floquet state in the top panel. This orbital
sloshes back and forth in its potential, in a similar way to the orbitals of the driven
oscillator. The lowest panel shows the potentials: the solid is the periodically driven
harmonic potential corresponding to the Floquet state of the top panel, and the dashed
is the periodically driven potential corresponding to that of the middle panel. Now,
assuming there corresponds an interacting electron system whose density evolves
exactly as shown, then both the Floquet state in the top panel and the middle panel

http://dx.doi.org/10.1007/978-3-642-23518-4_9
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Fig. 8.2 An example of initial-state dependence for two non-interacting electrons: two different
wavefunctions may evolve with the same density in different potentials. In the top plot, the solid
lines are the two occupied orbitals of one wavefunction, which happens to be a stationary state of
the harmonic oscillator potential, shown in the lower plot as a solid line. The density is shown as
the thick solid line in the top figure. The dashed lines are the two orbitals of an alternative initial
wavefunction, that evolves with the same density in the potential which, at the initial time, is shown
as the dashed line in the lower figure

are possible KS wavefunctions, and both the solid and dashed potentials in the lower
panels are possible KS potentials; again, their difference (the sloshing “bump” in the
figure) is the difference in the xc potential.

Not only any adiabatic approximation, but any density-functional approximation
that lacks initial-state dependence—even with history-dependence—would incor-
rectly predict the same potential for all choices of KS initial states that propagate
with the same density. In the next section, we discuss how, in many cases, one can
eliminate the need for initial-state dependence altogether, by transforming it into a
history-dependence.

8.4 Memory: an Exact Condition

Part of what makes the memory dependence complex, is the intricate entanglement of
initial state and history effects. This has consequences even for initial ground states.
On the other hand, it allows the possibility for memory-dependence to be reduced to
history-dependence alone.

Consider an interacting system, beginning with wavefunction Ψ (0) at time 0, and
evolving in time, with density n(r, t). The xc potential at time t is determined by the
density at all previous times, the initial interacting wavefunction, and the choice of
the initial KS wavefunction Φ(0) for the KS calculation. Now say we can calculate
the interacting wavefunction at a later time t ′, where 0 < t ′ < t. Then, we may think
of t ′, as the “initial” time for the inputs into the functional arguments of vxc : that is,
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Fig. 8.3 Top left panel: the real and imaginary parts of the driven harmonic oscillator Floquet orbitals
ϕ(0)(x, 0) (solid) and ϕ(1)(x, 0) (dotted) at time = 0, together with their density (thick line). Middle
left panel: the real and imaginary parts of the alternative doubly-occupied Floquet orbital ϕ̃(x, 0)

(dashed), which has the same density shown (thick line). Bottom left panel: the two potentials, v is
the solid, and ṽ is dashed. The right hand side shows the same quantities at t = T/4

vxc
[
nt ′ , Ψ (t ′),Φ(t ′)

]
(r, t) = vxc [n, Ψ (0),Φ(0)] (r, t) for t > t ′. (8.8)

Here, Ψ (t ′) = Û (t ′)Ψ (0), where Û (t) is the unitary evolution operator, and Φ(t ′) =
ÛKS(t ′)Φ(0) where ÛKS(t ′) is the KS evolution operator. The subscript on the density
means that the density is undefined for times earlier than the subscript, and it equals
the evolving density n(r, t) for times t greater than the subscript.

Equation 8.8 displays the relation between the memory effects: any dependence of
the xc potential on the density at prior times may be transformed into an initial-state
dependence and vice versa.

Like other exact conditions (discussed in Chap. 5), Eq. 8.8 may be used as a test
for approximate functionals, but it is a very difficult condition to satisfy. For example,
any of the recent attempts to include history-dependence, while ignoring initial-state
dependence, must fail. If we restrict their application to systems beginning in the
ground state, then Eq. 8.8 still produces a strict test of such functionals: imagine an
exact time-dependent calculation beginning in the ground state of some system. Later,
when Ψ (t ′) is no longer a ground state, we evolve backwards in time in a different
external potential, that leads us back to a different ground state at a different initial
time. The history during the time before t ′ is different from the original history, but

http://dx.doi.org/10.1007/978-3-642-23518-4_5
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the xc potential for all times greater than t ′ should be the same for both the original
evolution and the evolution along the alternative path. The extent to which these two
differ is a measure of the error in a given history-dependent approximation, even
applied only to initial ground states. Note that any adiabatic approximation ignoring
initial-state dependence (such as those in the introduction) produces no difference. By
ignoring both history dependence and initial-state dependence, the ALDA trivially
satisfies Eq. 8.8.

A technical note: although the RG theorem was proven only for time-analytic
potentials, i.e. those that equal their Taylor series expansions in t about the initial
time for a finite time interval (Runge and Gross 1984), it holds also for piecewise
analytic potentials, i.e. potentials analytic in each of a finite number of intervals
(Maitra and Burke 2002b). This means that alternative allowed “pseudo-prehistories”
can connect to the same wavefunction at some later time.

This raises the possibility of eliminating the initial-state dependence altogether: if
we can evolve an initial interacting wavefunction that is not a ground state, backwards
in time to a non-degenerate ground state, then the initial-state dependence may be
completely absorbed into a history-dependence along this pseudo-prehistory.

As discussed in Chap. 4, one may choose any initial KS state that reproduces the
density and divergence of the current of the interacting initial state (van Leeuwen
1999). In the procedure above, this choice is translated into the choice of which
ground state the interacting wavefunction Ψ (0) evolves back to, together with the
pseudo-prehistory of the density thus generated. One can imagine that for a given
wavefunction Ψ (0) there may be many paths which evolve back to some ground
state, each path generating a different pseudo-prehistory. Only for those which result
in the same KS wavefunction Φ(0) [and of course interacting wavefunction Ψ (0)]
will the xc potentials be identical after time 0.

In the linear response regime, the memory formula Eq. 8.8 yields an exact condi-
tion relating the xc kernel to initial-state variations (Maitra 2005a). We consider
applying Eq. 8.8 in the perturbative regime, with the initial states at time 0 (on the
right-hand-side) being ground-states. The initial states on the left-hand-side (i.e. the
states at t ′) are not ground-states. We wish to express deviations from the ground-state
values through functional derivatives with respect to the density and with respect to
the initial states. Because the initial state determines the initial density and its first
time-derivative, and puts constraints on higher-order time-derivatives of the density,
the definition of a partial derivative with respect to the initial state is not trivial:
what should be held fixed in the variation? The partial derivative with respect to the
density, holding the initial state fixed, is simpler; for example, for the external poten-
tial this is a generalized inverse susceptibility, generalized to initial states which are
not ground-states. Variations of the density at times greater than zero are included.
In order to define an initial-state derivative, one considers an extension of the func-
tionals to a higher space in which the initial-state variable and density variable are
independent: one drops and Eqs. 4.6 and 4.20. Then one can show that
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∑
α

∫
d3 r1

δvKS[nt ′ , Φt ′ ](r, t)

δϕt ′, α(r1)

∣∣∣∣
(nGS,ΦGS[nGS])

δϕt ′, α(r1)

−
∫

d4x1· · ·
∫

d4xN
δvext[nt ′, Ψt ′ ](r, t)

δΨt ′(x1, . . ., xN )

∣∣∣∣
(nGS,ΨGS[nGS])

δΨt ′(x1, . . ., xN ) + c.c.

=
∫

d3r1

t ′∫

0

dt1 fxc[nGS](r, r1, t − t1)δn(r1, t1), 0 < t ′ < t, (8.9)

where the variables xi = (r i , σi ) represent spatial and spin coordinates, δϕt ′, α =
δϕα(t ′) = ϕα(t ′) − ϕα,GS[nGS] represent the deviations at time t of the spin orbitals
of the KS Slater determinant away from the ground-state values and δΨ is simi-
larly the deviation of the interacting state away from its ground-state. This equation
demonstrates the entanglement of initial-state dependence and history-dependence
in the linear response regime: the expression for the xc kernel on the right is entirely
expressed in terms of initial-state dependence on the left.

8.5 Memory in Quantum Control Phenomena

In recent years there have been huge advances in the control of chemical reactions,
where nuclei are manipulated. The development of attosecond laser pulses opens
the door to the possibility of manipulating electronic processes as well. Chapter 13
derives the equations for quantum optimal control theory within the KS frame-
work. Here, instead, we present a couple of “gedanken” experiments to explore
how the exact KS picture of the controlled dynamics looks compared to the exact
true dynamics.

Let us say we are interested in driving a molecule from its ground state ΨGS in
potential vext,GS to its mth excited state Ψm . Let us say we are lucky enough to know
the external time-dependent field that achieves this after a time t̃ . The field is then
turned off at time t̃ so that the molecule remains in the excited eigenstate. We now
ask how this process is described in the corresponding KS system, i.e. what is the
KS potential? Initially, this is the ground-state potential vKS,0 whose ground-state
ΦKS has density nGS, the density of the interacting ground state of the molecule.
The first observation is that the KS potential after time t̃ does not typically return
to the initial KS potential, in contrast to the case of the interacting system. This is
because, by definition, the density of the KS state equals the interacting density at
all times; in particular, after time t̃ it is the density of the interacting excited state of
potential vext, 0, but this is not guaranteed to be the density of the KS excited state of
potential vKS, 0. Only the ground-state density of an interacting system is shared by
its KS counterpart, not the higher excited states; the final KS state of the molecule
will not typically be an eigenstate of vKS,0.

There are two possibilities for the KS potential after time t̃ . The first is that it
becomes static, and the static final density, call it ñ, is that of an eigenstate of it.

http://dx.doi.org/10.1007/978-3-642-23518-4_13
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From the above argument, the KS potential is however different from the initial, and
does not equal the ground-state KS counterpart of the interacting case. For example,
if we are exciting from the ground state of the helium atom to an excited state, the
external potential of the interacting system is both initially and finally −2/r. The
initial KS potential is the ground-state KS potential of helium, but the final is not;
the final KS eigenstate has the same density as the excited state of interest in helium.
Now we will argue that any adiabatic approximation, or indeed any potential that
is not ultranonlocal in time, is unlikely to do well. Consider a time t beyond t̃ . The
density for times near t is constant, so any semi-local approximation for the potential
will be any one of the potentials for which the density ñ is the density of some
eigenstate of it. In particular, for an adiabatic approximation, the potential is that
for which the excited state density ñ is the density of its ground state. There is no
way for an approximate semi-local KS system to know that it should be the potential
corresponding to the interacting system that has an mth excited state density of ñ.

This information is encoded in the early history of the density, from times 0 < t < t̃ :
the exact KS potential must be ultranonlocal in time, since, as time gets very large,
it never forgets the early history. Alternatively, taking the “initial” time to be t̃ in
the memory formula Eq. 8.8, this effect is an initial-state effect where the initial
interacting (and non-interacting state) is not a ground-state.

The other possibility is that the KS (and xc) potential never becomes constant: it
continues to change in time, with KS orbitals and orbital-densities changing in time
in such a way that the total KS density remains static and equal to ñ. It is clear that any
semi-local approximation will fail here, because for times beyond t̃, it will predict a
constant potential since the density is constant. The exact xc (and KS) potential will
be ultranonlocal in time; as time gets very large, one has to go way back in time, to
times less than t̃, in order to capture any time dependence in the density.

This extreme non-locality is very difficult for a density functional approximation
to capture: it may be that orbital functionals, which are implicit density functionals,
provide a promising approach. Even so, there are cases where TDDFT faces a formi-
dable challenge. Consider two electrons, beginning in a spin-singlet ground state
(e.g. the ground state of helium). Imagine now finding an optimal control field that
evolves the interacting state to a singlet singly-excited state (e.g. 1s2p of helium).
Now, the KS ground state is a single Slater determinant with a doubly-occupied spatial
orbital. This evolves under a one-body evolution operator, the KS Hamiltonian, so
must remain a single Slater determinant. But a single excitation is a double Slater
determinant, so can never be attained even with an orbital-dependent functional.
This is a time-dependent analogue of static correlation, where a single Slater deter-
minant is inadequate to describe a fundamentally multi-determinantal state (Maitra
et al. 2002b). The KS description of the state is so far from the true description, that
the exact xc potential and observable functionals consequently develop complicated
structure difficult to capture in approximations. The KS state is not an eigenstate of
the angular momentum operator, unlike that of the true state. If the overlap between
the initial and final states is targetted, the maximum that can be achieved is 0.5 (Burke
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Fig. 8.4 In the top panel is
the density (thick solid line)
of the two electron singlet
excited state (solid lines) of
the harmonic oscillator (solid
line in the lower panel). The
dashed line is the
doubly-occupied orbital
resulting from evolving the
singlet ground-state to a state
of the same density as the
excited state. The potential in
which this is an
eigenstate—the
ground-state—is shown as
the dashed line in the lower
panel
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et al. 2005a), while close to 0.98 is achieved for the true interacting problem (but see
also the last paragraph of this section).

A simplified model of this is shown in Fig. 8.4. Here the density of the first
excited state of two electrons in a harmonic oscillator, considered to be the final
KS potential, is shown. Attempting to evolve to this density from the ground state
of the harmonic oscillator, which is a doubly-occupied orbital, the best KS can do
is reach another doubly-occupied orbital (dashed), whose potential is shown in the
lower panel (dashed).

We note that such problems do not arise in linear response regime, where we do
not need to drive the system entirely into a single excited state: only perturbations
of the ground-state are needed which have a small, non-zero projection on to the
various excited states of the system.

It is very important to note that in the above examples the density is the target vari-
able; the time-dependent density is the observable which the KS system is constructed
to get exactly correct. However when quantum optimal control is performed directly
with the TDKS system, then it is of course possible, and in most cases, more natural,
instead to define the target variable directly related to the KS wavefunction. For
example, one might instead consider targeting the density of a KS excited state, or
an overlap with a KS excited state. The question is then whether the optimal field
found for the KS system also achieves a good outcome for the true system. In most
cases studied so far by A. Castro and E.K.U. Gross (personal communication), it
fortunately does. Even in the case where the maximum overlap with the target KS
state is as low as 0.5, it is quite possible that, with a clever choice of target functional,
the optimal field found from the KS evolution applied to the interacting system yields
a target overlap in the interacting system much closer to one.
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8.6 Memory Effects in Excitation Spectra

The vast majority of applications of TDDFT today are in the linear response regime.
Adiabatic approximations are used in the many successes here, but they are also the
reason behind many of its notorious failures. This section discusses one of these:
states of double-excitation character, for which frequency-dependence is essential to
capture.

First, we clarify what is meant by a double- or multiple-excitation. The term is
defined with respect to some single-particle picture, characterized by a set of single-
particle orbitals that are solutions to a one-body Hamiltonian, N of which are occupied
in the ground-state of this Hamiltonian. In TDDFT, this picture is naturally the KS
system. A single-excitation swaps one of these occupied orbitals for an unoccupied
orbital. A double-excitation instead swaps two occupied orbitals for two unoccupied
orbitals, so represents an excited state where two electrons are excited with respect
to the ground configuration. On the other hand, the true interacting eigenstates are
linear combinations of this ground-state and all excitations, including double, triple,
and higher (thinking of the determinants composed of the single-particle orbitals as
a complete set of N-electron states). When we speak of a double-excitation in the
true system, we mean it as a short-hand for a “state of double-excitation character”,
i.e. a state that has a significant fraction of a double-excitation with respect to a non-
interacting single-particle picture. Clearly, in different theories that have different
references (e.g. Hartree–Fock rather than KS), these fractions will differ.

Chapter 4 mentioned that often the KS excitations are themselves good zeroth-
order approximations to the true excitations, with the xc kernel contributing a small
enough correction that even the simplest adiabatic approximation does quite well.
But this argument cannot apply to double-excitations, since in linear response of
the KS system no double-excitations appear: to excite two electrons of a non-
interacting system two photons would be required, beyond linear response. Only
single-excitations of the KS system are available for an adiabatic kernel to mix.
Indeed, if we consider the linear response function (Eq. 4.50) applied to the KS
system, the numerator 〈ΦGS|n̂(r)|ΦI 〉 vanishes if ΦI and ΦGS differ by more than
one orbital since the one-body operator n̂(r) cannot connect states that differ by more
than one orbital. The true response function, on the other hand, retains poles at the
true excitations which are mixtures of single, double, and higher-electron-number
excitations, as the numerator 〈ΨGS|n̂(r)|ΨI 〉 remains finite due to the mixed nature
of both ΨGS and ΨI . Within the adiabatic approximation, χ therefore contains more
poles than χKS.

How does the exact kernel of TDDFT generate more poles, and capture states of
multiple-excitations? One must go beyond the adiabatic approximation (Tozer and
Handy 2000). In 2004, the exact frequency-dependence that is required when a double
excitation mixes with a single excitation was demonstrated, and an approximate
kernel based on this was derived (Maitra et al. 2004). We now discuss this.

A frequency-dependent kernel for double-excitations. Consider the simplest
model: a two-by-two excitation subspace consisting of one KS single excitation

http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
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ϕi → ϕu, of frequency ωq = εu − εi , and one double excitation (ΦD) energeti-
cally close. We assume all other excitations lie far from these two levels, so that for
frequencies close to ωq :

χKS(r, r ′, ω) = A(r, r ′, ω)

ω − ωq
(8.10)

where the numerator only weakly depends on the frequency: A(r, r ′, ω) =
ϕ∗

i (r)ϕu(r)ϕi (r ′)ϕ∗
u (r ′)+ O(ω−ωq). The KS double-excitation does not contribute

to χKS from the argument above. Electron interaction mixes the KS single- and
double-excitations, such that the true states have the form:

Ψa = mΦD +
√

1 − m2Φq and Ψb =
√

1 − m2ΦD − mΦq (8.11)

where 0 < m < 1 is a parameter to represent the fraction of double- and single-
excitation character in the true interacting states. Inserting these into the expression
for the true response function, Eq. 4.50, we obtain

χ(r, r ′, ω) = A(r, r ′, ω)

(
1 − m2

ω − ωa
+ m2

ω − ωb

)
, (8.12)

where ωa, ωb are the true interacting excitation frequencies. Notice that the two
interacting states share the oscillator strength of the KS single-excitation, in a ratio
determined by the fraction of how much single-excitation each carries. Within this
subspace, we then define a dressed (i.e. frequency-dependent) single-pole approxi-
mation (DSPA),

ω = ωq + 2[q| fHxc(ω)|q] (8.13)

where the kernel on the right is derived from Eqs. 8.10 and 8.12, using

fHxc(ω) = χ−1
KS (ω) − χ−1(ω). (8.14)

(c.f. the SPA in Eq. 4.63; the square bracket notation in Eq. 8.13 indicates the
doubleintegral of Eq. 4.63 but with the kernel evaluated at frequency ω, instead
of at ωq .)

Requiring that the DSPA recovers the exact frequencies ωa, ωb pins down the
matrix element of A−1(r, r ′, ω), and we find

2 [q| fHxc(ω)|q] = (ω̄ − ωq) + ω̄′ω̄ − ωaωb

(ω − ω̄′)
, (8.15)

where ω̄′ = m2ωa + (1 − m2)ωb and ω̄ = (1 − m2)ωa + m2ωb. Equation 8.15 gives
the exact xc kernel matrix element for frequencies near the single and double of
interest; we illustrate how it generates two poles in χ from the one in χKS in Fig. 8.5.

http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
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Fig. 8.5 Frequency-dependence near a double excitation (see text): near a single excitation, χ−1
KS (ω)

(upper dashed line) has one zero at the KS transition ωq , which an adiabatic kernel f A
Hxc shifts to

ω̄. Frequency-dependence of Eq. 8.15 renders two zeroes in the exact χ−1(ω) (solid line) at the
transition frequencies ωa, ωb of the true mixed single and double states

The first term is adiabatic, while the second is strongly non-adiabatic (Maitra et al.
2004).

Equation 8.15 motivated the following practical approximation for the dressed
kernel, when a single and double excitation lie near each other, in the limit of weak
interaction (direct coupling to the rest of the KS excitations is neglected). Essen-
tially one considers diagonalizing the many-body Hamiltonian in this two-by-two
KS subspace, and requires that the kernel reduces to the adiabatic one ( f A

xc) in the
limit that the single and double only weakly interact (see Maitra et al. 2004 for
details). One obtains:

2 [q| fxc(ω)|q] = 2
[
q| f A

xc(ωq)|q
]

+ |Hq D|2
ω − (HDD − H00)

(8.16)

where the Hamiltonian matrix elements in the dynamical correction (second term)
are those of the true interacting Hamiltonian, taken between the single (q) and double
(D) KS Slater determinants of interest, as indicated, and H00 is the expectation value
of the true Hamiltonian in the KS ground-state. The kernel is to be applied as an
a posteriori correction to a usual adiabatic calculation: first, one scans over the KS
orbital energies to see if the sum of two of their frequencies lies near a single excitation
frequency, and then applies this kernel just to that pair. If a double-excitation mixes
strongly with several single excitations, one performs the dressing Eq. 8.16 in a
matrix spanned by those singles (see Cave et al. 2004; Mazur and Włodarczyk 2009,
where this was done for polyenes).

Several alternate and more formal approaches have led essentially to Eq. 8.16.
Casida (2005) derived Eq. 8.16 from a superoperator formalism, as a polarization
propagator correction to adiabatic TDDFT. The Bethe–Salpeter equation (BSE)
with a dynamically screened Coulomb interaction was used to derive a frequency-
dependent kernel (Romaniello et al. 2009): here the frequency-dependence has two
origins, one from folding the four-point BSE into the two-point TDDFT equation [as
in the work on the optical response of solids, (e.g. Reining 2002; Gatti et al 2007a)],
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and the other (essential for double-excitations) from the frequency-dependence of
the BSE kernel. The resulting kernel however yielded additional unphysical poles,
attributed to the self-screening of GW. There are connections between this and
the superoperator formalism (see Huix-Rotllant 2011), where explicit expressions
for the kernel derived from algebraic diagrammatic construction with second-order
polarization-propagator applied to KS are given. The spatial-dependence of the kernel
was uncovered in an approach following more closely the original derivation but using
the common energy denominator approximation to account for the effect of entire
spectrum on the coupled single- and double-states (Gritsenko and Baerends 2009).

Where states of double-excitation character arise. In some systems, they lie even
amongst the lowest-energy states, but we will also argue that they underlie several
other failures of adiabatic TDDFT.

(i) In many conjugated molecules (e.g. polyenes), double-excitations infiltrate the
low-lying excitations, which are as a result notoriously difficult to calculate
(see Cave et al. 2004) for many references). For example, in butadiene, the
HOMO → (LUMO + 1) and (HOMO − 1) → LUMO excitations are near-
degenerate with a double-excitation of the HOMO to LUMO. If one runs an
adiabatic calculation and simply assigns the energies according to an expected
ordering, it may appear that one obtains a reasonable value for an expected state
of double-excitation character (Hsu et al. 2001), however upon examining the
make-up of the state, one will find it is instead a single-excitation (misplaced,
for example due to basis-set issues). Cave et al (2004) applied dressed TDDFT
to the dark 21 Ag state of butadiene and hexatriene, generalizing Eq. 8.16 to
the case of two single excitations mixing with a double, obtaining results close
to CASPT2. Linear polyenes were later studied in more detail (Mazur and
Włodarczyk 2009; Mazur et al. 2011), analyzing more fully aspects such as
self-consistent treatment of the kernel, and use of KS versus Hartree–Fock
orbitals in the dressing, and successfully computing excited-state geometries
with this dressed TDDFT. Dressed TDDFT was applied to low-lying excited
states of 28 organic molecules (Huix-Rotllant et al. 2011b).

(ii) It is well known that charge-transfer excitations between fragments at large sepa-
rations are severely underestimated with the usual approximations of TDDFT
(see Sect. 4.8.2). If we are interested in charge-transfer between two distant
open-shell species (e.g. LiH), the HOMO and LUMO are delocalized over the
whole molecule. This is the case for the exact ground-state KS potential, for
which a step appears in the bonding region that has exactly the size to re-align the
two atomic HOMOs, as well as for local or semi-local approximations (Tempel
et al. 2009). The HOMO–LUMO energy difference goes as the tunnel splitting,
vanishing as the molecule is pulled apart; therefore every excitation out of the
KS HOMO is near-degenerate with a double-excitation where a second elec-
tron goes from HOMO to LUMO (at almost zero KS cost). This yields a strong
frequency-dependence of the kernel near all excitations, charge-transfer and
local, for heteroatomic molecules composed of open-shell fragments at large
separation (Maitra 2005b; Maitra and Tempel 2006a).

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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(iii) Double-excitations dog accurate calculations of coupled electron-nuclear
dynamics (Levine et al. 2006): even when the vertical excitation does not contain
much double-excitation character, the propensity for curve-crossing requires
an accurate double-excitation description for accurate global potential energy
surfaces. That same paper highlighted the difficulties approximate TDDFT has
with obtaining conical intersections: in one example, the TDDFT dramatically
exaggerated the shape of the intersection, while in another, its dimensionality
was wrong, producing a seam rather than a point. Although the ground-state
surface is not described well here with the approximate functionals, double-
excitations are certainly relevant in the vicinity of conical intersections due to
the near-degeneracy (see also Chap. 14).

(iv) In the He atom, the lowest double-excitation (1s2 → 2s2) lies in the continuum,
appearing as a resonance in the continuous spectrum. Autoionizing resonances
that arise from bound core-valence single excitations are well-captured by the
adiabatic kernels of TDDFT (see e.g. Stener et al. 2007; Hellgren and von Barth
2009) but those arising from double-excitations require a frequency-dependent
kernel. An approximate kernel based on Fano’s degenerate perturbation theory
approach (Fano 1961) applied to the KS system can be derived (Krueger and
Maitra 2009).

8.7 Outlook

Memory profoundly affects the structure of exact functionals in TDDFT. Here we
have given some exact properties regarding initial-state dependence and history-
dependence, and explored some memory effects on exactly solvable systems. Strong
field dynamics is especially the regime where TDDFT may be the only feasible
approach, as wavefunction methods for more than a few interacting electrons become
prohibitively expensive. Yet it is in this regime that memory effects appear to be
significant. Memory also influences the accuracy of linear response calculations, and
we showed how a frequency-dependent kernel, derived from first principles, captures
states of double-excitation character, missing in the usual memory-less adiabatic
approximations. For TDDFT to be used for fully time-dependent phenomena as
confidently as DFT is used for ground-state problems, and to build on its reliability
for electronic spectra, further understanding and modeling of memory effects is
required, along with further developments of memory-dependent approximations.

http://dx.doi.org/10.1007/978-3-642-23518-4_14
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