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The particle–particle random phase approximation (pp-RPA) has been shown to be capable 
of describing double, Rydberg, and charge transfer excitations, for which the conventional 
time-dependent density functional theory (TDDFT) might not be suitable. It is thus 
desirable to reduce the computational cost of pp-RPA so that it can be efficiently applied 
to larger molecules and even solids. This paper introduces an O (N3) algorithm, where N
is the number of orbitals, based on an interpolative separable density fitting technique 
and the Jacobi–Davidson eigensolver to calculate a few low-lying excitations in the pp-RPA 
framework. The size of the pp-RPA matrix can also be reduced by keeping only a small 
portion of orbitals with orbital energy close to the Fermi energy. This reduced system 
leads to a smaller prefactor of the cubic scaling algorithm, while keeping the accuracy 
for the low-lying excitation energies.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

While the time-dependent density functional theory (TDDFT) [1,12] has been widely used in the prediction of electronic 
excited states in large systems because of its low computational cost and satisfying accuracy, it is known however that 
TDDFT is not able to well describe double, Rydberg, charge transfer, and extended π -systems excitations [2], which limits 
its applications in many practical problems. This motivates the development of the particle–particle random phase approxi-
mation (pp-RPA) [9,14,18] for excited state calculations. It has been shown that the pp-RPA gives quite accurate prediction 
of electronic excited states in moderate size molecular systems [10,20].

However, the application of the pp-RPA is still limited to small size systems due to its expensive computational cost. 
Suppose N is the size of a given Hamiltonian after discretization, a naive implementation takes O (N6) operations to solve 
the pp-RPA equation, where N is the number of orbitals. Recently, [20] proposed an O (N4) algorithm that is comparable 
with other commonly used methods, e.g., configuration interaction singles (CIS) and TDDFT methods. To make the applica-
tion of the pp-RPA feasible to larger systems, this paper proposes an O (N N2

aux + N2Naux + N2Ngrid) algorithm based on a 
newly developed technique, the interpolative separable density fitting in [6,7]. Here Naux is the number of auxiliary basis 
functions used in the density fitting and Ngrid is the total number of real space grid points, both scale linearly with N , and 
hence the overall scaling of the proposed algorithm is O (N3).
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In the numerical linear algebra point of view, the excited states calculation in pp-RPA amounts to solving a generalized 
eigenvalue problem. When focusing on low-lying excitations, the smallest (in terms of the magnitude) few eigenpairs are 
desired. We refer the readers to [10] for the formal derivation of the pp-RPA theory.

To simplify the discussion, let us consider systems in the domain with periodic boundary condition, and without loss of 
generality, assumed to be T = [0, 1]d . After discretization (such as the pseudo-spectral method employed in our numerical 
examples), the number of total spatial grid points is denoted by Ngrid. Thus the Hamiltonian operator H becomes an Ngrid ×
Ngrid real symmetric matrix. {(εp, φp)}p=1,...,Ngrid denote the Ngrid eigenpairs of H :

Hφp = εpφp, ∀ p = 1, . . . , Ngrid. (1)

The eigenvectors φp will be referred as orbitals and the associated eigenvalues as orbital energy. According to the Pauli’s 
exclusion principle, the low-lying eigenstates are occupied. The number of occupied orbitals is denoted by Nocc (throughout 
this work, we assume that the Nocc-th eigenvalue is non-degenerate, i.e., εNocc < εNocc+1). The rest of the orbitals are virtual 
ones (also known as unoccupied orbitals). The virtual orbitals have higher orbital energy than the occupied ones; the 
eigenvalues are separated by the Fermi energy:

εF = 1

2

(
εNocc + εNocc+1

)
. (2)

Therefore, the occupied orbitals have energy less than the Fermi energy while the virtual ones have energy higher than εF .
We follow the convention of quantum chemistry literature to use indices i, j, k, and l to index occupied orbitals, a, b, c, 

and d for virtual orbitals, and p, q, r, and s for unspecified orbitals. Assume that we consider the first Nvir virtual orbitals 
(ordered by eigenvalues) and N = Nocc + Nvir denotes the total number of orbitals under consideration, the generalized 
eigenvalue problem of pp-RPA is given by(

A B
B� C

)(
X
Y

)
= ω

(
I p

−Ih

)(
X
Y

)
, (3)

where I p and Ih are identity matrices of dimension Np = (Nocc
2

)
and Nh = (Nvir

2

)
, respectively, and entries in matrices A, B , 

and C are defined via

Aijkl = 〈i j||kl〉 + δikδ jl(εi + ε j − 2εF ),

Bijcd = 〈i j||cd〉,
Cabcd = 〈ab||cd〉 − δacδbd(εa + εb − 2εF ),

for 1 ≤ j < i ≤ Nocc, 1 ≤ l < k ≤ Nocc, Nocc + 1 ≤ b < a ≤ N , and Nocc + 1 ≤ d < c ≤ N , where

〈pq||rs〉 = 〈pq | rs〉 − 〈pq | sr〉,
and

〈pq | rs〉 =
∫∫
T×T

φp(r1)φq(r2)φr(r1)φs(r2)vc(r1 − r2)dr1 dr2

is the four-center two-electron repulsion integral. Here vc(·) is the periodic Coulomb kernel (due to our choice of the 
periodic boundary condition) given by the fundamental solution of the Poisson equation with a periodic boundary condition 
on T:

−�vc(·) = 4π(δ(·) − 1), (4)

where δ(·) is the Dirac delta function.
The dimension of pp-RPA matrix(

A B
B� C

)
(5)

is O (N2) × O (N2); and thus constructing the whole pp-RPA matrix takes at least O (N4) operations, since it contains O (N4)

entries. The action of this matrix to a vector also scales as O (N4) in general. Thus, the standard approach for the generalized 
eigenvalue problem (3) has a computational cost at least O (N4) for getting a single eigenpair.

In this work, we propose an O (N3) scaling algorithm to obtain a few eigenpairs of the generalized eigenvalue problem 
above. The observation is that if an iterative algorithm such as the Jacobi–Davidson eigensolver [15,16] is used, the com-
putational bottleneck is to apply the pp-RPA matrix to a vector (referred as matvec in the sequel); in particular, it is not 
necessary to construct the matrix for matvec. An O (N3) matvec is available by an efficient representation of the electron 
repulsion integral tensor enabled by the recently proposed interpolative separable density fitting in [6,7]. Combined with 
the Jacobi–Davidson iterative eigensolver, this gives a cubic scaling algorithm for the pp-RPA excitation energy calculation.
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The rest of the paper is organized as follows. Section 2.1 introduces an O (N2Ngrid) interpolative separable density fitting 
(ISDF). Section 2.2 describes an O (N N2

aux + N2Naux) matvec based on the results of the ISDF. Section 2.3 briefly revisits the 
Jacobi–Davidson eigensolver and discusses a preconditioner for applying to pp-RPA. Section 2.4 proposes a truncated pp-RPA 
model to reduce the prefactor of our cubic scaling algorithm. Numerical examples are provided in Section 3 to support the 
proposed algorithm.

2. Algorithm

In this section, we describe the proposed cubic scaling algorithm in detail. In what follows, we will use capital letters to 
denote matrices, e.g., A(x, y) represents a matrix denoted by A with row index x and column index y, A� is the transpose 
of A, and A∗ is the complex conjugate transpose of A.

2.1. Interpolative separable density fitting

Recall that the pp-RPA matrix (5) involves the four-center two-electron repulsion integrals for a given set of orbitals 
{φp}1≤p≤N ⊂ L2(T) as

〈pq | rs〉 =
∫∫
T×T

φp(x)φq(y)φr(x)φs(y)vc(x − y)dx dy.

To obtain such integrals for all possible p, q, r, s, we can first evaluate1

Vqs(x) =
∫
T

φq(y)φs(y)vc(x − y)dy (6)

using FFT with cost O (N2 Ngrid). The repulsion integral can then be obtained as

〈pq | rs〉 =
∫
T

φp(x)φr(x)Vqs(x)dx, (7)

which scales as O (N4 Ngrid). The O (N4Ngrid) scaling makes it prohibitively expensive to construct the pp-RPA matrix if N
(and hence Ngrid) is large, which motivates the development of efficient representation of the electron repulsion integral, in 
particular the density fitting approach (also known as the resolution of identity approach) for pair density (see e.g., [3,11,
17,19]).

The idea behind the density fitting approach is to explore the (numerically) low-rank structure of the pair density, viewed 
as a matrix with indices (pq, x)2:

�pq(x) = φp(x)φq(x) ∈R
N2×Ngrid .

Viewing the periodic Coulomb kernel as a matrix vc(x, y), the electron repulsion integrals can be considered as entries in 
the matrix �vc�

� . Therefore, if we could find a low-rank approximation of � in the sense that

�pq(x) ≈
∑
μ

Sμ
pq Pμ(x), (8)

where μ = 1, 2, . . . , Naux labels the auxiliary basis functions {Pμ(x)}, with Naux = O (N), then the electron repulsion inte-
grals can be represented as

〈pq | rs〉 ≈
∑
μν

V (μ,ν)Sμ
pr Sν

qs, (9)

and

〈pq | sr〉 ≈
∑
μν

V (μ,ν)Sμ
ps Sν

qr, (10)

where V (μ, ν) = ∑
x,y Pμ(x)vc(x, y)Pν(y). The drawback of the density fitting approach though is that the factor S intro-

duced in (8) remains to be a large N2 × Naux matrix. This leads to higher computational complexity when applying the 
pp-RPA matrix to a vector. This can be understood as the indices pqrs in the representation (9) and (10) are not separable.

1 Throughout this work, we write qs as a pair index, instead of the product of q and s.
2 With some abuse of notation, in this paper we do not distinguish the spatial variable x with the index of spatial grid.
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Input : A matrix M ∈C
m×n , error tolerance ε

Output: An m × n0 submatrix M0 of M and an n0 × n matrix P , such that M ≈ M0 P
1 Compute the pivoted QR decomposition [Q , R, E] = qr(M), i.e.,

Q R = M E,

where E is an n × n permutation matrix, Q is an m × m unitary matrix, and R is an m × n upper triangular matrix with diagonal entries in 
decreasing order;

2 Set n0 such that

|R(n0,n0)| ≥ ε |R(1,1)| > |R(n0 + 1,n0 + 1)|;
3 Set M0 = (M E)(:, 1 : n0), the first n0 columns of M E;
4 Compute P = R−1(1 : n0, 1 : n0)R(1 : n0, :)E−1.

Algorithm 1: Column selection algorithm based on pivoted QR.

The interpolative separable density fitting (ISDF) was proposed in [6,7] aiming at a more efficient representation. The 
main idea is to apply a randomized column selection algorithm [5] to obtain a low-rank interpolative decomposition such 
that columns in S are actually the important columns of �, i.e., we obtain a subset {μ} in the spacial grid points {x} such 
that we have a rank-one factorization

Sμ
pq = φp(μ)φq(μ)

for a fixed μ, and a low-rank approximation

�pq(x) ≈
∑
μ

φp(μ)φq(μ)Pμ(x),

where the number of grid points of the subset {μ} is Naux = O (N). Denote M ∈ R
N×Naux the matrix consisting of 

{φp(μ)}1≤p≤N as its rows, we have

�pq(x) ≈
∑
μ

Mp(μ)Mq(μ)Pμ(x).

Hence, once the interpolative separable density fitting is available, the repulsion integrals can be represented via the tensor 
hypercontraction format [4,8]

〈pq | rs〉 ≈
∑
μν

V (μ,ν)Mp(μ)Mr(μ)Mq(ν)Ms(ν),

and similarly

〈pq | sr〉 ≈
∑
μν

V (μ,ν)Mp(μ)Ms(μ)Mq(ν)Mr(ν).

The main difference between the above two equations and those in (9)–(10) is the separable dependence on the indices p, 
q, r, and s. As we shall see later, taking advantage of this separable dependence is the key idea for a fast matvec to apply 
the pp-RPA matrix.

Direct construction of an ISDF of � is expensive since � is a large matrix of size N2 × Ngrid. Instead, the method in [7]
chooses O (

√
N) representative row vectors from the resulting matrix of a random linear combination of

[φ1(x),φ2(x), . . . , φN(x)]T ∈R
N×Ngrid . (11)

These O (
√

N) representative row vectors form a matrix U of size O (
√

N × Ngrid) as a compressed representation of the 
matrix in (11). Instead of working on the ISDF of � of size N2 × Ngrid, it is cheaper to construct the ISDF of the matrix


(i j, x) = U (i, x)U ( j, x)

of size O (N) × Ngrid.
Detailed algorithms in [7] are recalled below. An auxiliary column selection algorithm is given in Algorithm 1 and the 

main algorithm for interpolative separable density fitting is described in Algorithm 2. In these algorithms, we will adopt
MATLAB notations for submatrices.

The computational cost in Algorithm 1 is O (m2n), dominated by the QR factorization of M , since n0 (the number of 
columns selected) is assumed to be smaller than m or n and we have assumed m ≤ n. In Algorithm 2, the dominant cost 
is the application of Algorithm 1 on a matrix of size O (N) × Ngrid in Step 5, since other steps take operations less than 
N2Ngrid. In sum, given a set of orbitals {φp(x)}1≤p≤N , the computational cost to obtain the interpolative separable density 
fitting is O (N2Ngrid) operations.
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Input : Orbitals {φp(x)}1≤p≤N , error tolerance ε , and a column selection parameter c
Output: Selected grid points {μ} ⊂ {x} and an auxiliary matrix S , such that

�(pq, x) = φp(x)φq(x) ≈
∑
μ

Mp(μ)Mq(μ)S(μ, x).

1 Reshape the orbital functions φp(x) as a matrix φ(p, x);
2 Compute the discrete Fourier transform of φ left multiplied by a random diagonal matrix:

φ̂(ξ, x) =
N∑

p=1

e−2π iξ p/(N)ηpφ(p, x),

for all ξ , 1 ≤ ξ ≤ N , where ηp is a random unit complex number for each p;
3 Choose a submatrix U of φ̂ by randomly choosing r = c

√
N rows;

4 Construct an r2 × N matrix 
 such that


(i j, x) = U (i, x)U ( j, x)

for all x, 1 ≤ i ≤ r, and 1 ≤ j ≤ r, where (i j) is viewed as the row index of M instead of the product of i and j;
5 Apply Algorithm 1 on the r2 × N matrix 
 with the parameter ε to find important columns of 
 with indices {μ} ⊂ {x} and an auxiliary matrix S , 

such that


(pq, x) ≈
∑
μ


(pq,μ)S(μ, x);

6 Find the submatrix M of D with column indices {μ} and finally we have

�(pq, x) = φp(x)φq(x) ≈
∑
μ

Mp(μ)Mq(μ)S(μ, x).

Algorithm 2: Interpolative separable density fitting.

2.2. Cubic scaling matvec

In the previous subsection, we have introduced Algorithm 1 and 2 to construct the interpolative separable density fitting 
from a set of given orbitals {φp(x)}1≤p≤N . The output of Algorithm 2 is a set of selected grid points {μ} ⊂ {x}, compressed 
orbitals {Mp(μ)}, and an auxiliary matrix P , such that

�(pq, x) = φp(x)φq(x) ≈
∑
μ

Mp(μ)Mq(μ)Pμ(x).

An immediate result of the above equation is the following interpolative separable density fitting for repulsion integrals

〈pq | rs〉 ≈
∑
μν

V (μ,ν)Mp(μ)Mr(μ)Mq(ν)Ms(ν), (12)

and similarly

〈pq | sr〉 ≈
∑
μν

V (μ,ν)Mp(μ)Ms(μ)Mq(ν)Mr(ν). (13)

We now exploit this representation for a cubic scaling matvec of the pp-RPA matrix.
When we apply the pp-RPA matrix(

A B
B� C

)
=

(
D p

Dh

)
+

( 〈i j||kl〉 〈i j||cd〉
〈ab||kl〉 〈ab||cd〉

)
(14)

to a vector (g, h)� where g ∈R
Nocc(Nocc−1)/2 and h ∈R

Nvir(Nvir−1)/2, the action of the diagonal matrices D p and Dh is simple. 
Thus, let us focus on how to compute (A − D p)g , Bh, B�g , and (C − Dh)h. Since the entries in A, B , and C have similar 
definitions and structures, it is sufficient to illustrate how to compute (A − D p)g with cubic scaling.

By definition

(A − D p)i jkl = 〈i j||kl〉
with (i j) as the row index of A − D p and (kl) as its column index for 1 ≤ j < i ≤ Nocc and 1 ≤ l < k ≤ Nocc. Hence, we also 
use (kl) as the row indices of g ∈ R

Nocc(Nocc−1)/2. Taking the representation of the electron repulsion integral (12)–(13), we 
have
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∑
kl

〈i j | kl〉gkl =
∑

kl

∑
μν

V (μ,ν)Mi(μ)Mk(μ)M j(ν)Ml(ν)gkl

=
∑
μ

Mi(μ)

(∑
ν

M j(ν)V (μ,ν)
∑

k

Mk(μ)

(∑
l

Ml(ν)gkl

))
,

(15)

and similarly∑
kl

〈i j | lk〉gkl =
∑

kl

∑
μν

V (μ,ν)Mi(μ)Ml(μ)M j(ν)Mk(ν)gkl

=
∑
μ

Mi(μ)

(∑
ν

M j(ν)V (μ,ν)
∑

l

Ml(μ)

(∑
k

Mk(ν)gkl

))
.

(16)

The key observation is that all the above calculation for all index pairs (i j), 1 ≤ j < i ≤ Nocc, can be done in cubic scaling 
cost as follows. Let us take the summation 

∑
kl〈i j | kl〉gkl as an example, the algorithm goes as follows

• Step 1: compute E(k, ν) = ∑
l Ml(ν)gkl for all ν and k with O (N2 Naux) operations;

• Step 2: compute F (μ, ν) = ∑
k Mk(μ)E(k, v) for all μ and ν with O (N N2

aux) operations;

• Step 3: compute G( j, μ) = ∑
ν M j(ν)V (μ, ν)F (μ, ν) for all μ and j with O (N N2

aux) operations;

• Step 4: compute 
∑

kl〈i j | kl〉gkl = ∑
μ Mi(μ)G( j, μ) for all i and j with O (N2Naux) operations.

Similarly, 
∑

kl〈i j | lk〉gkl for all index pairs (i j) can be computed in O (N N2
aux + N2Naux) operations too.

In sum, we have obtained an O (N N2
aux + N2Naux) algorithm to evaluate (A − D p)g . As a result, we have a cubic scaling

matvec for Ag . We can compute Bh, B�g , and Ch similarly and arrive at an O (N N2
aux + N2Naux) matvec to apply the pp-RPA 

matrix.

2.3. Jacobi–Davidson eigensolver

The Jacobi–Davidson generalized eigensolver [15,16] is a matrix-free method (e.g., only matvec operation is required) and 
allows to use a preconditioner for solving linear systems in its inner iteration to accelerate the overall convergence. For 
completeness, a detailed description of the algorithm is given in Appendix A.

Empirically we observe in our numerical examples that pp-RPA matrices are usually strongly diagonally dominant 
(although this observation has not been verified in theory), the diagonal part of these matrices can be chosen as the pre-
conditioner of the Jacobi–Davidson eigensolver. Note that the computational cost for all repulsion integrals in the diagonal 
part takes O (N2Ngrid) operations and memory by (6) and (7). To avoid this expensive computation and memory request, 
we choose the following diagonal matrix as the preconditioner instead of the exact diagonal of the pp-RPA matrix:

P =
(

D p

Dh

)
, (17)

where D p and Dh are defined in (14).
In each iteration of the Jacobi–Davidson eigensolver, the dominant cost is applying the pp-RPA matrix to O (1) vectors 

and solving one linear system of a shifted pp-PRA matrix. Since the GMRES [13] is applied to solve this linear system 
with a fixed number of iterations, the complexity of the linear system solver is the same as that of the matvec, which is 
O (N2Naux + N2

auxN). Since the number of iterations in the eigensolver depends on the accuracy of GMRES and we have 
fixed the number of iterations in GMRES, a good preconditioner is important to improve the convergence of the eigensolver. 
As we shall see later in Section 3, numerical examples show that the preconditioner in (3) is sufficiently good to reduce the 
number of iterations in the Jacobi–Davidson eigensolver and keep this number roughly independent of the problem size. 
Therefore, our proposed algorithm can compute O (1) eigenpairs with O (N2Naux + N2

auxN) operations.

2.4. Truncation of orbital space in the pp-PRA model

In the original pp-RPA model proposed in [9,14,18], the pp-RPA matrix involves all orbitals {φp(x)}1≤p≤Ngrid of the Ngrid ×
Ngrid Hamiltonian matrix H . Recall its definition(

A B
B� C

)(
X
Y

)
= ω

(
I p

−Ih

)(
X
Y

)
, (18)
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Fig. 1. The scaling test of the evaluation of Equation (15) with an N × N matrix M , an N × N matrix V , and an N2 × 1 vector gkl . The runtime of the 
evaluation is recorded for different problem sizes N . Red: log2(runtime) as a function in log2(N). Blue: ground truth cubic scaling line as a reference. The 
scaling is cubic when N is sufficiently large. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

where I p and Ih are identity matrices of size p = (Nocc
2

)
and h = (Nvir

2

)
(where Nvir + Nocc = N = Ngrid), respectively, and 

entries in matrices A, B , and C are defined via

Aijkl = 〈i j||kl〉 + δikδ jl(εi + ε j − 2εF ),

Bijcd = 〈i j||cd〉,
Cabcd = 〈ab||cd〉 − δacδbd(εa + εb − 2εF ),

for all 1 ≤ j < i ≤ Nocc, 1 ≤ l < k ≤ Nocc, Nocc + 1 ≤ b < a ≤ Ngrid, and Nocc + 1 ≤ d < c ≤ Ngrid. The lowest (the smallest 
magnitude) eigenpairs of the above generalized eigenvalue problem is able to predict electronic excited states. Note that

(1) the pp-RPA matrix is usually strongly diagonally dominant; and
(2) the diagonal entries of the pp-RPA matrix is essentially governed by (εi + ε j − 2εF ) and (εa + εb − 2εF ).

It is reasonable to reduce the system size of the pp-RPA equation by only keeping a small portion of orbitals with orbital 
energy close to the Fermi energy εF , while maintaining the lowest eigenvalues approximately the same. In other words, we 
can use Nvir virtual orbitals with orbital energy closest to εF and Nocc occupied orbitals with orbital energy closest to εF in 
the construction of the pp-RPA matrix. We will test Nocc far less than the total number of occupied orbitals and Nvir far less 
than the total number of virtual orbitals, i.e., N = Nocc + Nvir � Ngrid. This reduced system leads to a much smaller prefactor 
of the cubic scaling algorithm while keeping the accuracy of the excited state prediction. Numerical examples with varying 
problem sizes in Section 3 show that it is sufficient to use 10 percents of the occupied and virtual orbitals to keep four-digit 
relative accuracy in estimating the first three positive eigenvalues close to zero and the first three negative eigenvalues close 
to zero. Note that a different active-space truncation of the pp-RPA matrix was proposed very recently in [21], which can 
be combined with the truncation studied here and will be explored in future works.

3. Numerical examples

We now present numerical results to support the efficiency of the proposed algorithm. In the first part, we verify the 
cubic scaling of the matvec proposed in Section 2.2. In the second part, we show that the proposed preconditioner in (17) is 
able to keep the number of iterations in the Jacobi–Davidson eigensolver roughly independent of the problem size. Finally, 
we provide various examples to support the truncation of orbital space in pp-RPA as in Section 2.4.

3.1. Tests for the cubic scaling matvec

In the first part, we verify that the matvec proposed in Section 2.2 is cubic scaling numerically. By the interpolative 
separable density fitting technique in [7], we construct small matrix factors M , select a set of important spacial grid points 
{μ} ⊂ {x}, and compute the matvec of the pp-RPA matrix via the method detailed in Equation (15) and (16). It has been 
shown in [7] that the construction of M and the selection of {μ} take O (N2Ngrid) operations. Hence, to verify the cubic 
scaling of the matvec, it is sufficient to show that for an N × N matrix M , an N × N matrix V , and an N2 × 1 vector gkl , 
the computation of Equation (15) takes O (N3) operations for N2 index pairs (i j). Therefore, we generate M , V , and gkl
randomly with different values of N , evaluate Equation (15), and summarize the runtime in Fig. 1. As shown in Fig. 1, the 
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Fig. 2. Left: the periodic function V 0(r) is a Gaussian well on the unit square [0, 1)2. Right: the potential energy operator 2 V (r) with  = 16. (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Table 1
The number of iterations in the Jacobi–Davidson eigensolver with 
and without a preconditioner. This table summarizes results for one-
dimensional Hamiltonian matrices with different number of Gaussian 
wells . The preconditioned eigensolver needs a number of iterations 
roughly independent of the problem size.

 4 8 16 32 64 128

preconditioned 46 60 56 60 54 57

non-preconditioned 160 246 316 414 581 826

evaluation of Equation (15) is cubic scaling as soon as N is sufficiently large. Therefore, the cubic scaling matvec for apply 
the pp-RPA matrix has been verified.

3.2. Tests for the preconditioner

In the second part, we use synthetic Hamiltonian to construct approximate pp-RPA matrices. The Hamiltonian matrix H
is a discrete representation of the Hamiltonian operator(

−�

2
+ V (r)

)
φ j(r) = ε jφ j(r), r ∈ Td := [0, )d, (19)

with a periodic boundary condition and d = 1 or 2, where V (r) is the potential field, ε j is the orbital energy of the 
corresponding Kohn–Sham orbital, φ j(r). It is convenient to rescale the system to the unit square via the transformation 
x = r:(

−�

2
+ d V (x)

)
φ j(x) = ε j

dφ j(x), x ∈ T
d := [0,1)d, (20)

and discretize the new system with the pseudo-spectral method. Let V 0(r) be a Gaussian well on the unit domain [0, 1)d

(see Fig. 2 (left) for an example when d = 2) and extend it periodically with period 1 to obtain V (x) defined on Td :=
[0, )d . We randomly remove one Gaussian well from V (x) to construct a non-trivial potential field and rescale it to d V (x)

on the unit domain [0, 1)d (see Fig. 2 (right) for a two-dimensional example). The number of grid points per dimension 
within one period is set to 4. Once the Hamiltonian is available, we compute its eigenpairs by direct diagonalization to 
obtain its orbitals {φp}1≤p≤Ngrid and the corresponding orbital energy {εp}1≤p≤Ngrid .

We will use one-dimensional Hamiltonian matrices (i.e. d = 1) to verify the efficiency of the proposed preconditioner 
in (17). The Jacobi–Davidson eigensolver in Algorithm 3 in the appendix is applied to compute the generalized eigenvalue 
closest to zero in the generalized eigenvalue problem (3), without any preconditioner and with the preconditioner in (17). 
Parameters in Algorithm 3 are ε = 1e − 10, mmin = kmax + 5, mmax = mmin + 5, and mx = 400kmax. The initial nontrivial 
vector ν0 is one realization of a random vector such that each entry is a random variable with a uniform distribution in 
[0, 2].

Table 1 and 2 summarize the number of iterations and the accuracy of the eigensolver, respectively. As in the generalized 
eigenvalue problem (3), suppose the generalized eigenpair computed is 

(
ω,

( X
Y

))
, the accuracy in Table 2 is defined to be 

the 2-norm
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Table 2
The accuracy of the Jacobi–Davidson eigensolver with and without a preconditioner. This 
table summarizes results for one-dimensional Hamiltonian matrices with different number 
of Gaussian wells .

 4 8 16 32 64 128

preconditioned 1.0e-09 1.1e-09 1.0e-09 1.2e-09 1.6e-08 5.6e-08

non-preconditioned 4.5e-10 7.1e-09 1.0e-08 6.0e-08 2.2e-02 2.4e-07

Table 3
The relative difference err defined in (21) of three smallest positive 
eigenvalues and three largest negative eigenvalues of the original 
pp-RPA matrix and the truncated pp-RPA matrices constructed with 
different values of pct. Naive implementation is used in both cases. 
This table summarizes results for one-dimensional Hamiltonian ma-
trices with different number of Gaussian wells  = 4, 8, 16, and 32.

\ pct 0.05 0.1 0.2 0.3 0.4

4 9.9e-07 9.9e-07 9.9e-07 9.9e-07 1.8e-07

8 1.9e-07 1.9e-07 1.6e-07 1.4e-07 1.4e-07

16 2.8e-08 2.3e-08 2.2e-08 1.6e-08 1.0e-08

32 2.9e-09 2.5e-09 1.2e-09 3.8e-10 1.9e-10

Table 4
The relative difference err defined in (21) of three smallest posi-
tive eigenvalues and three largest negative eigenvalues of the orig-
inal pp-RPA matrix and the truncated pp-RPA matrices constructed 
with different values of pct. Naive implementation is used in both 
cases. This table summarizes results for two-dimensional Hamil-
tonian matrices with different number of Gaussian wells 2 = 4
and 9.

\ pct 0.05 0.1 0.2 0.3 0.4

2 3.2e-04 1.8e-04 5.7e-05 2.3e-05 1.5e-05

3 5.0e-06 3.4e-06 3.2e-06 3.1e-06 3.1e-06∥∥∥∥(
A B

B� C

)(
X
Y

)
− ω

(
I p

−Ih

)(
X
Y

)∥∥∥∥ .

These results show that the proposed preconditioner is able to keep the number of iterations in the eigensolver roughly 
independent of the problem size, and the accuracy is usually higher in the presence of the preconditioner.

3.3. Tests for the truncated pp-RPA model

In this section, we construct Hamiltonian matrices, orbitals, and orbital energies using the same method in Section 3.2. 
We will conduct two sets of test to verify the truncation of orbital spaces in the pp-RPA model. In these tests, the Jacobi–
Davidson eigensolver in Algorithm 3 in the appendix is applied to compute kmax (sufficiently many) generalized eigenvalues 
close to zero of pp-RPA matrices such that we able to obtain three positive eigenvalues closest to zero and three neg-
ative eigenvalues closest to zero. Other parameters in Algorithm 3 are ε = 1e − 10, mmin = kmax + 5, mmax = mmin + 5, 
and mx = 400kmax. The initial nontrivial vector ν0 is one realization of a random vector such that each entry is a random 
variable with a uniform distribution in [0, 2].

In the first test, we verify the proposed truncated pp-RPA model by directly constructing the whole pp-RPA matrix in 
(18) (i.e., computing the repulsion integrals by naive summations) with different values of Nvir and Nocc. When Nvir and 
Nocc are the total numbers of virtual and occupied orbitals, we obtain the original pp-RPA matrix in [9,14,18]. Let pct denote 
the percentage of occupied and virtual orbitals (with orbital energy closest to εF ) we used in the truncated pp-RPA model. 
We generate truncated pp-RPA matrices with pct = 0.05, 0.1, 0.2, 0.3, and 0.4, compute three smallest positive eigenvalues 
and three largest negative eigenvalues by the Jacobi–Davidson method (denoted by valapp ∈ R

6), compare these eigenvalues 
with those from the original pp-RPA matrix (denoted by valorg ∈R

6) via the relative difference below

err = max
{|valapp(k) − valorg(k)|/|valorg(k)|}1≤k≤6. (21)

Note that when Ngrid is small, pct · Ngrid might be too small to establish a meaningful pp-RPA equation. Therefore, if Nvir
and Nocc are smaller than 4 due to a small pct, we will update Nvir and Nocc to 4.

Table 3 and Table 4 summarize the relative difference err in these comparisons for one-dimensional and two-dimensional 
Hamiltonian matrices, respectively. These results show that, to estimate three smallest positive eigenvalues and three largest 
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Table 5
The relative difference err defined in (21) of three smallest posi-
tive eigenvalues and three largest negative eigenvalues of the orig-
inal pp-RPA matrix and the truncated pp-RPA matrices constructed 
with different values of pct. This table summarizes results for one-
dimensional Hamiltonian matrices with different number of Gaus-
sian wells  = 4, 8, . . . , and 256. The cubic scaling algorithm is used 
for truncated pp-RPA, for the original pp-RPA, naive implementation 
is used when  = 4, . . . , and 32, and cubic scaling algorithm is used 
when  = 64, 128, and 256 since the naive algorithm is too slow.

\ pct 0.05 0.1 0.2 0.3 0.4

4 9.9e-07 9.9e-07 9.9e-07 9.9e-07 1.8e-07

8 1.9e-07 1.9e-07 1.6e-07 1.4e-07 1.4e-07

16 2.8e-08 2.3e-08 2.2e-08 1.6e-08 1.0e-08

32 2.9e-09 2.5e-09 1.2e-09 3.8e-10 1.9e-10

64 3.0e-10 1.4e-10 4.3e-11 2.1e-11 9.6e-12

128 1.6e-11 6.5e-12 2.4e-12 5.0e-08 5.7e-13

256 8.3e-13 4.0e-13 1.5e-13 7.0e-14 3.5e-14

Table 6
The relative difference err defined in (21) of three smallest posi-
tive eigenvalues and three largest negative eigenvalues of the orig-
inal pp-RPA matrix and the truncated pp-RPA matrices constructed 
with different values of pct. This table summarizes results for two-
dimensional Hamiltonian matrices with different number of Gaus-
sian wells 2 = 4, 9, 16, and 25. The cubic scaling algorithm is used 
for truncated pp-RPA, for the original pp-RPA, naive implementation 
is used when 2 = 4 and 9, and cubic scaling algorithm is used when 
2 = 16 and 25 since the naive algorithm is too slow.

\ pct 0.05 0.1 0.2 0.3 0.4

2 3.2e-04 1.8e-04 5.7e-05 2.3e-05 1.5e-05

3 5.0e-06 3.4e-06 3.2e-06 2.8e-05 3.1e-06

4 2.8e-05 2.1e-05 1.8e-05 1.7e-05 1.3e-05

5 9.1e-05 9.1e-05 9.1e-05 1.2e-06 7.7e-07

negative eigenvalues of the original pp-RPA matrix (i.e., the pp-RPA matrix constructed with all Ngrid orbitals using the naive 
implementation) within 4-digits accuracy, it is sufficient to use only 10 percents of both the occupied and the virtual orbitals 
to construct a truncated pp-RPA matrix via the naive implementation.

In the second test, we verify the truncated pp-RPA model by applying the proposed fast matvec to compute the eigenval-
ues of the truncated pp-RPA matrices with different values of Nvir and Nocc. When Nvir and Nocc are the total numbers of 
virtual and occupied orbitals, we approximately obtain the original pp-RPA matrix in [9,14,18] up to some error introduced 
by the density fitting. In the construction of the interpolative separable density fitting, we set the parameter ε = 1e − 7 and 
c = 10. Again, we generate truncated pp-RPA matrices with pct = 0.05, 0.1, 0.2, 0.3, and 0.4, compute three smallest pos-
itive eigenvalues and three largest negative eigenvalues by the Jacobi–Davidson method (denoted by valapp ∈ R

6), compare 
these eigenvalues with those from the original pp-RPA matrix (denoted by valorg ∈ R

6) by computing the relative difference 
as in (21). Since in the first test, we have computed the ground truth eigenvalues from the exact pp-RPA matrix by direct 
evaluation, we reuse these eigenvalues if available, instead of using the eigenvalues of the truncated pp-RPA matrix when 
pct = 1.

Table 5 and Table 6 summarize these comparisons for one-dimensional and two-dimensional Hamiltonian matrices, 
respectively. These results lead to the same conclusion as in the first test.

Appendix A. The Jacobi–Davidson eigensolver

In Algorithm 3 we describe the Jacobi–Davidson algorithm [15,16] to compute kmax generalized eigenpairs with gen-
eralized eigenvalues closest to a target τ . In particular, if low-lying excitations are desired, we can take τ = 0 in the 
algorithm. The algorithm description follows the lecture note by Peter Arbenz available at http :/ /people .inf .ethz .ch /arbenz /
ewp /Lnotes /chapter12 .pdf, and the codes are available at Gerard L.G. Sleijpen’s personal homepage: http :/ /www.staff .science .
uu .nl /~sleij101/.

http://people.inf.ethz.ch/arbenz/ewp/Lnotes/chapter12.pdf
http://www.staff.science.uu.nl/~sleij101/
http://people.inf.ethz.ch/arbenz/ewp/Lnotes/chapter12.pdf
http://www.staff.science.uu.nl/~sleij101/
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Input : Square matrices A and B in Cn×n , τ , kmax, the accuracy parameter ε , restart parameters mmin and mmax, the maximum number of 
iterations mx.

Output: Q and Z ∈C
n×kmax , R A and R B ∈C

kmax×kmax s.t. A Q = Z R A and B Q = Z R B . The kmax interior generalized eigenvalues close to the target τ
are {R A

k,k/R B
k,k}1≤k≤kmax .

1 Choose a nontrivial vector v0; k = 0; ν0 = 1/
√

1 + |τ |2; μ0 = −τν0; m = 0; itr = 0;
2 Q = []; Z = []; S = []; T = [];
3 while k < kmax and itr < mx do
4 Orthogonalize t ← t − Vm V ∗

mt;
5 itr ← itr + 1; m = m + 1; vm = t/‖t‖; v A

m = Avm; v B
m = B vm; w = ν0 v A

m + μ0 v B
m;

6 Orthogonalize: w ← w − Zk Z∗
k w; w ← w − Wm−1 W ∗

m−1 w; wm = w/‖w‖;

7 M A ←
(

M A W ∗
m−1 v A

m
w∗

m V A
m−1 w∗

m v A
m

)
; M B ←

(
M B W ∗

m−1 v B
m

w∗
m V B

m−1 w∗
m v B

m

)
;

8 Compute the Q Z decomposition M A S R = S L T A , M B S R = S L T B , such that |T A
i,i/T B

i,i − τ | ≤ |T A
i+1,i+1/T B

i+1,i+1 − τ | (the Rayleigh–Ritz step);

9 u = V sR
1 ; p = W j sL

1; u A = V A sR
1 ; uB = V B sR

1 ; ζ = T A
1,1; η = T B

1,1;

10 r = ηu A − ζuB ; ̃a = Z∗uB ; ̃b = Z∗uB ; ̃r = r − Z(η̃a − ζ b̃);
11 while ‖̃r‖ < ε do

12 R A ←
(

R A ã
0� ζ

)
; R B ←

(
R B b̃
0� η

)
;

13 Q ← [Q , u]; Z ← [Z , p]; k ← k + 1; m ← m − 1;
14 if k = kmax then
15 return (Q , Z , R A , R B )

16 for i = 1, . . . , m do
17 vi = V sR

i+1; v A
i = V A sR

i+1; v B
i = V B sR

i+1;

18 wi = W sL
i+1; sR

i = sL
i = ei ;

19 M A , M B is the lower m × m block of T A , T B , respectively.
20 u = u1; p = w1; u A = v A

1 ; uB = v B
1 ; ζ = T A

1,1; η = T B
1,1;

21 r = ηu A − ζuB ; ̃a = Z∗u A ; ̃b = Z∗uB ; ̃r = r − Z(η̃a − ζ b̃);

22 if m ≥ mmax then
23 for i = 2, . . . , mmin do
24 vi = V sR

i ; v A
i = V A sR

i ; v B
i = V B sR

i ; wi = W sL
i ;

25 M A , M B is the leading mmin × mmin block of T A , T B , respectively.
26 v1 = u; v A

1 = u A ; v B
1 = uB ; w1 = p; m = mmin.

27 Q̃ = [Q , u]; ̃Z = [X, p];
28 (Approximately) solve the correction equation for t ⊥ Q̃ using GMRES, (I − Z̃ Z̃∗)(ηA − ζ B)(I − Q̃ Q̃ ∗)t = −r, where r = ηAu A − ζ BuB .

Algorithm 3: Jacobi–Davidson QZ method for kmax interior eigenvalues close to τ .
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