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Ground-state correlation energy of beryllium dimer by the Bethe-Salpeter equation
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The interatomic potential of the beryllium dimer Be2 has been since the ’30s both an experimental
and theoretical challenge. The calculation of the ground-state correlation energy of Be2 along its
dissociation path is a difficult problem for theory. We present ab initio many-body perturbation
theory calculations of the Be2 interatomic potential using the GW approximation and the Bethe-
Salpeter equation (BSE). The ground-state correlation energy is calculated by the trace formula
with checks against the adiabatic-connection fluctuation-dissipation theorem formula. We show that
inclusion of GW corrections already improves even at the level of the random-phase approximation.
At the level of BSE on top of GW, our calculation is surprisingly in agreement with the most
accurate theories and the experiment. It even reproduces an experimentally observed flattening due
to a correlations delicate balance from a competition between covalent and van der Waals bonding.

Introduction. The beryllium dimer Be2 has a long sci-
entific history, with hundreds of experimental and theo-
retical investigations [1, 2]. The first synthesis of Be2
was attempted in the ’30s with no success [3, 4], while
Hartree-Fock (HF) or other theoretical modelling [5, 6]
found a repulsive ground-state, leading to the conclusion
that Be2 does not exist. Later studies [2, 7] pointed to
a possible van der Waals binding with a shallow mini-
mum at large (∼ 5 Å) distance, while others yielded a
double short and long-range minimum [2, 8]. Be2 re-
mained elusive till the ’70s [9], and only in the ’80s first
rotovibrational spectra were measured [10] and reliable
calculations [11] were made, both pointing to a single
short-bond minimum at ∼ 2.5 Å. Today we have very
accurate experiments [1] and calculations [12] for the Be2
interatomic potential. Nevertheless, Be2 remains a severe
workbench to check many-body theories, and this is the
purpose of this work.

The description of the correlation energy of molec-
ular dimers along their dissociation path is a theoret-
ical challenge [13, 14]. Full configuration interaction
(CI) [14] is the only accurate method [2, 12] provid-
ing results in very good agreement with the experi-
ment, though is limited to very small molecules. Quan-
tum Monte Carlo (QMC) [13, 15–17], both variational
(VMC) and diffusion (DMC) are also valid alternatives,
and DMC is even exact in systems where the ground-
state wavefunction does not present nodes, but they
can be also very cumbersome. Density-functional the-
ory (DFT) [13] is in principle exact to calculate ground-
state energies, but standard approximations, like the
local-density (LDA) and generalized-gradient (GGA),
have shown their limits on dimers binding energies and
lengths [18], in particular in the dissociation limit. Time-
dependent density-functional theory (TDDFT) [19, 20]
in the adiabatic-connection fluctuation-dissipation theo-
rem (ACFDT) formalism [21, 22] has in the recent years

been considered as one promising approach to improve
over approximated DFT [18, 23–25]. It anyway relies on
TDDFT approximations for the polarizability χ, such as
the random-phase approximation (RPA), the adiabatic
LDA (ALDA or TDLDA), or beyond. Nevertheless, the
interatomic potential of Be2 continues to be a problem
also for TDDFT ACFDT, both in RPA [26] and also more
advanced approximations [25, 27].
In this work, we calculate the Be2 interatomic potential

in the framework of ab initio many-body perturbation
theory using the GW approximation [28] and the Bethe-
Salpeter equation (BSE) [13, 29, 30]. The ground-state
correlation energy is calculated by the trace formula (TF)
[31, 32]

Ec
0 =

1

2

[

∑

i>0
Ωi − Tr(A)

]

(1)

where Ωi are the positive eigenvalues of the full, i.e. be-
yond Tamm-Dancoff approximation, BSE equation, and
A is the only-resonant part of the BSE excitonic Hamil-
tonian. This formula was introduced by Sawada to cal-
culate the correlation energy of the electron gas [33] as
an alternative to the Gell-Mann & Brückner integration
along the adiabatic connection on the interaction switch-
on λ parameter formula [34]. The two were later shown to
be equivalent both in RPA on the electron gas [35, 36] and
in TDDFT ACFDT [37]. We confirm this equivalence, at
least at the RPA level, by also evaluating the correlation
energy via the TDDFT ACFDT formula [18, 21, 22]

Ec
0 =

1

2π

∫

dudrdr′
[

ln

(

1−
χ0(r, r′, iu)

|r − r′|

)

+
χ0(r, r′, iu)

|r − r′|

]

where χ0(r, r′, iu) is the Kohn-Sham polarizability along
the positive imaginary frequency axis ω = iu, u > 0. Our
results show that GW corrections introduce important
improvements already at the level of RPA. The inter-
atomic potential we obtain at the level of BSE on top of
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GW is surprisingly in agreement with the most accurate
calculations and the experiment. GW+BSE correlations
seem even able to describe the unusual shape of the ex-
perimental [1] interatomic potential, a flattening of the
Morse potential in the range [6,9] Bohr (∼[3,4.5] Å) to-
wards an expanded Morse potential which better fits the
experimental vibrational spectrum [1].
The solution of the historical problem represented by

the paradigmatic Be2 interatomic potential, shows that
the use of Eq. (1) in the BSE framework can reveal an ac-
curate methodology to calculate the ground-state energy
and stability of atoms and molecules, solids, and even
nuclei, with an important advance in all these fields.
Theory. Eq. (1) was previously derived by different

ways [33, 36, 37]. We here present a modification of the
Thouless derivation [31, 38] which extends its validity to
starting points different from HF towards DFT or GW ,
and to kernels beyond RPA towards BSE or TDDFT ker-
nels. We start from the Bethe-Salpeter equation,

L = L0 + L0ΞL,

where L is the two-particle correlation function, L0 =
GG with G the one-particle Green function, and Ξ the
two-particle interaction, which is an exact equation to
calculate the excitation spectrum. By knowing the exact
Ξ and L0 (so G), the BSE can be solved for L whose poles
Ωλ = Eλ −E0 and their associated residuals provide the
neutral excitation energies and oscillator strengths. In
practice approximations are unavoidable. We consider
a quite general case of an approximated, e.g. HF, GW

or DFT, electronic structure with real energies ǫi and
orthonormal wavefunctions φi(r) used to build G and
L0, and an approximated static kernel, e.g. the TDH
iΞijkl = wiljk (with w the bare Coulomb interaction),
or the TDHF iΞijkl = wiljk − wilkj , or the GW+BSE
iΞijkl = wiljk −Wilkj (with W the screened Coulomb in-
teraction), or even the TDLDA. Under these conditions
the Bethe-Salpeter equation can be reduced to the well
known [13, 31, 39–41] RPA equation

(

A B

B∗ A∗

)(

Xλ

Y λ

)

= Ωλ

(

1 0
0 −1

)(

Xλ

Y λ

)

, (2)

with the Hermitian Att′ = Aphp′h′ = (ǫp − ǫh)δpp′δhh′ +
iΞphp′h′ and the symmetric Btt′ = Bphp′h′ = −iΞpp′hh′

matrices indexed by particle-hole transition indices t =
{ph} from an occupied h to an empty p state, ĉ†pĉh, on
the orthonormal basis set φi(r). Eq. (2) provides a full
spectrum of excitations |Ψλ〉, both excitation energies
Ωλ = Eλ − E0 (with respect to the ground state en-
ergy E0) and eigenvectors (Xλ Y λ), which constitutes an
approximation to the exact one. We now introduce bo-

son [39] transition operators Ĉt replacing the ph operator

bilinears, ĉ†pĉh → Ĉ
†
t , i.e. fulfilling exact boson canon-

ical commutation relations, [Ĉt, Ĉt′ ] = 0, [Ĉ†
t, Ĉ

†
t′ ] =

0, [Ĉt, Ĉ
†
t′ ] = δtt′ . This is not the case for the fermion

bilinears, [ĉpĉ
†
h, ĉ

†
pĉh] 6= δpp′δhh′ . So that the ones can be

seen as an approximation of the others. We now express
the full many-body Hamiltonian Ĥ in terms of the boson
operators under the condition to get, by construction,
the same excitation spectrum of Eq. (2). This is granted
if [39]

〈Ψ0|[Ĉt, [Ĥ, Ĉ
†
t′ ]]|Ψ0〉 = Att′ ,

〈Ψ0|[Ĉt, [Ĥ, Ĉt′ ]]|Ψ0〉 = −Btt′ .

Up to quadratic terms only [42] the Hamiltonian writes

Ĥ = E0
0 +

∑

tt′

Att′Ĉ
†
t Ĉt′ +

1

2

∑

tt′

[Btt′Ĉ
†
t Ĉ

†
t′ +B∗

tt′ĈtĈt′ ],

where the constant E0
0 is approximated by the expecta-

tion value of the Hamiltonian, E0
0 = 〈Φ0|Ĥ |Φ0〉, over the

0-order ground-state Slater determinant Φ0 constructed
with the occupied wavefunctions φh(r) [43]. For HF or-
bitals φHF(r), the constant is the HF ground-state energy
E0

0 = EHF
0 , whereas for DFT is the kinetic, external,

Hartree and exchange operators evaluated on the Kohn-
Sham wavefunctions, E0

0 = EDFT − Exc + EEXX. The
Hamiltonian can be recast into a matrix form,

Ĥ = E0
0 −

1

2
Tr(A) +

1

2

(

Ĉ† Ĉ
)

(

A B

B∗ A∗

)(

Ĉ

Ĉ†

)

,

and the solutions (Xλ Y λ) to Eq. (2), subject to the or-
thonormality condition

∑

t(X
λ∗
t Xλ′

t − Y λ∗
t Y λ′

t ) = δλλ′ ,

allows to define new boson operators Q̂λ by a Bogoliubov
transformation of the Ĉt,

Q̂
†
λ =

∑

t

(Xλ
t Ĉ

†
t − Y λ

t Ĉt),

which diagonalizes the Hamiltonian

Ĥ = E0
0 −

1

2
Tr(A) +

1

2

∑

λ

Ωλ +
∑

λ

ΩλQ̂
†
λQ̂λ. (3)

The operators Q̂λ act on the (approximated) ground |Ψ0〉

and excited |Ψλ〉 states, Q̂†
λ|Ψ0〉 = |Ψλ〉, Q̂λ|Ψ0〉 = 0,

and the expectation value of the Hamiltonian Eq. (3)
over the excited states |Ψλ〉 provides by construction the
excitation energies Ωλ with respect to the ground state.
Finally, the expectation value of the Hamiltonian Eq. (3)
over |Ψ0〉 provides the total energy of the ground state
including correlation (within stated approximations),

E0 = E0
0 +

1

2

∑

λ

Ωλ −
1

2
Tr(A). (4)

Thus, for a starting HF electronic structure, the last two
terms beyond the constant E0

0 = EHF
0 in Eq. (4) provide

the correlation energy Eq. (1), alternatively recasted

Ecorr
0 =

1

2

∑

λ

(Ωλ − ΩTDA
λ ), (5)
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or also

Ecorr
0 = −

∑

λ

Ωλ

∑

t

|Y λ
t |2, (6)

where ΩTDA
λ are the eigenvalues of Eq. (2) in the

Tamm-Dancoff approximation (TDA), i.e. taking B = 0.
Eqs. (5) and (6) more clearly show that the ground state
correlation energy arises only beyond the TDA approx-
imation and from terms in B and Y . The TDA is only
able to introduce correlations in the excited states.
To resume, Eq. (4) is an expression for the ground-

state total energy E0 including correlation at the same

level of approximation (e.g. RPA or TDHF, GW+BSE,
etc.) taken for the A and B matrices, and of the associ-
ated excitation spectrum Ωλ. In contrast to the ACFDT
formalism, which provides an in principle exact formula
for correlations within TDDFT, Eq. (4) is since the be-
ginning only an approximated expression, relying on the
validity of the boson approximation between operators,
Ĉt ≃ ĉ†pĉh, and of the killing condition on the 0-order

Slater determinant ground-state, Ĉt|Φ0〉 ≃ 0. However
for both formulas the most critical is the approximation
on the kernel (RPA, TDLDA, GW+BSE) and on the
starting electronic structure (LDA, GGA, HF, GW , etc.)
Comparing the merits of the various approximations is
still in its infancy for atoms and molecules [44, 45].
In order to provide the best comparison with previ-

ous literature and ACFDT results, we use the same large
cc-pV5Z Gaussian basis set [46] adopted in Ref. [27], to-
gether with the auxiliary cc-pV5Z-RI basis set [47] in our
Coulomb-fitting resolution-of-identity approach. Input
Kohn-Sham or Hartree-Fock eigenstates were calculated
by the NWChem [48] package, whereas many-body cal-
culations were performed with the Fiesta [49, 50] code.
For improved accuracy [49, 51] we performed evGW cal-
culations, namely partially self-consistent GW on the
eigenvalues, for all 4 occupied and 14 empty states.
Results. In Fig. 1 we present the interatomic poten-

tial of Be2 as derived from recent accurate experimental
rotovibrational spectra [1], and from the most accurate
configuration interaction (CI) calculation [12] which is in
good agreement with the experiment. We then present
theoretical curves we calculated at the level of the direct
RPA approximation on top of DFT in the PBE [52] ap-
proximation (RPA@PBE) by the TF [Eq. (4) or equiv-
alently, which has been checked numerically, Eq. (6)],
and by the ACFDT formulas. They are in perfect agree-
ment. We can compare our RPA@PBE curves with those
calculated by Refs. [26, 27] with the ACFDT formula.
Although we used exactly the same calculation parame-
ters reported in Ref. [27], our result differs from theirs,
in particular on the binding energy, due to the basis set
superposition error they mention and remove by counter-
poise. We preferred not to use the counterpoise method
following some works [53, 54] which found it less correct
in the case of systems where van der Waals interaction

4 5 6 7 8 9 10
R [Bo r]

−4

−2

0

2

4

E(
R)
 [m

Ha
]

Be2 , In(era(omic Po(en(ial

RPA@PBE ACFDTa

RPA@PBE ACFDTb
RPA@PBE ACFDT
RPA@PBE TF

RPA@GW@PBE ACFDT
RPA@GW@PBE TF
Acc)ra(e
Experimen(

FIG. 1. Interatomic potential of Be2. Red line: experiment
[1]; black line: accurate CI [12]; green plus and line (a): RPA
on top of PBE by ACFDT from Ref. [27]; cyan crosses and
line (b): RPA on top of PBE by ACFDT from Ref. [26];
blue continuous line: RPA on top of PBE by ACFDT, our
calculation; blue squares and dashed line: RPA on top of
PBE by the trace formula, Eq. (4); magenta continuous line:
RPA on top of GW and PBE by ACFDT; magenta circles
and dashed line: RPA on top of GW and PBE by TF.

can be important. Our result is for this reason closer, sur-
prisingly, to the one of Ref. [26] obtained by a much dif-
ferent implementation, plane-waves and norm-conserving
pseudopotentials. Nevertheless, all RPA@PBE calcula-
tions present qualitatively the same unphysical feature,
a bump at 6–7 Bohr, in contrast to the experiment and
the accurate CI calculation. Note that the bump is com-
pletely absent in the original DFT PBE interatomic po-
tential which is all over strongly attractive with a deep
minimum and large binding energy (see Ref. [25]). Fi-
nally, we present curves calculated at the same level of
direct RPA but using a GW corrections on top of PBE.
The most important point is that there is a clear improve-
ment in RPA@GW@PBE with respect of RPA@PBE.
The bump is much reduced, though is still present. The
binding energy is also improved, though still underesti-
mated. The bonding length is now overestimated.
The bump at 6–7 Bohr seems related to the starting

point, DFT PBE (but also LDA, see Ref. [26]) which our
GW calculation with self-consistency on the eigenvalues
is only partially able to correct. Indeed, an RPA calcula-
tion on top of HF does not present the unphysical bump,
as it is evident in Fig. 2 where we report both our TF and
the ACFDT of Ref. [26] RPA@HF results. Both present a
correct attractive behaviour, although the original HF in-
teratomic potential (Fig. 2) is repulsive. Nevertheless the
dissociation curve is too flat (though less in our calcula-
tion), and the binding energy is severely underestimated.
However, also when starting from HF, the introduction of
GW corrections introduces an important improvement.
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FIG. 2. Interatomic potential of Be2. Red line: experiment
[1]; black line: accurate CI [12]; magenta triangles down and
line: HF; blue diamonds and dashed line: RPA on top of HF
by ACFDT from Ref. [27]; blue squares and line: RPA on top
of HF by TF; yellow triangles up and line: RPA on top of
GW and HF; cyan circles and line: BSE on top of GW and
HF by the TF formula Eq. (4).

The RPA@GW@HF curve (Fig. 2) is much closer to the
accurate and experimental result, though it presents a
∼10% overestimation of both the binding energy and
length. Finally we show the curve calculated solving the
Bethe-Salpeter equation on top of a GW electronic struc-
ture and starting from HF. The result is, beyond any
expectation, impressively good. The equilibrium length
is within 0.02 Bohr from the exact value, and the bind-
ing energy is only 0.3 mHa overestimated. These values
are even more accurate than the VMC and DMC ones
[17], outperforming as well quantum chemistry methods
like MP2 and even CCSD [27, 55]. Notice also that any
change we have introduced to the standard procedure,
like solving the BSE directly on top of HF, or consid-
ering an unscreened kernel like in TDHF, immediately
destroys the good agreement, providing even much worse
results in some cases. Our BSE result seems better than
the most advanced ACFDT TDDFT approximations of
Ref. [25], like the RPA+ and RPA+SOSEX, which are
unbound, and also the RPA+rSE, which provides a good
binding energy and length but still presents a bump at
6–7 Bohr. The range-separated hybrid RSH+RPAx of
Ref. [27] is certainly the ACFDT TDDFT approximation
closer to the physics underneath the GW+BSE approach
whose path to correlations is represented by the introduc-
tion of screening. RSH+RPAx tries to mimic this physics
by introducing two ranges of different screened exchange,
and in Be2 obtains a clear improvement toward the good
shape without the bump, but the binding energy and
length are not yet sufficient. This can only be obtained
by an approach presenting continuous variation of the

screening at all ranges, like in GW+BSE.

Finally, the BSE on top of the GW approximation
result seems even able to reproduce an unusual feature
which has been pointed out in the accurate experiment of
Ref. [1]. In the Inset of Fig. 2 we show a zoom on the re-
gion [6,9] Bohr (∼[3,4.5] Å) where van der Waals (vdW)
interaction effects should enter into play and where in
the past it was conjectured a vdW secondary (or even
the only main) minimum. In this region the experiment
presents an evident flattening which makes the inter-
atomic potential deviate from the simple Morse poten-
tial, towards a more complex expanded Morse oscillator
(EMO, see Ref. [1] and its Fig. 3). The EMO shape
seems needed to best fit the experimental vibrational
spectrum of Ref. [1] and seems a particularity of this
dimer in which there is competition between covalent
and vdW interactions. The latter is unable to produce
even a secondary minimum, but should have an influ-
ence on the shape of the interatomic potential distorting
it from the simple Morse oscillator towards a flattening.
Our BSE@GW@HF curve also presents this flattening,
though shifted with respect to the experiment. It is any-
way impressive that we were able to describe such a del-
icate balance between covalent and vdW bonding which
only arises from correlations. This means that BSE pro-
vides an at least qualitatively good description of high
order correlation effects.

Conclusions. We have calculated the Be2 interatomic
potential along its dissociation path by an approach
within ab initio many-body perturbation theory relying
on the trace formula, as an alternative to the TDDFT
ACFDT formalism. Our approach has been validated
against TDDFT ACFDT calculations already in the liter-
ature. The introduction of GW corrections already pro-
vides an important improvement on the interatomic po-
tential shape and also on the binding energy and length.
At the level of BSE we got a Be2 interatomic potential
in very good agreement with the experiment and accu-
rate CI calculations. We were even able to reproduce a
flattening observed in the experiment due to a delicate
balance of correlations for a competition between cova-
lent and van der Waals bonding.
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0

0〉 = 0. Since
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