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Abstract. Several widely used methods for the calculation of band structures
and photo emission spectra, such as the GW approximation, rely on many-
body perturbation theory. They can be obtained by iterating a set of functional
differential equations (DEs) relating the one-particle Green’s function (GF) to
its functional derivative with respect to an external perturbing potential. In this
work, we apply a linear response expansion in order to obtain insights into
various approximations for GF calculations. The expansion leads to an effective
screening while keeping the effects of the interaction to all orders. In order to
study various aspects of the resulting equations, we discretize them and retain
only one point in space, spin and time for all variables. Within this one-point
model we obtain an explicit solution for the GF, which allows us to explore the
structure of the general family of solutions and to determine the specific solution
that corresponds to the physical one. Moreover, we analyze the performances of
established approaches like GW over the whole range of interaction strength, and
we explore alternative approximations. Finally, we link certain approximations
for the exact solution to the corresponding manipulations of the DE which
produces them. This link is crucial in view of a generalization of our findings
to the real (multidimensional functional) case where only the DE is known.
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1. Introduction

The one-particle Green’s function (GF) [1–3] is a powerful quantity since it contains a wealth
of information about a physical system, such as the expectation value of any single-particle
operator over the ground state, the ground-state total energy and the spectral function. In order
to access this quantity, one can start from its equation of motion [4–6]:[

i
∂

∂t1
− h(r1)

]
G(1, 2) + i

∫
d3 v(1+, 3)G2(1, 3; 2, 3+) = δ(1, 2), (1)

where h(r1) is the one-electron part of the many-body Hamiltonian, G2(1, 3; 2, 3+) is the two-
body GF and v(1+, 3) is the Coulomb potential. The space, spin and time variables are all
combined in (1) = (r1, σ1, t1) and (1+) = (r1, σ1, t+

1 ) with t+
1 = t1 + δ (δ → 0+).

Equation (1) can be manipulated in order to get a more practical expression by introducing
the non-interacting GF G0 with[

i
∂

∂t1
− h(r1)

]
G0(1, 2) = δ(1, 2), (2)

which reinserted in equation (1) gives

G(1, 2) = G0(1, 2) − i
∫

d3d4G0(1, 3)v(3+, 4)G2(3, 4; 2, 4+). (3)

In (3), G0 determines the appropriate initial condition in time; note that the solutions of (1)
and (2) are not unique. Moreover, in order to calculate G, knowledge of G2 is required (which
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in turn requires knowledge of G3 and so on) [4, 6]. In order to obtain a closed expression one
can generalize G(1, 2) to G(1, 2; [ϕ]), where an external fictitious time-dependent potential ϕ

is applied to the system. This allows one to express G2 as [7]

G2(3, 4; 2, 4+
; [ϕ]) = G(3, 2; [ϕ])G(4, 4+

; [ϕ]) −
δG(3, 2; [ϕ])

δϕ(4)
. (4)

Note that in (4) all GFs are generalized to non-equilibrium since they depend on the perturbing
potential. The equilibria G and G2 in (3) are then obtained by taking ϕ = 0. Inserting (4) into (3)
yields a set of functional differential equations (DEs) [4] for the unknown G

G(1, 2; [ϕ]) = G0(1, 2) +
∫

d3 G0(1, 3)VH(3; [ϕ])G(3, 2; [ϕ]) +
∫

d3 G0(1, 3)ϕ(3)G(3, 2; [ϕ])

+ i
∫

d4d3 G0(1, 3)v(3+, 4)
δG(3, 2; [ϕ])

δϕ(4)
, (5)

where VH(3) = −i
∫

d4 v(3, 4)G(4, 4+
; [ϕ]) is the Hartree potential. Since the Hartree potential

contains the GF, this term makes the equations nonlinear. We are interested in the solution of
equation (5) for ϕ = 0. Its calculation would, hence, require the solution of a set of coupled,
nonlinear, first-order DEs, which is clearly a non-trivial task. Moreover, one would need a new
initial condition to completely define the desired solution of this DE, since the derivative δG

δϕ
has

been introduced. Therefore, usually another route is taken: one includes the functional derivative
in (5) in the definition of a self-energy [4]

6(1, 3) = i
∫

d4d2 v(1+, 4)
δG(1, 2; [ϕ])

δϕ(4)

∣∣∣
ϕ=0

G−1(2, 3), (6)

which, inserted into equation (5) for ϕ = 0, gives

G(1, 2) = G0(1, 2) +
∫

d3 G0(1, 3)VH(3)G(3, 2) +
∫

d4d3 G0(1, 3)6(3, 4)G(4, 2). (7)

This is the Dyson equation for G, where 6 contains all the many-body effects (beyond
the Hartree contribution) present in the system. Of course, δG

δϕ
and therefore 6 are still not

known and, in practice, 6 has to be approximated. A good starting point is obtained by
reformulating the problem in terms of a coupled set of equations containing the one-particle
GF, the polarizability P , the self-energy 6, the screened Coulomb interaction W and the vertex
0. These equations are most often solved within the so-called GW approximation (GW A) [8],
where the vertex 0 is set to unity, resulting in 6 ≈ iGW . Over the last two decades, the GW
method has become the tool of choice for calculations of quasi-particle band structures ([9] and
references therein; [10] and references therein) of many materials and direct and inverse photo
emission spectra (see, e.g., [11–14]) improving substantially on the results provided by static
mean-field electronic structure methods.

However, the GW A suffers from some fundamental shortcomings (see, e.g., [15–18]) and,
with 6 being of first order in W , is not expected to describe strong correlation. Higher orders
in W could be added by iterating the equations, but this is technically difficult, and there is no
guarantee that results will quickly improve. It is therefore necessary to find guidelines.
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In the present work we go back to equation (5). Our aim is, firstly, to obtain new insights
into standard approximations by relating them more directly to the original equations. Secondly,
we want to use equation (5) to explore alternative approximations. Finally, it might be interesting
to concentrate directly on the set of coupled, nonlinear, first-order functional DEs for G,
equation (5), although it has been acknowledged that no ‘practical technique for solving such
functional differential equation exactly’ [4] is available. However, one may still hope that
with new algorithms and the increase in computer power, numerical solutions might become
accessible. The present work is hence also meant to explore strategies for, and possible problems
of, such a route.

In the following we resort to two approximations. Firstly, we linearize the set of equations
by expanding VH in terms of ϕ. Secondly, we discretize equation (5) and consider in the
first instance only one point for each space, spin and time variable: we will call this latter
approximation the ‘one-point model’, as opposed to the full functional problem. The strategy
underlying this procedure is the following: for the one-point model, we can derive the exact
explicit solution of the now algebraic DE, and solve the initial value problem. One can,
hence, explore approximations to the full solution, which yields valuable insights into the
performance of current approaches and suggestions for alternative ones. By determining which
manipulations of the DE produce such approximate solutions, one obtains suggestions for
analogous manipulations on the DE for the full functional problem, which opens the way to
translate our model findings into realistic calculations.

This paper is structured as follows. In section 2, we present the linearized differential
equation which can be solved exactly within the one-point framework. We discuss in particular
the initial value problem and how it can be overcome. In section 3, we examine, in the one-
point framework, various common approximations to the solution of the DE: the iteration of
equation (5) and approximations based on a Dyson equation, in particular different GW flavors.
In section 4, we explore other routes to manipulate the initial DE and obtain approximate
solutions. We, finally, give our conclusions and perspectives on future work in section 5.

2. The screened equation in a one-point framework

Our first goal is to simplify the equations such that the main physics is retained, but
manipulations become more straightforward. To this end, we linearize the DE with an expansion
of the Hartree potential to first order in the external potential ϕ,

VH(3; [ϕ]) ≈ −i
∫

d4v(3+, 4)G(4, 4+
; [ϕ])

∣∣∣
ϕ=0

−i
∫

d4 d5 v(3+, 4)
δG(4, 4+

; [ϕ])

δϕ(5)

∣∣∣
ϕ=0

ϕ(5) + o(ϕ2). (8)

Equation (5) hence becomes

G(1, 2; [ϕ̄]) = G0
H(1, 2) +

∫
d3G0

H(1, 3)ϕ̄(3)G(3, 2; [ϕ̄])

+i
∫

d3d5G0
H(1, 3)W (3+, 5)

δG(3, 2; [ϕ̄])

δϕ̄(5)
, (9)
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Figure 1. Hedin’s pentagon when W is fixed: one iterates only three equations,
namely the ones for G, 6, 0, rather than the full set. Note that fixing W also
implies fixing the polarizability P .

where G0
H is a Hartree GF containing the Hartree potential at vanishing ϕ, ϕ̄ = ε−1ϕ is the

renormalized external potential and W = ε−1v is the screened Coulomb potential with ε the
dielectric function at ϕ = 0.4

Concerning equation (9), three important remarks should be made: firstly, through the
linearization the screened interaction W becomes the central quantity of the equation. This is
justified by the physics of extended systems, where screening and plasmons are key concepts.

Secondly, in principle, W is the exact screened interaction, which of course is not known.
One can, however, adopt two strategies: either W is considered to be an externally given
quantity, obtained within a good approximation, e.g. from a time-dependent density functional
theory (TDDFT) calculation [19]; or one could also recalculate W from G[ϕ̄] (see in the next
section). In this work, we will adopt the first strategy, which is illustrated in figure 1. Such a
philosophy is rigorously justified. In particular, in the framework of the theory of functionals it is
possible to pass from the Luttinger–Ward functional (given as functional of G, although indeed
one should add the bare Coulomb interaction v as argument) to the so-called 9-functional,
where vc is replaced by W [20]. This explains, for example, why self-consistency in G only
(and not in W ) is sufficient to have a conserving GW A. Moreover, in practice this is the most
current way of proceeding, corresponding, e.g., in a GW calculation to the ‘best G, best W ’
approach: while the non-interacting G is taken, e.g., to be the Kohn–Sham GF, W is calculated
as accurately as possible, e.g. in the adiabatic local density approximation to TDDFT. Thirdly,
by approximating the functional derivative δG

δϕ̄
= −G δG−1

δϕ̄
G ≈ GG (which supposes the self-

energy to be independent of ϕ̄) one obtains the Dyson equation for the one-particle GF in the
GW A to the self-energy. The proof is given in appendix A. This result shows that, even though
the linearization procedure is an approximation, equation (9) is still a promising starting point
to analyze the different flavors of the GW A and to go beyond.

After linearizing, the next step consists in discretizing equation (9) and then in considering
only one value for the space, spin and time variables, respectively (or equivalently concerning
space and spin, in considering all GFs to be diagonal in a given basis): this is the one-point
model employed throughout the whole paper. The one-point framework has already been used
by other authors: in [21, 22], Hedin’s equations are combined in a single algebraic DE which

4 For simplicity we use the same symbol for G[ϕ̄] and G[ϕ]; of course it is understood that the corresponding
functional is taken.
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is solved as a series expansion. This allows the authors to enumerate the diagrams for a certain
order of expansion. Several expansion parameters are examined, for example, vG2

H, with v being
the bare Coulomb potential and GH the Hartree GF, vG2, with G being the exact GF, W G2, with
W being the screened Coulomb potential, etc, which shows how at various orders of expansion
the number of diagrams decreases by increasing the degree of renormalization. This is also the
spirit behind the linearized equation (9), in which the natural expansion parameter would be
W G2

H, where W is treated as an externally given interaction. The advantage of using the one-
point framework is that the equations become algebraic and thus the enumeration of diagrams
is facilitated.

In [23], a similar strategy as that in [21, 22] is used to enumerate diagrams, focusing in
particular on the asymptotic behavior of the counting numbers. Moreover, Hedin’s equations
are transformed into a single first-order DE for the GF as a function of an interaction parameter
and an implicit solution is obtained. In order to fix the particular solution of this DE, the initial
condition G(v=0) = G0 is used.

Instead, here we concentrate on (5), or better its linearized form (9), which is another
DE for G, as a functional of an external potential. This choice allows us to (i) emphasize the
essential physics contained in the screened Coulomb interaction W , (ii) discuss various aspects
of the many-body problem in a clear and simple way and (iii) obtain an exact solution of the
approximate equation that can be used as a benchmark. Moreover, we believe that the one-point
version of equation (9) can be a natural starting point for a generalization to the full functional
problem. While the equations are easier to manipulate, physical information is of course lost in
the one-point framework. In particular, no poles (addition/removal energies) of the GF appear.
However, the various aspects that will be explored in the following are intrinsically related to
the structure of the equations and hence exportable also to the full functional problem, in the
same spirit as in [21–23].

2.1. One-point differential equation (DE)

In the one-point model equation (5) reduces to an algebraic, nonlinear, first-order DE

y(z) = y0 + vy0 y2(z) + y0zy(z) − vy0
d y(z)

dz
, (10)

where ϕ → z, G(1, 2; [ϕ]) → y(z) and G0(1, 2) → y0. Moreover, iv(3+, 4) → −v: this change
of prefactor compensates for the time or frequency integrations that have been dropped in the
one-point model and corresponds to a standard procedure in this context [21, 23]. We can now
linearize equation (10) in the same way as we did starting with equation (5) and obtaining
equation (9). This yields

yu(x) = y0
H + y0

Hxyu(x) − uy0
H

d yu(x)

dx
. (11)

Hence with respect to equation (9), ϕ̄ → x , G0
H(1, 2) → yH

0 and iW (3+, 5) → −u; the subscript
u in yu highlights its u dependence. In the following, for simplicity of notation, we denote y0

H
by y0 unless stated differently. In appendix B, we sketch the main steps to solve equation (11),
based on the general ansatz yu(x) = A(x) · I(x). With the choice

A(x) = exp

(
x2

2u
−

x

uy0

)
, (12)
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one obtains the equation

dI(x)

dx
=

1

u
exp

[
−

(
x2

2u
−

x

uy0

)]
(13)

and the general solution yu(x) reads

yu(x) =

√
π

2u
exp

(
x2

2u
−

x

uy0
+

1

2uy2
0

){
erf

[(
x −

1

y0

)√
1

2u

]
− C(y0, u)

}
, (14)

where C(y0, u) is to be set by an initial condition. In the limit x → 0, which is the equilibrium
solution we are looking for, equation (14) becomes

yu = −

√
π

2u
exp

(
1

2uy2
0

){
erf

(√
1

2uy2
0

)
+ C(y0, u)

}
. (15)

Note that a similar ansatz can also be used for the full functional problem, namely G(1, 2) =∫
d3 A(1, 3) · I(3, 2), in order to get a set of DEs that are less complicated to manipulate than

the original one.

2.2. The initial value problem

In general, in order to set C(y0, u), yu(x) has to be known for a given potential xβ (i.e.
yu(xβ) = yβ

u ). However, it is far from obvious to formulate such a condition in the realistic
full functional case; this would indeed require the knowledge of the full interacting G for some
given potential ϕ. Therefore the question is whether one can reformulate the condition in a
simpler way in order to set C .

To answer this question we expand the exact solution for small values of u, obtaining

yu ≈ −

√
π

2u
exp

(
1

2uy2
0

)(
1 + C(u, y0)

)
+
{

y0 − uy3
0 + 3u2 y5

0 − 15u3 y7
0 + o(u4)

}
. (16)

When u → 0 the one-body GF G has to reduce to the non-interacting G0; in our framework this
translates into yu|u→0 ≡ y0. Imposing this condition on equation (16) gives√

π

2u
exp

(
1

2y2
0u

)(
1 + C(u, y0)

)
= 0, u → 0, (17)

which is satisfied if

C(u, y0) = −1, u → 0. (18)

This result for C holds also for u 6= 0. Indeed, it guarantees a non-divergent result for any non-
vanishing potential x in (14). Moreover, it reproduces the perturbative result, which is obtained
by iterating equation (11); for example, the sixth iteration yields

y(6)
u = y0 − uy3

0 + 3u2 y5
0 − 15u3 y7

0 . (19)

This is precisely the same series as the one appearing in equation (16) when C(u, y0) is set
to −1.
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Figure 2. Comparison between the exact solution (red plain line, equation (15))
and the iterative solution for x = 0 of (equation (20)). The blue crosses
represent the first-order expansion (equation (21)), while the green triangles
and black circles are, respectively, the second (equation (22)) and third order
(equation (19)). All three orders are close to the exact solution for small u values,
whereas when a given order of the series starts to diverge, the lower orders of the
expansion reproduce the exact results better. For each curve C(u, y0) = −1, and
we arbitrarily set y0 = 1.

3. Analysis of common methods for calculating the one-body G

In the following, we will analyze various established approximations for the calculation of the
one particle G, using knowledge of the exact solution.

3.1. Iteration of the DE

Let us first iterate equation (11) starting from y(0)
u (x) = y0, according to

y(n+1)
u (x) = y0 + y(n)

u xy0 − uy0
dy(n)

u (x)

dx
. (20)

For x = 0 the first two orders in u read

y(2)
u = y0 − uy3

0 , (21)

y(4)
u = y0 − uy3

0 + 3u2 y5
0 , (22)

and equation (19) for the third order. Results as a function of u are depicted in figure 2 together
with the exact solution. Two observations can be made: (i) very few terms are needed to obtain
a good approximation to the exact solution in the small u regime; (ii) for a given u = un,
the expansion diverges starting from an order n. The larger the un, the smaller the n, which
limits the precision that can be obtained. As mentioned previously, the iteration coincides with
the expansion for small u of the exact solution. Since the small u expansion is de facto the
asymptotic expansion of the error function times an exponential (as can be seen in (16)) the
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divergent behavior of the iteration in (20) is not surprising. Divergences of higher orders have
been found in perturbation expansions for realistic systems, e.g. for orders higher than 3 in the
Møeller–Plesset scheme [24, 25].

3.2. Self-energy-based approximations

In this section, the introduction of a self-energy 6 will be discussed along with its most common
approximations.

The Dyson-like form for equation (11), which is the equivalent of equation (7), reads

yu(x) = y0 + y0xyu(x) + y06u [yu(x)] yu(x), (23)

where a self-energy kernel has been defined as

6u [yu(x)] = − u
dyu(x)

dx

1

yu(x)
. (24)

With dyu(x)

dx = −y2
u(x)

dy−1
u (x)

dx and the definition 0u [yu(x)] = −
dy−1

u (x)

dx for the vertex function, the
self-energy reads

6u [yu(x)] = − uyu(x)0u [yu(x)] , (25)

which is the equivalent of 6 = i GW0 [8]. The Bethe–Salpeter equation for the vertex function
0 is then derived from (23)

dy−1
u (x)

dx
= − 1 −

d6u [yu(x)]

dx

= − 1 −
d6u [yu(x)]

dyu(x)

dyu(x)

dx
, (26)

from which for x → 0

0u(yu) = 1 +
d6u(yu)

dyu
0u(yu)y2

u , (27)

where yu = yu(x → 0). For x = 0 equations (23), (25) and (27) correspond to a subset of the
so-called Hedin’s equations [8], obtained by fixing W . A pictorial representation of this subset
for a given W is given in figure 1. In the following, we will approximate the equations and the
results will be compared to the exact solution of the DE, in order to obtain greater insight into
these self-energy-based techniques. From now on, all quantities will hence be understood to be
taken at x = 0.

3.2.1. G0W0 and self-consistency. Let us first look at different flavors of the GW A [8]. Setting
0u(yu) to unity, it follows that 6u(yu) = −uyu . Within the initial guess y(0)

u = y0, one obtains
a so-called G0W0 self-energy 6u = −uy0.5 This is then employed in the Dyson equation (23)
in order to get an improved y(1)

u . To go beyond this first approximation one can iterate further
within the GW A, i.e. keeping 0u = 1. This corresponds to an iteration towards a GW0 result,
since G is iterated towards self-consistency but u, which represents the screened interaction,

5 In realistic calculations, G0 is often taken to be a Kohn–Sham GF; here, to be consistent, it corresponds to the
Hartree GF G0

H.
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is fixed. We report here the expressions obtained for G0W0, i.e. the first solution of the Dyson
equation, and for three successive loops

y(1)
u = yG0W0

u =
y0

1 + uy2
0

, (28)

y(2)
u = y0

1 + uy2
0

1 + 2uy2
0

, (29)

y(3)
u = y0

1 + 2uy2
0

1 + 3uy2
0 + u2 y4

0

, (30)

y(4)
u = y0

1 + 3uy2
0 + u2 y4

0

1 + 4uy2
0 + 3u2 y4

0

. (31)

We call this procedure the iterative self-consistent scheme, in contrast with the direct self-
consistent scheme where one solves directly the Dyson equation (23), for x = 0, with 6u =

−uyu . In this latter case, one gets a second-order equation with two solutions

yu =

±

√
1 + 4uy2

0 − 1

2uy0
. (32)

Note that for the full functional problem one would find even more solutions, since a second-
order equation has to be solved for each matrix element of G.

In order to choose the physical solution, we Taylor expand the square root around u = 0,
which leads to

yu ≈ ±

(
y0 +

1

2uy0

)
−

1

2uy0
. (33)

Since for u = 0 one has to obtain yu = y0, the physical solution is yu =

√
1+4uy2

0−1

2uy0
. In figure 3,

we can appreciate how well these GW -based methods are performing against the exact solution
in a wide u range.

Interestingly, odd iterations quickly converge to the physical solution of the direct sc-GW0,
while even iterations do also converge but at a slower pace: it can be shown that for u → ∞ their
limit forms the sequence of rational numbers

{
1
2;

1
3;

1
4;

1
5;

1
6; · · ·

}
which ultimately converges to

0. All the odd iterations have instead the exact large u limit (namely yu = 0 when u → ∞). One
might use this property to improve the convergence of the series.

An important question now is: does the result of the self-consistent procedure depend on
the starting point of the iteration? Here we have naturally chosen y(0)

u = y0, but one might fear
that this choice is simply lucky. Let us therefore look at the general iterative scheme which is
obtained by solving the Dyson equation (23) for x = 0

yu =
y0

1 + y0uyu
. (34)
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Figure 3. Comparison between the exact solution (red plain line, equation (15))
and different flavors of the GW A. In general, the self-energy-based
approximations perform better than iteration of the DE shown in figure 2. In the
main panel, the sc-GW0 (black stars, equation (32)) is the best approximation
to the exact result. Iterations starting from G = G0 converge towards the self-
consistent result (the second iteration is represented by light blue triangles, the
third with green circles and the fourth with gray empty triangles). However,
analyzing a larger u range (inset), one observes that odd iterations approach the
exact u = ∞ limit, while the even ones do not seem to. It can be shown that they
also do, but, in a very slow fashion and according to the following sequence:
y(2n)

u→∞
= {1/2, 1/3, 1/4, 1/5, 1/6, . . .}.

By starting the iteration with a guess for yu on the right side, one obtains

y(n+1)
u =

y0

1 + y0uy(n)
u

. (35)

For y(0)
u = ys , one has, e.g., after the third iteration

y(3)
u =

y0

1 + uy2
0

1+
uy2

0
1+y0uys

. (36)

This contains nothing else but the continued fraction representation for the square root
√

1 + z = 1 +
z/2

1 + z/4
1+ z/4

1+ z/4

1+ z/4
1···

, (37)

corresponding to the physical solution yu =

√
1+z−1
2uy0

where z = 4uy2
0 . It converges for all values of

the terminator ys . Therefore, this iteration will always converge to the physical solution. Does
this mean that there is no risk of running into the unphysical solution? The answer is that it
depends on the iterative scheme that is used, and not on the starting point. Look at the following
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way to rewrite the Dyson equation (23): −uyu =
1
y0

−
1
yu

(in other words, 6 = G−1
0 − G−1). If

we iterate this equation by starting with some y(0)
u = ys on the rhs, we obtain

y(n+1)
u = −

1

uy0
+

1

uy(n)
u

, (38)

hence

2uy0 y = −2 −
2uy2

0

1 + uy2
0

1+
uy2

0

1+
uy2

0

1+
uy2

0
...

, (39)

which, with equation (37), is just the continued fraction representation for the unphysical

solution yu = (−

√
1 + 4uy2

0 − 1)/2uy0. In a way, this is good news: usually the iterative scheme
adopted in the context of GW calculations is rather the first, safe one. Indeed it has been found
empirically that such a scheme leads to self-consistent results independent of the starting point
and in reasonably good agreement with experiments (see, e.g., [26–28]). However, when one
goes beyond GW , higher-order equations appear, as we will see in the following. There are
hence more and more solutions, and more and more ways of iterating the equations. In other
words, there will be increased danger of running into the wrong solution. One should keep this
in mind when trying to add vertex corrections beyond GW .

3.2.2. Vertex corrections—first-order 0. We will now analyze the effects of a first-order vertex
correction which is obtained employing 6u = −uyu in equation (27) [8, 29]. Solving for 0u

gives

0(1)
u (yu) =

1

1 + uy2
u

. (40)

Employing this vertex, the self-energy (25) becomes

6(1)
u (yu) = −uyu

[ 1

1 + uy2
u

]
. (41)

Now two routes can be taken and either a G0W00
(1)(y0) or a self-consistent GW00

(1)(yu)

calculation can be performed. The first of the two is once more based on the initial guess
for the GF y(0)

= y0, and consequently the vertex and the self-energy in (40) and (41) read,

respectively, 0(1)
u (y0) =

1
1+uy2

0
and 6(1)

u (y0) = −uy0

[
1

1+uy2
0

]
. Solving the Dyson equation with the

above ingredients yields

yG0W00
u =

y0

(
1 + uy2

0

)
1 + 2uy2

0

. (42)

Instead, solving the Dyson equation in a self-consistent fashion, with the expressions (40)
and (41), yields

yGW00
u =

3

√
y0

2u
+

√
1

27u3
+

1

4u2
−

3

√
y0

2u
−

√
1

27u3
+

1

4u2
. (43)
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Figure 4. In the main panel, a comparison between the DE’s exact solution
(red plain line, equation (15)), G0W00

(1) (blue squares, equation (42)), GW00
(1)

(green empty circles, equation (43)) and sc-GW0 (black stars, equation (32))
is shown. In this range of u, adding a vertex correction, no matter if within
a self-consistent scheme or not, improves over the simpler sc-GW0. However,
analyzing a wide u range (inset, semi-logarithmic plot) gives a different
perspective: the first iteration of G0W00

(1) clearly exhibits the wrong u → ∞

limit and the sc-GW0 scheme becomes the closest approximation to the exact
result.

As can be noticed from the result, a cubic equation for the unknown yu had to be solved
within this more sophisticated approach. Again the limit of vanishing interaction has been used
to pick the physical solution. In figure 4, we can directly compare the two types of vertex
corrections. For small u values their performance is similar; however, in a wider u range (see
inset), the G0W00

(1) scheme diverges from the exact solution and has the wrong asymptotic
limit u → ∞: it hence behaves as the first iteration of the sc-GW0 approach, which also exhibits
the wrong large u limit. Figure 4 also shows how the GW00

(1) scheme, for small u values,
slightly improves over the sc-GW0. However, given the augmented complexity already at this
first order of the correction (one could very well iterate further the equations for 0 and 6 and
get higher-order corrections), the benefits of employing vertex corrections are not obvious. Also
note that, interestingly, on the scale from u = 0 to u → ∞, the closest curve to the exact one is
the sc-GW0 one.

4. Exploring other approximations for G

In this section, we will explore alternative approximations to the exact solution of the one-
point DE and the corresponding manipulations of the initial DE producing them. Here, we will
report, in particular, approximations that might be eventually transposed to the full functional
framework.
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4.1. Continued fraction approximation

A well-known approximation for the error function is its continued fraction representation [30].
The exact expression for yu (equation (15)) transforms into

yu =
1

√
2u

1
1√
2uy2

0

+ 1/2
1√
2uy2

0

+ 1
1√
2uy2

0

+ 3/2
1√
2uy2

0

+···

(44)

=
y0

1 + uy2
0

1+
2uy2

0

1+
3uy2

0
1+···

. (45)

We will now show how one can obtain equation (45) starting simply from the initial DE in
equation (11), equivalent to (9), without any information about its exact solution. Beginning
with equation (11) and taking successively higher-order derivatives of the equation, one obtains

dyu(x)

dx
= y0 yu(x) + y0x

dyu(x)

dx
− uy0

d2 yu(x)

dx2
, (46)

d2 yu(x)

dx2
= 2y0

dyu(x)

dx
+ y0x

d2 yu(x)

dx2
− uy0

d3 yu(x)

dx3
, (47)

d3 yu(x)

dx3
= 3y0

d2 yu(x)

dx2
+y0x

d3 yu(x)

dx3
− uy0

d4 yu(x)

dx4
(48)

and so on. Neglecting derivatives e.g. from the fourth order on and then setting x = 0, this
truncation allows us to solve all the above equations, beginning with equation (48) (now an
algebraic equation in the unknown d3 yu(x)

dx3 by keeping d2 yu(x)

dx2 as parameter); subsequently we

insert the result in (47) and solve for d2 yu(x)

dx2 , (46) for dyu(x)

dx and ultimately equation (11), getting

yu =
y0

1 + uy2
0

1+
2uy2

0
1+3uy2

0

, (49)

which is precisely the result obtained by approximating the exact solution with a continued
fraction expression for the error function (equation (45)). We will name this manipulation
limited order DE. In figure 5, we compare the different orders of this approximation to the
exact expression for yu . The approximation gets rapidly closer and closer to the exact solution
by including higher derivatives. However, also for this continued fraction, odd and even orders,
converge towards the exact result with a different speed. In analogy with the continued fraction
of equation (37), even iterations have the correct large u limit, while the odd ones do not,
although they do eventually approach it for a very large number of steps. We notice that the
above continued fraction converges slower than the one arising from the sc-GW0; however,
the former will eventually converge towards the exact solution, whereas the latter only to the
sc-GW0 result. It is therefore interesting to note that such a procedure can in principle be used
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Figure 5. Comparison between the exact solution (red plain line, equation (15))
of the DE and the results obtained through the first three orders of the limited
order DE (equation (49)). The notation O(dn

x ) indicates that derivatives of order
> n have been neglected. As expected the result improves when more terms are
included: the curve O(d2

x ) (light blue line, equation (46)) is superimposed on the
G0W0 one (dark blue dots, equation (28)) and the curve O(d4

x ) (black circles,
equation (48)) is close to the exact result in a small u range.

also in the full functional framework (see related manipulations, e.g., in [6, 31]), where the
functional DE can be differentiated to an arbitrary order and the corresponding approximated G
obtained. For example, differentiating equation (9) with respect to the external potential ϕ̄, one
obtains

δG(1, 2; [ϕ̄])

δϕ̄(6)
=

∫
d3G0

H(1, 3)
δϕ̄(3)

δϕ̄(6)
G(3, 2; [ϕ̄]) +

∫
d3G0

H(1, 3)ϕ̄(3)
δG(3, 2; [ϕ̄])

δϕ̄(6)

+i
∫

d3d5W (3+, 5)G0
H(1, 3)

δ2G(3, 2; [ϕ])

δϕ̄(6)δϕ̄(5)
. (50)

Truncating the highest-order derivative δ2G
δϕ̄2 and solving for ϕ = 0 (which means also ϕ̄ = 0)

gives

δG(1, 2; [ϕ̄])

δϕ̄(5)

∣∣∣
ϕ̄=0

= G0
H(1, 5)G(5, 2), (51)

which reinserted in equation (9) yields

G(1, 2; [ϕ̄]) = G0
H(1, 2) + i

∫
d3d5G0

H(1, 3)W (3+, 5)G0
H(3, 5)G(5, 2). (52)

Like in the one-point model, this first step simply provides the one-particle GF in the G0
HW0

approximation to the self-energy. One can go further: differentiating equation (50) with respect
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to ϕ̄ and neglecting the third-order derivative δ3G
δϕ̄3 yields

G(1, 2) = G0
H(1, 2) − i

∫
d5d3d8d9G0

H(1, 3)W (3+, 5)m̄−1(3, 5; 9, 8)G0
H(9, 8)G(8, 2) (53)

with

m̄(16; 57) := −δ(15)δ(76) + i
∫

d3G0
H(1, 3)W (3+, 5)δ(7, 6)

[
G0

H(3, 6) + G0
H(3, 5)

]
, (54)

which is a four-point quantity of a similar complexity as the Bethe–Salpeter equation [5].
Indeed in the full functional problem the equations become quite involved since terms like
uy2

0 correspond to large matrices. However, the approach does not require self-consistency. This
might turn out to be a significant advantage, compared to vertex corrections to 6, as we have
discussed in the previous subsection concerning self-consistency. More details of the derivation
are given in appendix C.

4.2. Large u expansions

Perturbation theory usually deals with weak interactions, hence the small u limit. However, it
is also very interesting to examine the large u limit for several reasons: (i) this is the regime of
strong correlation, where current approximations exhibit failures; (ii) the large u expansion
of the exact solution gives a convergent series (being a product of two convergent Taylor
expansions, one for the exponential and the other one for the error function) and one can,
for instance, obtain a better approximation to the exact solution by adding higher-order terms
(which instead does not improve the result for the small u expansion of the solution); (iii)
excellent approximations for the exact solution are Padé approximants [32], which have to be
constructed using both the small and the large u limit. In this subsection, we will present two
possible routes to approach this limit: the first is a straightforward large u expansion of the exact
solution for yu , while the second combines the latter with the large u expansion for the Dyson
equation.

4.2.1. Straightforward large u expansion for yu . By expanding both the exponential prefactor
and the error function appearing in equation (15)

e
1

2uy2
0 ≈ 1 +

1

2uy2
0

+
1

8u2 y4
0

+ · · · , (55)

erf

[√
1

2uy2
0

]
≈

2
√

π

[√
1

2uy2
0

−
1

6uy2
0

√
1

2uy2
0

+
1

40u2 y5
0

√
1

2uy2
0

+ · · ·

]
, (56)

one obtains for the different orders of the full solution

y(−1/2)
u =

√
π

2u
, (57)

y(−1)
u = −

1

uy0
+

√
π

2u
, (58)
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Figure 6. Comparison between the exact solution (red plain line, equation (15))
and the large u expansion for the DE. The green stars and black triangles are,
respectively, O(u−1/2) and O(u−3/2) of the large u expansion (equations (57)
and 59)). We also report the G0W0 result (blue dots, equation (28)) as an example
of a small u expansion. Over a wide u range the large u expansions are very
satisfactory.

y(−3/2)
u = −

1

uy0
+

1

2uy2
0

√
π

2u
+

√
π

2u
, (59)

y(−2)
u = −

1

uy0
+

1

2uy2
0

√
π

2u
−

1

6u2 y3
0

+

√
π

2u
, (60)

y(−5/2)
u = −

1

uy0
+

1

2uy2
0

√
π

2u
−

1

6u2 y3
0

+
1

8u2 y4
0

√
π

2u
+

√
π

2u
, (61)

y(−3)
u = −

1

uy0
+

1

2uy2
0

√
π

2u
−

1

6u2 y3
0

+
1

8u2 y4
0

√
π

2u
+

1

10u3 y5
0

+

√
π

2u
. (62)

Figure 6 shows how these different expansions perform versus the exact result. Overall their
behavior is very good for large u and a few orders are sufficient to get a good approximation
over a wide u range (which is our ultimate goal); however, for u = 0 they all diverge.

4.2.2. Large u expansion for yu and for the Dyson equation. As u gets larger, 6u increases.
This implies that, using the Dyson equation for the one-particle GF yu =

(
y−1

0 − 6u

)−1
, one

could expand yu as

yu ≈ − 6−1
u

[
1 + y−1

0 6−1
u + y−1

0 6−1
u y−1

0 6−1
u

]
. (63)
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Figure 7. Comparison between the exact solution (plain red line, equation (15)),
the G0W0 result, the order O(u−1/2) of the DE’s large u expansion (green stars,
equation (57)) and the same order of the DE’s large u expansion combined with
the large 6 expansion (black dots, equation (66)). We observed that the latter
approximation performs extremely well over the range of interactions examined,
being even exact in both the large and small u limits.

Hence to lowest order yu ≈ −6−1
u or

6u ≈ −
1

yu
. (64)

This simple relation allows us to use the large u expansion of the exact solution for yu to
approximate 6u for large u; we can then use this approximate 6u in the Dyson equation to
recalculate yu . For example, using the lowest order of the large u expansion of the exact yu , one
gets the following self-energy:

6u ≈ −

(√
π

2u

)−1

, (65)

which reinserted in the Dyson equation yu = (y−1
0 − 6u)

−1 gives

yu ≈
y0

1 + y0

√
2u
π

. (66)

In figure 7, the performance of this approximation for yu is plotted against two orders of the
straightforward large u expansion for the GF, G0W0 and the exact solution. The ‘large 6’
approach shows overall good agreement (generally better than G0W0) with the exact solution
and has the desirable property of being exact in the small and large u limits, mending the
divergence of all orders of the straightforward expansion for yu . At higher orders of the
approximation this property remains true, although undesired poles appear. In conclusion the
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methodology is promising and worthwhile to be explored further. The main difficulty is that
in the framework of a large u expansion, without knowing the exact solution, one would not
straightforwardly know how to set the constant C , i.e. how to pick the physical solution: this
issue requires further analysis.

4.3. Self-consistent calculations of the Hartree Green’s function and of the
screened interaction

In the above discussions, we have treated the Hartree GF and the screened interaction as
externally given quantities. This is justified by the fact that realistic calculations are most often
following such a pragmatic ansatz. In principle, these quantities should be part of Hedin’s self-
consistent cycle. A fully self-consistent treatment, in the full functional framework, is out of
reach today. In the one-point model, however, it is possible to go beyond this limitation and
indeed, the implicit solution of Hedin’s equation that has been achieved in the work of [23]
contains all quantities calculated on the same footing. Also in the linearized version that is
employed in this work, one can obtain the Hartree GF and the screened potential consistently
from the equations, as we will discuss in the following. Let us first turn to the Hartree GF y0

H. In
terms of the truly non-interacting GF y0, it reads

y0
H =

y0

1 − y0uyu
; (67)

in other words, it depends (through the density) on the solution yu at vanishing external potential.
In a self-consistent scheme this y0

H should then replace y0 in the solution equation (15), which
leads to an implicit equation for yu . For a self-consistent treatment of the screened interaction,
we can use the fact that the one-point DE can be solved for dyu

dx , and insert the result into the
expression for the screened interaction u in terms of the bare v, which reads u = v + v

dyu

dx v. Two
routes can be taken. The first one is based on the linearized equation (11) where the interaction
is already screened from the very beginning. This leads to a quadratic equation for u, with two
solutions,

u =
v

2
±

√
v2

4
+ v2

{
1 −

yu

y0
+ vy2

u

}
. (68)

The physical solution is the one of the positive square root, since it approaches the bare v

in the limit of vanishing interaction, hence vanishing screening. The second route consists in
calculating dyu

dx from the initial equation (10), where the bare y0 and the interaction v appear.
This yields

u = v

(
2 −

yu

y0
+ vy2

u

)
. (69)

In both cases, the solution for u should be used in equation (15), which again makes the
expression for the GF implicit. One may argue about which of the two ways of calculating u
self-consistently is more adequate. In a realistic calculation one would probably use the former
approach in an iterative way: after calculating the GF as a functional of the external potential for
a given initial interaction in the linearized DE, one would recalculate the W from the functional
derivative and so on. Whatever choice is made, it does not influence the main conclusions
that can be drawn from the above considerations. Specifically: (i) a self-consistent calculation
leads to an implicit solution (like in the work [23]), which, however, would not be identical to
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theirs because of our linearization procedure; (ii) the behavior for the small interaction limit
is unchanged by the self-consistent treatment, as one can verify from equations (67)–(69); this
means in particular that the constant C is chosen in the same way as before. (iii) Finally, also
the discussion about the limit of large interaction remains unchanged: by making the ansatz that
to lowest order yu ∝

1
√

u one finds consistency.
Altogether, this shows that the linearization of the equations does not imply necessarily

that one has to treat the Hartree GF and the screened interaction as externally given quantities.
It also shows that a more refined, self-consistent treatment does not change the overall behavior
of the solution.

5. Conclusions and outlook

In this paper, we explore several aspects of the set of first-order nonlinear coupled DEs which
are conventionally solved perturbatively in order to calculate the one-particle GF. After the
linearization of the Hartree potential with respect to the external one, we employ a one-point
model where the set of—now linear—DEs reduces to a first-order algebraic DE, which can be
solved exactly. This provides insights into the structure of the general family of solutions and
how to determine which of them corresponds to the physical one. Within the model, we study
the performance of established approaches over the whole range of interaction strengths: we
find that iterations towards self-consistency in the GW scheme sensibly improve on the one-
shot (G0W0) calculation and that including first-order vertex corrections improves the sc-GW0

results only slightly and only for small u. We also find that in the case of sc-GW0 two solutions
are possible, of which only one is physical. We show that the standard iterative scheme will
always converge to the physical solution, although other schemes may yield different results.
This is an important finding: when going beyond GW both the number of possible solutions
for the GF and the number of possible ways of iterating the equations increase, resulting in a
danger of running into the wrong solution. Finally, we explore other approximations to the exact
solution that might be transposed to the full functional framework, namely a continued fraction
approximation and the expansion for large interaction, and we relate these approximations to the
corresponding manipulations of the DE that produce them. These links are crucial for preparing
a generalization of the approach to the full functional framework.
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Appendix A. Approximation for the Hartree term

Due to the Hartree potential VH = −i vG the set of DEs (5) is nonlinear. In order to simplify
this problem, we first assume that VH is Taylor expandable in terms of the external potential ϕ:

VH(3; [ϕ])≈−i
∫

d4v(3+, 4)G(4, 4+
; [ϕ])

∣∣∣
ϕ=0

− i
∫

d4d5v(3+, 4)
δG(4, 4+

; [ϕ])

δϕ(5)

∣∣∣∣
ϕ=0

ϕ(5)+o(ϕ2).

(A.1)
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The second step is to introduce G0
H defined through

G0
H(1, 2) = G0(1, 2) +

∫
d3G0(1, 3)V 0

H(3)G0
H(3, 2), (A.2)

with V 0
H(3) := −i

∫
d4v(3+, 4)G(4, 4+

; [ϕ])
∣∣∣
ϕ=0

. Inserting VH in equation (5) one obtains

G(1, 2; [ϕ]) = G0
H(1, 2) +

∫
d3d5G0

H(1, 3)
[
− i

∫
d4d5v(3+, 4)

δG(4, 4+
; [ϕ])

δϕ(5)

∣∣∣
ϕ=0

+δ(3, 5)
]
ϕ(5)G(3, 2; [ϕ]) + i

∫
d3d4G0

H(1, 3)v(3+, 4)
δG(3, 2; [ϕ])

δϕ(4)
. (A.3)

Since δG
δϕ

in the second term on the rhs of equation (A.3) is a contraction of the two-particle
correlation function, it yields the inverse dielectric function

−i
∫

d4v(3+, 4)
δG(4, 4+

; [ϕ])

δϕ(5)

∣∣∣
ϕ=0

+ δ(3, 5) = ε−1(3, 5), (A.4)

and one gets

G(1, 2; [ϕ]) = G0
H(1, 2) +

∫
d3d5G0

H(1, 3)ε−1(3, 5)ϕ(5)G(3, 2; [ϕ]) + i
∫

d3d4G0
H(1, 3)

×v(3+, 4)
δG(3, 2; [ϕ])

δϕ(4)
. (A.5)

Now a rescaled perturbing potential can be introduced:

ϕ̄(3) :=
∫

d5ε−1(3, 5)ϕ(5), (A.6)

and using the chain rule δG
δϕ

=
δG
δϕ̄

δϕ̄

δϕ
in the last term of the rhs of equation (A.5), we obtain

G(1, 2; [ϕ̄]) = G0
H(1, 2) +

∫
d3d5G0

H(1, 3)ϕ̄(3)G(3, 2; [ϕ̄]) + i
∫

d3d5G0
H(1, 3)

×W (3+, 5)
δG(3, 2; [ϕ̄])

δϕ̄(5)
, (A.7)

which is precisely equation (9). Here W = ε−1v is the screened Coulomb potential at vanishing
ϕ. If one approximates the functional derivative δG

δϕ̄
= −G δG−1

δϕ̄
G ≈ GG, which comes from

assuming the self-energy in the Dyson equation G−1
= G−1

0 − v0
H − 6 − ϕ̄ to be independent

of ϕ̄, equation (A.7) becomes

G(1, 2; [ϕ̄]) = G0
H(1, 2) +

∫
d3d5G0

H(1, 3)ϕ̄(3)G(3, 2; [ϕ̄]) +
∫

d3d5G0
H(1, 3)

×6GW (3, 5; [ϕ̄])G(5, 2; [ϕ̄]) (A.8)
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with 6GW (3, 5; [ϕ̄]) = i G(3, 5; [ϕ̄])W (3+, 5). For ϕ = 0, equation (A.8) becomes the Dyson
equation for the one-particle GF in the GW A to the self-energy6. This confirms that the
linearization of VH is a reasonable starting point for further developments.

Appendix B. Solving the DE

Equation (11) can be solved by using standard textbook methods [33, 34]. Here we choose a
route that yields precious information for our final aim of generalizing to the full functional
problem. A general ansatz for the structure of yu(x) is

yu(x) = A(x) · I(x), (B.1)

where the only restriction is that A and I are not zero. Substituting the ansatz in the DE (11)
gives

A(x)I(x) = y0 + y0x A(x)I(x) − uy0
dA(x)

dx
I(x) − uy0 A(x)

dI(x)

dx
. (B.2)

The idea is now to solve two separate, simpler with respect to the initial one, DEs for A(x) and
I(x). Putting together the lhs and the second and third terms of the rhs of equation (B.2), one
obtains

A(x)I(x) = y0x A(x)I(x) − uy0
dA(x)

dx
I(x). (B.3)

We can choose the solution

A(x) = exp

(
x2

2u
−

x

uy0

)
, (B.4)

which will then determine I(x). One is now left with the equation for I(x) reading

y0 − uy0 A(x)
dI(x)

dx
= 0. (B.5)

Plugging in the expression for A(x) previously obtained and integrating on both sides, one
obtains

I(x) =
1

u

∫ x

dt exp

(
−t2

2u
+

t

uy0

)
. (B.6)

The integral on the rhs is∫ x

dt exp

(
−t2

2u
+

t

uy0

)
=

√
2u e1/2uy2

0

∫ x
√

2u
−

1√
2uy2

0 dt̃e−t̃2
=

√
2uπ

2
e1/2uy2

0 erf

[(
x −

1

y0

)
1

√
2u

]
,

(B.7)

where the change of variables t̃ =

(
t

√
2u

−
1√
2uy2

0

)
has been made, and the lower limit of the last

integral has been chosen to be zero, which requires to set a constant C̄(u, y0). Hence

I(x) =

√
π

2u
e1/2uy2

0 erf

[(
x −

1

y0

)
1

√
2u

]
+ C̄(u, y0). (B.8)

6 To be precise, here it is not specified how W is obtained—it is in principle the exact W , whereas in GW the
screened interaction is usually calculated in the random phase approximation.

New Journal of Physics 14 (2012) 013056 (http://www.njp.org/)

http://www.njp.org/


23

The exact solution yu(x) = A(x) · I (x) is given in equation (14), where C(u, y0) =

−

√
2u
π

C̄(u, y0)e−1/2uy2
0 .

Appendix C. N-point continued fraction approximation

We detail here how we have obtained the result of equation (53), or the order O(d3
x ) of the

N -point limited order DE.
The starting point is equation (50), which is differentiated with respect to the external

potential, yielding

δ2G(1, 2; [ϕ̄])

δϕ(6)δϕ(7)
= G0

H(1, 6)
δG(6, 2; [ϕ̄])

δϕ̄(7)
+ G0

H(1, 7)
δG(7, 2; [ϕ̄])

δϕ̄(6)

+
∫

d3G0
H(1, 3)ϕ̄(3)

δ2G(3, 2; [ϕ̄])

δϕ̄(6)δϕ̄(7)

+i
∫

d3d5W (3+, 5)G0
H(1, 3)

δ3G(3, 2; [ϕ̄])

δϕ̄(7)δϕ̄(6)δϕ̄(5)
. (C.1)

Neglecting the term δ3G(3,2;[ϕ̄])
δϕ̄(7)δϕ̄(6)δϕ̄(5)

and taking the limit ϕ = 0 yields

δ2G(1, 2)

δϕ(7)δϕ(6)
= G0

H(1, 6)
δG(6, 2; [ϕ̄])

δϕ̄(7)

∣∣∣
ϕ=0

+ G0
H(1, 7)

δG(7, 2; [ϕ̄])

δϕ(6)

∣∣∣
ϕ=0

. (C.2)

By substituting back equation (C.2) into equation (50), we obtain

δG(1, 2; [ϕ̄])

δϕ̄(6)

∣∣∣
ϕ=0

= G0
H(1, 6)G(6, 2) + i

∫
d3d5G0

H(1, 3)W (3+, 5)

×

[
G0

H(3, 6)
δG(6, 2; [ϕ̄])

δϕ̄(5)

∣∣∣
ϕ=0

+ G0
H(3, 5)

δG(5, 2; [ϕ̄])

δϕ̄(6)

∣∣∣
ϕ=0

]
. (C.3)

The above equation can be recast in a compact way

Bxy = B0
xy +

∑
qp

γ(xy)(qp)Bqp, (C.4)

namely

δG(1, 2; [ϕ̄])

δϕ̄(6)

∣∣∣
ϕ=0

= G0
H(1, 6)G(6, 2) + i

∫
d3d5d7G0

H(1, 3)W (3+, 5)G0
H(3, 6)

×δ(7, 6)
δG(7, 2; [ϕ̄])

δϕ̄(5)

∣∣∣
ϕ=0

+
∫

d3d5d7G0
H(1, 3)

×W (3+, 5)G0
H(3, 5)δ(7, 6)

δG(5, 2; [ϕ̄])

δϕ̄(7)

∣∣∣
ϕ=0

. (C.5)
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In the second term on the rhs, one can exchange, under the integral symbol, the indices 5 and 7,
to obtain

δG(1, 2; [ϕ̄])

δϕ̄(6)

∣∣∣
ϕ=0

= G0
H(1, 6)G(6, 2) + i

∫
d3d5d7G0

H(1, 3)W (3+, 5)G0
H(3, 6)

×δ(7, 6)
δG(5, 2; [ϕ̄])

δϕ̄(7)

∣∣∣
ϕ=0

+
∫

d3d5d7G0
H(1, 3)W (3+, 5)

×G0
H(3, 5)δ(7, 6)

δG(5, 2; [ϕ̄])

δϕ̄(7)

∣∣∣
ϕ=0

. (C.6)

Let us now define the following quantities:

δG(1, 2; [ϕ̄])

δϕ̄(6)

∣∣∣
ϕ=0

:= g(1, 6),

δG(5, 2; [ϕ̄])

δϕ̄(7)

∣∣∣
ϕ=0

:= g(5, 7),

G0
H(1, 6)G(6, 2) := g0(1, 6),

m(1, 6; 5, 7) := i
∫

d3G0
H(1, 3)W (3+, 5)δ(7, 6)

[
G0

H(3, 6) + G0
H(3, 5)

]
. (C.7)

Recasting equation (C.6) with the new variables yields

g(1, 6) = g0(1, 6) +
∫

d5d7 m(1, 6; 5, 7)g(5, 7). (C.8)

We solve for g:∫
d5d7

[
m(1, 6; 5, 7) − δ(1, 5)δ(7, 6)

]
g(5, 7) + g0(1, 6) = 0. (C.9)

Defining [
m(1, 6; 5, 7) − δ(1, 5)δ(7, 6)

]
= m̄(1, 6; 5, 7), (C.10)

inserting this expression into equation (C.9):∫
d5d7m̄(1, 6; 5, 7)g(5, 7) + g0(1, 6) = 0, (C.11)

and introducing the inverse of m̄, one obtains∫
d1d6d5d7m̄−1(8, 9; 1, 6)m̄(1, 6; 5, 7)g(5, 7) = −

∫
d1d6m̄−1(8, 9; 1, 6)g0(1, 6), (C.12)

g(8, 9) = −

∫
d1d6m̄−1(8, 9; 1, 6)g0(1, 6). (C.13)
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Transforming back to the original variables gives

δG(1, 2; [ϕ̄])

δϕ̄(6)

∣∣∣
ϕ=0

= −

∫
d9d8m̄−1(1, 6; 9, 8)G0

H(9, 8)G(8, 2) (C.14)

and finally the GF reads

G(1, 2)= G0
H(1, 2)−i

∫
d5d3d8d9G0

H(1, 3)W (3+, 5)m̄−1(3, 5; 9, 8)G0
H(9, 8)G(8, 2). (C.15)
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