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ABSTRACT: We discuss the analytic and diagrammatic
structure of ionization potential (IP) and electron affinity
(EA) equation-of-motion coupled-cluster (EOM-CC) theory,
in order to put it on equal footing with the prevalent GW
approximation. The comparison is most straightforward for
the time-ordered one-particle Green’s function, and we show
that the Green’s function calculated by EOM-CC with single
and double excitations (EOM-CCSD) includes fewer ring
diagrams at higher order than does the GW approximation,
due to the former’s unbalanced treatment of time-ordering. However, the EOM-CCSD Green’s function contains a large
number of vertex corrections, including ladder diagrams, mixed ring-ladder diagrams, and exchange diagrams. By including triple
excitations, the EOM-CCSDT Green’s function includes all diagrams contained in the GW approximation, along with many
high-order vertex corrections. In the same language, we discuss a number of common approximations to the EOM-CCSD
equations, many of which can be classified as elimination of diagrams. Finally, we present numerical results by calculating the
principal charged excitations energies of the molecules contained in the so-called GW100 test set [J. Chem. Theory Comput.
2015, 11, 5665−5687]. We argue that (in molecules) exchange is as important as screening, advocating for a Hartree−Fock
reference and second-order exchange in the self-energy.

1. INTRODUCTION

The accurate calculation of excited-state properties constitutes
one of the major challenges in modern computational materials
science. For charged excitations, namely, the ionization
potentials and electron affinities as measured by photoelectron
spectroscopy, the GW approximation has proven to be a
powerful and successful tool in the condensed phase. Formally,
the GW approximation (reviewed below) arises as the lowest-
order self-energy diagram when the one-particle Green’s
function G is expanded in terms of the screened Coulomb
interaction W,1,2 with screening treated in the random-phase
approximation. Neglected diagrams can be assigned to vertex
corrections (appearing in both the self-energy and the
polarization propagator), which are a natural target for post-
GW theories and an ongoing area of activity.3−7

In contrast to time-dependent Green’s function-based
diagrammatic theories, wave function-based theories and
concomitant time-independent perturbation theory offer an
alternative route toward systematically improvable excited-state
calculations.8 The great variety of wave function ansatzes,
combined with the long history of development and
benchmarking in the molecular quantum chemistry community,
makes such approaches particularly promising. Unfortunately,
the formal comparison between wave function-based and
Green’s function-based techniques is complicated by a differ-
ence in both the approach and the language. Here, we present
such a comparison, by analyzing the one-particle Green’s
function calculated using equation-of-motion coupled-cluster

theory to that calculated using theGW approximation. A relation
between the two can be anticipated on the basis of the known
exact relation between total ground-state energies calculated
using the ring coupled-cluster doubles approach and using the
random-phase approximation,9−11 the latter of which is at the
heart of screening in the GW approximation. However, for
charged excitation energies, the equivalence is not so
straightforward.
Although this article focuses on the connections between the

GW approximation and EOM-CC theory because of their
shared connections to the random-phase approximation,9−11 we
emphasize that a number of other Green’s function techniques
have been developed and used successfully on molecular
problems.12,13 A nonexhaustive list of the most popular
approaches include those that are essentially finite-order [such
as the outer-valence Green’s function approach,12 the partial
third-order (P3) approach,14 and its renormalized variant
(P3+)15] and those that are rigorously infinite-order [such as
the two-particle-hole Tamm-Dancoff approximation,16 its
extended variant,17 the algebraic diagrammatic construction
(ADC),18 and the nondiagonal renormalized approach exact to
second order (NR2)].19 Recently, there has been renewed
interest in the second-order Green’s function,20 especially in its
self-consistent21,22 and finite-temperature23 variations. We
emphasize that many of the above methods exhibit an attractive
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N5 scaling, whereas the GW approximation and EOM-CCSD
both exhibitN6 scaling (see below), which we identify as the cost
needed for a rigorous treatment of RPA physics.
In wave function-based techniques, ionization potentials and

electron affinities can be calculated either as a difference in
ground-state energies (between the neutral and ionic systems)
or via the equation-of-motion framework, which directly results
in an eigensystem whose eigenvalues are the ionization
potentials or electron affinities. Equation-of-motion coupled-
cluster (EOM-CC) theory is one such framework, which
typically achieves accurate excitation energies when performed
with single and double excitations (EOM-CCSD).24,25 At the
intersection of these methods, Nooijen and Snijders derived a
one-particle Green’s function in the CC framework,26,27 the
poles and residues of which are precisely those of the
conventional EOM-CC formalism (in the bivariational frame-
work). The CC Green’s function has seen a renewed interest in
recent years.28−34 One of themain goals of the present work is to
relate the latter theory to the GW approximation, which is
carried out in section 3.
A number of numerical comparisons between Green’s

function-based and wave function-based techniques for charged
excitation energies have been carried out in recent years. In
particular, comparisons between the GW approximation and
wave function-based techniques have been performed for one-
dimensional lattice models,35 for a test set of 24 organic acceptor
molecules,36 for oligoacenes,37 and for a test set of 100
molecules;38,39 the latter test set is known as the GW100,
introduced in ref 40, and forms the basis of our numerical study
in section 4.2.
In light of recent efforts to bring the systematic improvability

of wave function-based theories into the solid state,28,41−49 we
believe it timely to establish the relationship, both formally and
numerically, between popular wave function approaches and
Green’s function approaches, the latter of which has dominated
solid-state electronic structure. Future work in both Green’s
function-based and wave function-based approaches can benefit
from the analysis and results of the present work.
The layout of this article is as follows. In section 2, we provide

the requisite theoretical background associated with general
features of the one-particle Green’s function, the GW
approximation to the self-energy, and equation-of-motion
coupled-cluster theory. In section 3, we perform a detailed
diagrammatic comparison of the two methods, comparing
separately their Green’s functions and self-energies. In section
4.2, we use equation-of-motion coupled-cluster theory to
calculate ionizations potentials and electron affinities of the
GW100 test set, and evaluate a number of accurate but efficient
approximations, which are straightforwardly analyzed with the
previously introduced diagrammatic description. In section 5,
we conclude with an outlook for future developments.

2. THEORY
2.1. One-Particle Green’s Function. The one-particle

time-ordered Green’s function is defined by12,50

G t t T a t a ti ( ) d( ) e ( ) ( )pq
t t

p q1 2
i ( )

0 1 2 0
1 2∫ω = − ⟨Ψ | [ ̂ ̂ ]|Ψ ⟩ω − †

(1)

whereT is the time-ordering operator,Ψ0 is the exact interacting
ground state, and p,q index a complete set of single-particle
spin−orbitals. The irreducible self-energy matrix Σ(ω) satisfies
the relation G(ω) = [ω − f − Σ(ω)]−1, where f is the matrix

associated with some one-body (mean-field) operator such that
Σ contains the remaining effects of the electronic interactions.
Although in practice, f is commonly the Kohn−Sham matrix of
density functional theory, here we consider it to be the Fock
matrix and will let p,q,r,s index the canonical Hartree−Fock
(HF) orbitals, such that f is diagonal: f pq = εpδpq. Following
convention, indices i,j,k,l are used for the nocc occupied orbitals
in the HF determinant and a,b,c,d for the nvir virtual
(unoccupied) orbitals; in total, there areM = nocc + nvir orbitals.

2.2. GW Approximation. The charged excitation energies
(ionization potentials and electron affinities) occur at the poles
of the Green’s function; i.e., they are the self-consistent
eigenvalues of a frequency-dependent one-particle matrixH(ω):

H E R E R( )
q

pq n q
n

n p
n∑ ω= =

(2)

with

H G( ) ( ) ( )pq pq pq p pq pq
1ω ωδ ω ε δ ω= − [ ] = + Σ−

(3)

In the GW approximation,1 the self-energy is given by

r r r r

r r

G

W

( , ; )
i

2
d e ( , ; )

( , ; )c

1 2
i

1 2

2 1

∫ω
π

ω ω ω

ω

Σ = ′ + ′

× ′

ηω′

(4)

where Wc = W − v is the correlation part of the screened
interaction; recall that the bare exchange term has been included
(self-consistently) in the Fock operator f. The dielectric function
that screens the Coulomb interaction is evaluated with the
random-phase approximation (RPA), corresponding to a
resummation of all ring diagrams contributing to the polar-
ization propagator; furthermore, all vertex corrections are
neglected. Henceforth, we limit the discussion to the nonself-
consistent G0W0 approximation, where G0 andW0 are evaluated
in a “one-shot”manner using the orbitals and orbital energies of
the mean-field problem (in this case, HF). In a finite single-
particle basis set, the frequency integration can be done
analytically to show that the self-energy has separate hole (h)
and particle (p) contributions,51−53
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which are associated with the two possible time-orderings
(Goldstone diagrams) of the corresponding Feynman diagram
for the self-energy, i.e., Σpq(t2 − t1) with t2 > t1 or with t2 < t1.
Expressed in terms of time-ordered Goldstone diagrams, the
lowest-order ring diagrams appearing in the hole and particle
contributions to the GW self-energy are shown in Figure 1, for
the single-particle indices i,j in the occupied orbital subspace.
The poles of theGW self-energy occur atω = εk−Ων andω = εc
+ Ων, i.e., at sums and differences of the orbital energies εp and
neutral excitation energiesΩν. For future reference, we note that,
in gapped molecules and materials, the particle contribution to
the self-energy of hole states is only weakly dependent on
frequency, because the quasiparticle energyω≈ εk is far from the
poles at εc + Ων; the separation is roughly twice the gap.
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The transition amplitudes associated with the poles of the self-
energy are given by

x x x x xM rd d ( ) ( ) ( )pq p q1 2 1 12
1

2 2∫ ρ ϕ ϕ= *ν
ν

−
(6)

where

x x x xn a a( ) ( ) ( ) ( )
pq

p q p q0 0∑ρ ϕ ϕ= ⟨Ψ | ̂ |Ψ ⟩ = * ⟨Ψ | ̂ ̂ |Ψ ⟩ν ν ν
†

(7)

is the transition density of the neutral excited state Ψν.
The level of theory used to construct the polarizability

determines the energies Ων and wave functions Ψν entering in
the above equations. Using any time-dependent mean-field
response, |Ψν⟩ = ∑ai[Xai

ν aa
†ai − Yai

ν ai
†aa]|Ψ0⟩, leads to an

eigensystem commonly associated with the RPA,
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Y

X
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ν

ν ν

ν

ν (8)

and transition amplitudes

M X ip aq Y ap iqpq
ai

ai ai∑= [ ⟨ | ⟩ + ⟨ | ⟩]ν ν ν

(9)

where the two-electron integrals are given by ⟨pq|rs⟩ ≡
∫ dx1 dx2 ϕp*(x1) ϕq*(x2)r12

−1ϕr(x1) ϕs(x2) and x is a combined
spin and spatial variable.
Specifically using time-dependent HF theory, the A and B

matrices (each of dimension noccnvir × noccnvir) have elements

A aj ib( )ai bj a i ab ij, ε ε δ δ= − + ⟨ ⟩ (10a)

B ij abai bj, = ⟨ ⟩ (10b)

where the antisymmetrized two-electron integrals are ⟨pq∥rs⟩ ≡
⟨pq|rs⟩ − ⟨pq|sr⟩. Using the more conventional time-dependent
Hartree dielectric function yields the same structure but neglects
the exchange integrals in the A and Bmatrices; this corresponds
to the common version of the RPA and the one used in the GW
approximation. The RPA eigenvalues come in positive- and
negative-energy pairs, comprising only noccnvir distinct eigenval-
ues; thus there are Mnoccnvir poles in the GW self-energy.
In the form given here, the solution of the RPA eigenvalue

problem in eq 8 highlights the canonical N6 scaling of the GW
approximation,52,54 which is identical to that of EOM-CCSD.
This GW scaling comes from the need to calculate all RPA
eigenvalues in order to reliably calculate just one quasiparticle
energy in eq 5. Alternative formulations can reduce this scaling.
2.3. Equation-of-Motion Coupled-Cluster Theory.

Equation-of-motion coupled-cluster theories start from the
ground-state CC wave function, |Ψ⟩ = eT̂|Φ⟩, where the cluster

operator T̂ creates neutral excitations with respect to the
reference determinant |Φ⟩,

T T T t a a t a a a a...
1
4

...
ai

i
a

a i
abij

ij
ab

a b j i1 2 ∑ ∑̂ = ̂ + ̂ + = ̂ ̂ + ̂ ̂ ̂ ̂ +† † †

(11)

The ground-state energy and cluster amplitudes are determined
by the conditions

E HCC = ⟨Φ| ̅ |Φ⟩ (12a)

H0 i
a= ⟨Φ | ̅ |Φ⟩ (12b)

H0 ij
ab= ⟨Φ | ̅ |Φ⟩ (12c)

and so on, where |Φi
a⟩ = aâ

†aî|Φ⟩, etc. and H̅ ≡ e−T̂ĤeT̂ is a
similarity-transformed Hamiltonian. As seen above, the
reference determinant is the right-hand eigenvector of H̅.
Because H̅ is non-Hermitian, it has distinct left-hand and right-
hand eigenvectors for each eigenvalue; for the ground state, the
left-hand eigenvector of Ĥ is given by

(1 )e T
0⟨Ψ̃ | = ⟨Φ| + Λ̂ − ̂

(13)

a a a a a a...
1
4

...
ai

a
i

i a
abij

ab
ij

i j b a1 2 ∑ ∑λ λΛ̂ = Λ̂ + Λ̂ + = ̂ ̂ + ̂ ̂ ̂ ̂ +† † †

(14)

Charged excitation energies in EOM-CC are calculated as
eigenvalues of H̅ in a finite basis of (N ± 1)-electron Slater
determinants; (N − 1)-electron excitation energies are
calculated via the ionization potential (IP) framework and (N
+ 1)-electron excitation energies via the electron affinity (EA)
framework.24−27 For example, the IP-EOM-CC energies are
determined by

E H R n R n( ) ( ) ( )N
n
N N

CC
1 1 1− ̅ ̂ |Φ⟩ = Ω ̂ |Φ⟩− − −

(15)

R n R n R n

r n a r n a a a

( ) ( ) ( ) ...

( )
1
2

( ) ...

N N N

i
i i

aij
ij
a

a j i

1
1

1
2

1

∑ ∑
̂ = ̂ + ̂ +

= ̂ + ̂ ̂ ̂ +

− − −

†

(16)

where Ωn
N−1 = E0

N − En
N−1 is the negative of a many-body

ionization potential and corresponds to an exact pole of the one-
particle Green’s function. Again, H̅ has distinct left-hand
eigenvectors,

L n E H L n( )( ) ( )N N
n
N1

CC
1 1⟨Φ| ̂ − ̅ = ⟨Φ| ̂ Ω− − −

(17)

L n L n L n

l n a l n a a a

( ) ( ) ( ) ...

( )
1
2

( ) ...

N N N

a

a
a

abi
i
ab

a b i

1
1

1
2

1

∑ ∑
̂ = ̂ + ̂ +

= ̂ + ̂ ̂ ̂ +

− − −

† † †

(18)

The left-hand and right-hand eigenstates of the untransformed
Ĥ are then given by

R ne ( )n
N T N1 1|Ψ ⟩ = ̂ |Φ⟩− ̂ −

(19)

L n( )en
N N T1 1⟨Ψ̃ | = ⟨Φ| ̂− − − ̂

(20)

and form a biorthogonal set. With appropriate normalization,
the eigenstates yield a resolution-of-the-identity in the (N ± 1)-
electron space

Figure 1. Lowest-order time-ordered (Goldstone) ring diagrams
appearing in the hole (h) and particle (p) contributions to the self-
energy, for occupied orbitals i,j. The dashed lines only serve to indicate
the connectivity in a Goldstone diagram for the Green’s function.
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R n L n

1

e ( ) ( )e

n
n
N

n
N

n

T N N T

1 1

1 1

∑

∑

= |Ψ ⟩⟨Ψ̃ |

= ̂ |Φ⟩⟨Φ| ̂

± ±

̂ ± ± − ̂

(21)

As first done by Nooijen and Snijders,26,27 this enables an
algebraic Lehmann representation of the Green’s function,
which (as usual) separates into IP and EA contributions due to
the time-ordering operator, Gpq(ω) = Gpq

IP(ω) + Gpq
EA(ω). For

example, the IP part is given by

G
n n

i
( )

( ) ( )
pq

n

q p

n
N

IP
1∑ω

ψ ψ

ω η
=

̃

− Ω +−
(22a)

n a R n( ) (1 )e e ( )q
T

q
T N 1ψ ̃ = ⟨Φ| + Λ̂ ̂ ̂ |Φ⟩− ̂ † ̂ −

(22b)

n L n a( ) ( )e ep
N T

p
T1ψ = ⟨Φ| ̂ ̂ |Φ⟩− − ̂ ̂

(22c)

Using conventional many-body techniques for the T̂, R̂, and Λ̂
operators enables separate diagrammatic expansions of the IP
and EA contributions to the Green’s function,26,27 which is
properly size extensive as a sum of connected diagrams. In
particular, using IP-EOM-CCSD, the IP Green’s function is
given as the sum over all time-ordered (Goldstone) diagrams for
which cutting the diagram after each end point or vertex always
leaves a sum of disconnected diagrams at previous times, each of
which has no more than two electron and two hole open
propagator lines. On the basis of the outcome of this procedure,
components of each diagram can be classified as belonging to the
cluster operators T̂n, the EOM operators R̂n, or the de-excitation
operators Λ̂n (in refs 26 and 27, these operators are designated
more precisely as T̂n, Ŝn

(p) (ω), and R̂n
(pq)(ω), respectively).

Importantly in this construction, at each order in perturbation
theory, all time-orderings of a given Feynman diagram are not
included.

3. COMPARING THE GW APPROXIMATION AND
EOM-CC THEORY
3.1. Comparing the Green’s Function. We first compare

the time-ordered Goldstone diagrams appearing in the Green’s
function of the GW approximation and EOM-CC theory. By
construction, the first-order terms in the Green’s function are
vanishing. At second order, there are ten Feynman diagrams
arising from six diagrams for the proper self-energy, only two of
which are not accounted for by a self-consistent HF calculation.
The GW Green’s function includes only one of these two
diagrams, with a single ring, which translates to 4! = 24
Goldstone diagrams, all of which are included in the EOM-
CCSD Green’s function. However, the EOM-CCSD Green’s
function also includes all Goldstone diagrams associated with
the second-order exchange diagram (another 24 Goldstone
diagrams). Therefore, as is well-known, the EOM-CCSD
Green’s function is correct through second order, and thus
exact for two-electron problems; the GW Green’s function is
not.
At third order, the comparison is more complicated. Again,

the GW Green’s function contains one irreducible Feynman
diagram, which includes two rings leading to 5! = 120 Goldstone
diagrams. For simplicity of analysis, we focus on IP diagrams (t1
< t2) in the occupied orbital subspace, Gij

IP(t1,t2), generated by
the hole part of the self-energy, i.e.,Σij(t1,t2) with t1 < t2. TheGW
approximation produces five such Goldstone diagrams (Figure

2), only three of which are included in the EOM-CCSD Green’s
function. When cut after the second interaction, diagrams (d)
and (e) produce, at earlier times, a connected diagram in the 3-
hole+2-particle (3h2p) space, which is included in the EOM-
CCSDT Green’s function, but not the EOM-CCSD one. In
contrast, diagrams (b) and (c) also have a 3h2p configuration,
but one that is generated by the disconnected product of the T2
[2-hole+2-particle (2h2p)] and R1 [1-hole (1h)] operators.
Therefore, some of the non-TDA GW diagrams are included in the
EOM-CCSD Green’s function, but not all of them.
The above analysis is straightforward to generalize to higher

order, and we find that the irreducible part of the EOM-CCSD

Green’s function at nth order contains only a vanishing fraction
of the ring diagrams included in theGWGreen’s function; at nth
order, the fraction of diagrams included isO(1/n). (Of course, a
large number of reducible Green’s function diagrams are
included at nth order, due to combinations of low-order
diagrams.) In spite of this apparent flaw of EOM-CCSD theory,
we emphasize that the EOM-CCSD Green’s function contains
many other nonring diagrams that are not contained in the GW
approximation. For example, three third-order diagrams
corresponding to various particle−particle and particle−hole
ladders are shown in Figure 3. Diagrams (a) and (c) include
vertex corrections to the self-energy and diagram (b) includes a
vertex correction to the polarization propagator.
The behavior we have described should be compared to the

enumeration of Goldstone diagrams for the correlation energy
(the vacuum amplitude): in this context, ground-state CCSD
includes ring diagrams with all possible time-orderings, completely

Figure 2.Only five third-order Goldstone diagrams contributing to Gij
IP

originating from Σij(t1,t2) with t1 < t2, in the GW approximation. Only
(a), (b), and (c) are included in the EOM-CCSD Green’s function; all
five are included in the EOM-CCSDTGreen’s function. Time increases
from left to right.

Figure 3. Three example third-order Goldstone diagrams contributing
to the IP part of the EOM-CCSD Green’s function with t1 < t2, which
are not included in the GW Green’s function. All diagrams shown are
generated by the EOM (2h1p) formalism, independent of coupled-
cluster theory. Time increases from left to right.
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encompassing those diagrams contained in the RPA.9,11

Similarly, one of us (T.C.B.) has recently shown that the
frequency-dependent polarizability calculated with neutral-
excitation EOM-CCSD encompasses all diagrams contained in
the (dynamical) RPA.55,56 The difference observed here for the
one-particle Green’s function can be traced to the need for the
EOM-CC operators to simultaneously describe screening and
free-particle propagation, as exemplified in diagrams (d) and (e)
in Figure 2. For exactly this reason, the CCSD correlation energy
is not recovered from the EOM-CCSD Green’s function, as
discussed by Nooijen and Snijders,27

E
i

h 1 G
1

4
d Tr ( ) ( )CCSD CCSD

IP∫π
ω ω ω≠ { + }

(23)

Because of eq 23, there is no EOM-ring-CCD Green’s function
that produces the RPA correlation energy. The above can
roughly be viewed as a reminder that although the CCSD energy
is exact to third order in perturbation theory, the EOM-CCSD
energies are only exact to second order. However, the EOM-
CCSD Green’s function does yield the CCSD reduced density
matrix and is thus properly number-conserving,

i
G

1
2

d ( )CCSD CCSD
IP∫ρ

π
ω ω= [ ]

(24)

N Tr CCSDρ= { } (25)

Therefore, despite the error in the individual poles of the EOM-
CCSD Green’s function, some “sum rules” are satisfied.
In this section, we have compared the Green’s functions

generated by EOM-CC and the GW approximation. A more
direct connection with the GW approximation and related time-
dependent diagrammatic methods can be made by directly
targeting an EOM-CC self-energy or polarization propagator;
work along these lines is currently in progress in our group.
However, an approximate algebraic self-energy can be worked
out directly from the EOM-CC eigenvalue problem, which we
turn to next.
3.2. Comparing the Self-Energy. For the remainder of the

article, we will only consider IP-EOM-CCSD; the results for EA-
EOM-CCSD are completely analogous. We introduce the
normal-ordered Hamiltonian, with respect to the HF reference,
ĤN ≡ Ĥ − EHF and its similarity-transformed variant H̅N ≡ H̅ −
ECC. The linear eigenvalue problem in eqs 15 and 16 clearly leads
to a (schematic) matrix representation
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In this section, we will show that the GW excitation energies are
closely related to the eigenvalues of the approximated matrix
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where fN̂ is the normal-ordered Fock operator, T̂1 = 0
everywhere, the T̂2 amplitudes satisfy an approximate version
of eq 12c known as “ring-CCD”,9,11 and the untransformed
Hamiltonian (T̂2 = 0) is used in the doubles−doubles block.
If desired, antisymmetrization can further be removed from

most two-electron integrals leading to the use of “direct ring-
CCD”9,11 in the one-hole space combined with a more
conventional TDH treatment of screening in the two-hole
+one-particle. However, we keep antisymmetrization through-
out, which makes the theory manifestly self-interaction free,
while retaining only the essential ingredients of the GW
approximation.
Using a Löwdin partitioning,57 the eigenvalues of the

Hamiltonian in eq 27 can be found self-consistently for the
frequency-dependent matrix
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where G2h1p(ω) is a specific time sequence of the three-particle
Green’s function,
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this Green’s function describes propagation in the 2h1p
subspace generated by the projection operator . The self-
consistent eigenvalue problem defined in eq 28 is analogous to
that of the GW approximation defined in eqs 3 and 5. There are
two significant differences that originate from the treatment of
time-ordering in EOM-CC theory. First, the particle contribu-

Figure 4. Goldstone self-energy diagrams arising from the different sectors of the IP-EOM-CCSD similarity-transformed Hamiltonian. The T̂2-
transformed Fock operator in the 1h space generates a frequency-independent screened-exchange self-energy Σ̃ij

p. The T̂2-transformed repulsion
integralWiakl, which couples the 1h and 2h1p spaces, generates non-Tamm−Dancoff screening on top of the Tamm−Dancoff ring and ladder diagrams
generated in the 2h1p space; this leads to a frequency-dependent screened-exchange self-energy Σ̃ij

h(ω).
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tion to the self-energy of the IP part of the Green’s function Σ̃ij
p is

frequency-independent; analogously, in EA-EOM-CC, the hole
contribution to the self-energy of the EA part of the Green’s
function is frequency-independent. However, as discussed
above, the frequency dependence of these terms, when the
respective excitation energy is calculated, is typically very weak.
Second, the effective self-energy in IP-EOM-CC (respectively
EA-EOM-CC) only has matrix elements in the occupied
(virtual) orbital space; this is in contrast to the self-energy in
any proper diagrammatic theory, which has matrix elements in
the entire orbital space. We emphasize that neither of these
differences reflects an approximation, but only a difference in
formalism; diagrammatically defined self-energy theories and
EOM-CC can both be made exact in their appropriate limits,
while retaining their respective (different) mathematical
structures.
To summarize the structure of this effective “self-energy” from

an EOM-CC-based theory, for the IPs, the forward time-ordered
self-energy (the hole contribution) arises from coupling
between 1h and 2h1p configurations, whereas the reverse
time-ordered self-energy (the particle contribution) arises from
the similarity transformation of the Fock operator in the 1h
subspace; this behavior is shown schematically in Figure 4. In the
GW language, both of these effects can be viewed as giving rise to
screening of the quasiparticle excitations. From this point of
view, we observe that the IP-EOM-CISD methodology,58

obtained by setting T̂1 = T̂2 = 0 in IP-EOM-CCSD, only
includes one of the two time-orderings, each diagram of which is
fully forward-time-ordered in the TDA sense. Finally, we note
that the true CCSD self-energy can be straightforwardly
obtained numerically, by calculating both the IP and EA Green’s
functions and using Dyson’s equation,

G G( ) ( ) ( ) ( )pq p pq pq
IP EA 1ω ω ε δ ω ωΣ = − − [ + ] −

(30)

Naturally, the frequency-dependent matrix ω − f − Σ(ω) will
have eigenvalues given exactly by the IP/EA-EOM-CCSD
excitation energies, as well as the proper analytical (frequency-
dependent) structure.
We now proceed to make the comparison between the

approximate IP-EOM-CCSD of eq 27 and the GW approx-
imation more explicit. First, we consider the frequency-
dependent hole contributionΣij

h(ω). The 2h1p Green’s function
can be expressed in two ways: first, as a perturbative series that
can be translated into diagrams,
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where R̂0(ω) = [ω − (−fN̂)]−1 is the resolvent of the Fock
operator and V̂N = ĤN − fN̂ is the normal-ordered fluctuation
operator. Alternatively, G2h1p can be expressed in terms of the
solutions of an eigenproblem,
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where Eν
2h1p is an eigenvalue of the 2h1p block of the
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2 aklν ν| ⟩ = ∑ |Φ ⟩. Notably, the set of diagrams contained

in G2h1p is identical to those included in the two-particle−hole
TDA theory of the self-energy,16 mentioned in the Introduction.

The CC self-energy goes beyond the TDA diagrams via the
outer vertices, i.e., the matrix elements of the similarity-
transformed Hamiltonian, which can be evaluated to give
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leading to the self-energy
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ViewingW as a screened Coulomb interaction leads to the set of
diagrams shown in Figure 4. The construction of the
intermediate W has a noniterative N6 cost, which is usually
swamped by the iterative N5 cost of subsequent matrix-vector
multiplies during Davidson diagonalization.
The use of exact CCSD amplitudes in eq 33a includes many

beyond-GW insertions in the polarization propagator. However,
as discussed, the closest comparison can be made when the T̂2
amplitudes solve the approximate ring-CCD equations,
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Iteration of these equations adds higher-order non-TDA ring
diagrams in the self-energy, very much like in the GW
approximation. However, consistent with the analysis presented
in section 3.1, the non-TDA diagrams are generated in an
asymmetric and incomplete manner.
Beyond this issue of non-TDA diagrams on the later-time side

of the self-energy, the approximation described so far has three
additional qualitative differences from the GW approximation.
First, the presence of antisymmetrized vertices generates many
exchange diagrams not included in the conventional GW
approximation. In particular, the “exterior” antisymmetrization
is responsible for some of the self-energy diagrams that are in the
second-order screened exchange (SOSEX) approach59 and
“interior” antisymmetrization yields particle−-hole ladders that
improve the quality of the polarization propagator. Second, the
2h1p Green’s function includes the interaction between two
holes in the intermediate 2h1p state, leading to hole−hole ladder
insertions, which are vertex corrections beyond the structure of
theGW self-energy. Third, the final term in eq 33a can be shown
to produce mixed ring-ladder diagrams that are not included at
the GW or SOSEX levels of theory.
Finally, we consider the frequency-independent particle

contribution to the self-energy. In IP-EOM-CCD, this term is
given by

ik ab t
1
2ij

kab
kj
bap ∑Σ̃ = ⟨ ⟩

(36)

which can be represented by the single diagram shown in Figure
4. This diagram must be evaluated as a scalar without frequency
dependence according to the usual diagrammatic rules of time-
independent perturbation theory.8 With this interpretation, the
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iteration of the ring-CCSD equations again generates all TDA-
screening diagrams plus an asymmetric subset of non-TDA-
screening diagrams. Antisymmetrization is responsible for
subsets of both GW and SOSEX diagrams.

4. APPLICATION OF EOM-CCSD TO THE GW100 TEST
SET

Having established the formal relation between EOM-CCSD
and the GW approximation, we now present a numerical
comparison. In particular, we will study the so-called GW100
test set,40 comprising 100 small- to medium-sized molecules
with up to 66 active electrons in 400 spatial orbitals. TheGW100
test set was introduced by van Setten and co-authors40 in order
to provide a simple and controlled class of problems with which
to compare theoretical and computational approximations of
GW-based implementations. This important research agenda
aims to enforce reproducibility within the community and
highlight the successes and limitations of the aforementioned
time-dependent diagrammatic techniques, thereby identifying
avenues for future research. The GW100 has been studied by a
number of different groups.38−40,60,61

In addition to providing results and analysis for conventional
IP- and EA-EOM-CCSD excitation energies, we will also
consider a number of approximations. These approximations
make the computational cost more competitive with that of the
GW approximation and, in light of the previous sections, many
of them can be understood as selective inclusion of certain
diagrams. These approximations are described in the next
section. Some of these approximations have been investigated
and compared for charged excitations62−64 and for neutral
electronic excitations.65,66

4.1. Approximations to EOM-CCSD. As mentioned
previously, in their canonical forms, the GW approximation
and the IP/EA-EOM-CCSD formalism both scale asN6. For the
latter class of methods, this scaling originates from the solution
of the ground-state CCSD equations, while the subsequent
ionized EOM eigenvalue problem exhibits onlyN5 scaling (with
relatively cheap, noniterative N6 steps associated with
construction of the intermediates). For this reason, a natural
target for approximations leading to reduced cost is the ground-
state calculation. Despite the distinction we draw between
ground-state and excited-state approximations, we note that the
results of the previous section have shown that the
determination of the T-amplitudes via ground-state CCSD
directly affects the diagrams contributing to the one-particle
Green’s function.
MBPT2 Ground State. The most severe approximation to the

ground state is that of second-order many-body perturbation
theory (MBPT2). For a canonical Hartree−Fock reference,
which we use throughout this work, this is equivalent to second-
order Møller−Plesset perturbation theory (MP2). In this
approach, T̂1 = 0 and the T̂2 amplitudes are approximated by

t
ab ij

ij
ab

i j a bε ε ε ε
≈

⟨ ⟩
+ − − (37)

Due to the transformation from atomic orbitals to molecular
orbitals, an MBPT2 calculation scales as N5 and so the use of
MBPT2 amplitudes in an IP/EA-EOM calculation leads to
overall N5 methods for ionization potentials and electron
affinities. Following refs 65, 67, and 68, we call this method
EOM-MBPT2; the same method has also been referred to as
EOM-CCSD(2).69

CC2 Ground State. A popular approximation to reduce the
cost of CCSD is the CC2 model.70 In this technique, the T̂1
amplitude equations are unchanged from those of CCSD, while
the T̂2 amplitude equations 12c are changed such that T̂2 only
connects to the Fock operator
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N N
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(38)

This leads to approximate T̂2 amplitudes that are very similar to
those of MBPT2,
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where ab i Hj e eij
ab T T

N
1 1⟨ ⟩ ≡ ⟨Φ | ̂ |Φ⟩− ̂ ̂

are T̂1-transformed two-
electron integrals. Like MBPT2, the CC2 approximation
removes the T̂2 contractions responsible for N6 scaling and is
thus an iterative N5 technique. While CC2 treats dynamical
correlation at essentially the same level as MBPT2, the full
treatment of single excitations generated by T̂1 allows orbital
relaxation, which should be beneficial in cases where the HF
determinant is suboptimal.

Linearized CCSD. The final ground-state approximation that
we consider is linearized CCSD (linCCSD),71 which is the least
severe approximation to CCSD. In this approach, all quadratic
products of the CCSD amplitudes are neglected in the
amplitude equations. In diagrammatic language, this approx-
imation neglects many, but not all, of the non-TDA diagrams in
the Green’s function; for example, the third-order non-TDA
diagrams shown in Figure 2b,c are included even when the
amplitude equations are linearized. The non-TDA time-
ordering is a result of the combination of R̂1 and T̂2, rather
than of nonlinear terms in the T̂2 equations. Although linearized
CCSD still scales as N6, the method is more amenable to
parallelization,71 which may be desirable for large systems or
solids.47−49,72

Excited-State Approximation. After the ground-state calcu-
lation, the most expensive contribution to an EOM-CCSD
calculation comes from the large doubles−doubles block of the
similarity-transformed Hamiltonian. A natural approximation
then is to replace the doubles−doubles block by simple orbital-
energy differences,

H ( )ij
a

kl
b

a i j ab ik jlN ε ε ε δ δ δ⟨Φ | ̅ |Φ ⟩ ≈ − − (40)

leading to a diagonal structure and a straightforward Löwdin
partitioning. Naturally, this approach is only reasonable for
principle charged excitations with a large weight in the singles
(one-hole or one-particle) sector.
This partitioned variant of EOM-CCSD theory still exhibits

N5 scaling after the T̂-amplitudes are determined but requires
the construction and storage of far fewer integral intermediates.
Formally, this approximate partitioning technique can be
combined with any treatment of the ground-state CC equations,
though it only makes practical sense for approximate ground-
state calculations whose cost does not overwhelm that of the
EOM calculation.We will combine the approximate partitioning
technique with MBPT2 and CC2 ground states, denoting the
results as P-EOM-MBPT2 and P-EOM-CC2, respectively.
As first discussed in ref 67, the P-EOM-MBPT2 method is

formally very close to the nonself-consistent second-order
Green’s function technique (GF2), where the self-energy is
composed of second-order ring and exchange diagrams.20,73

When applied exactly as described, P-EOM-MBPT2 actually
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includes a few third-order self-energy diagrams, as can be seen in
Figure 4. These can be removed by also neglecting the T̂-
amplitudes in the screened Coulomb interaction Wiakl that
couples the 1h and 2h1p space, given in eq 33a. However, this
additional ground-state correlation is found to be responsible for
a remarkable improvement in the accuracy of P-EOM-MBPT2
when compared to GF2.
With respect to the hierarchy of linear-response CC2methods

described in ref 74, the EOM-CC2 method described here is
equivalent to IP-CCSD[f]CC2 and the P-EOM-CC2 method is
between IP-CCSD[0]CC2 and IP-CCSD[1]CC2.
4.2. Numerical Details. We have applied the above

methods to calculate the first few principle ionization potentials
and electron affinities for the molecules in the GW100 test set.
Following refs 38 and 39, we work in the localized-orbital def2-
TZVPP basis set,75 using corresponding pseudopotentials for
elements in the fifth and sixth rows of the periodic table; core
orbitals were frozen in all calculations. While this choice of basis
is a good trade-off between cost and accuracy, our results are not
converged with respect to the basis set and should not be
compared directly to experiment or to calculations in other basis
sets, such as plane-wave based GW calculations.60,61 Instead,
these calculations can be directly compared to preexisting
ionization potentials in the same basis.38,39 More importantly,
our calculations are internally consistent; the main purpose of
this section is to benchmark the accuracy of cost-saving
approximations to EOM-CCSD and demonstrate the utility of
EOM-CCSD techniques for excited-state properties of bench-
mark data sets. Extrapolation to the complete basis set limit and
comparison with other non-CC techniques is reserved for future
work.
An advantage of the IP/EA-EOM-CCSD approaches is an

avoidance of open-shell calculations for charged molecules. As
such, all of our calculations were performed using a spin-free
implementation based on a closed-shell restricted HF reference,
and free of spin contamination. All calculations were performed
using the PySCF software package.76

Recent work60 has identified two molecules from the original
GW100 test set with incorrect geometries: vinyl bromide and
phenol. For consistency with previously published results, we
have performed calculations on the original geometries.
4.3. Comparison to ΔCCSD(T) Ionization Potentials.

We first aim to establish the accuracy of EOM-CCSD for the
GW100 test set. As a ground-state theory, CCSD with
perturbative triples [CCSD(T)] represents the “gold standard”
for weakly correlated medium-sized molecules77 and scales as
N7, which is more expensive than any method considered here.
At this high level of theory, the first IP of each molecule has been
calculated by Krause et al.,38 as a difference in ground-state
energies between neutral and charged molecules, the so-called
ΔCCSD(T) scheme. Higher-energy IPs and EAs, in particular
those with the same symmetry as the first, cannot be calculated
using this approach
In Figure 5, we show the comparison between IPs predicted

by ΔCCSD(T) and IP-EOM-CCSD. The IP-EOM-CCSD
values exhibit a signedmean error (ME) of−0.01 eV and amean
absolute error (MAE) of 0.09 eV. The small mean error
indicates that the errors are not systematic. Only four molecules,
identified in Figure 5 have errors larger than 0.5 eV, suggesting
that IP-EOM-CCSD represents a good approximation to
ΔCCSD(T), at least for the molecules included in the
GW100. The most fair comparison, based on diagrams
generated, is to the G0W0 approximation based on a HF

reference (G0W0@HF). As reported by Caruso et al.,39 such an
approach overestimates IPs, leading to a ME of 0.26 eV and a
MAE of 0.35 eV. Interestingly, this is significantly better than the
more popular (at least in the solid state) G0W0 approximation
based on a PBE starting point (G0W0@PBE), which severely and
systematically underestimates IPs, leading to a ME of −0.69 eV
and a MAE of 0.69 eV.39

4.4. Electron Affinities and Higher-Energy Excitations.
By construction, EOM-CCSD can straightforwardly predict
higher-energy ionization potentials, corresponding to more
deeply bound electrons, as well as the first and higher electron
affinities. In order to provide a larger set of benchmark data for
theGW community, in Table 1 we report the first three occupied
and unoccupied quasiparticle energies (i.e., the negative of the
first three IPs and EAs with large quasiparticle weights) for each
molecule in the GW100 test set, as calculated by IP- and EA-
EOM-CCSD, and accounting for their multiplicities.

4.5. Accuracy of Approximate EOM-CCSD. We next
assess the accuracy of approximations to EOM-CCSD, using the
GW100 test set. Henceforth, we compare all approximations to
EOM-CCSD, and not to ΔCCSD(T), for a number of reasons.
First, the comparison is perhaps the most fair because all
approximate techniques are derived from EOM-CCSD, and so
the most we can expect is that they reproduce this parent
method. Second, although EOM-CCSD was shown above to
provide an accurate reproduction of theΔCCSD(T) values, the
latter approach can be challenging for open-shell systems like
those used in the (N ± 1)-electron calculations. For example,
while the unrestricted formalism used in ref 38 provides a better
approximate treatment of multireference effects, it also suffers
from spin contamination, which can affect the IPs and EAs by up
to 0.5 eV, as discussed in ref 78. Third, it allows us to compare
EAs, which are not available in the literature based on
ΔCCSD(T).
In Table 2, we present IP and EA error metrics for a variety of

approximate techniques (all 100 molecules were studied by each
approach except for CC2-based approaches, because the
ground-state CC2 failed to converge for 12 molecules; the full
data set for individual molecules is given as Supporting
Information). Perhaps most remarkably, we find that all CC-
based methods exhibit MEs of less than 0.13 eV and MAEs of
less than 0.16 eV. These results can be compared to those based
on the GW approximation, as given in Table 2. These latter
results are taken from ref 39 and include only ionization
potentials compared to CCSD(T) data; given the good
agreement between CCSD(T) and IP-EOM-CCSD shown
above, we expect similar error metrics if the GW results were

Figure 5. Comparison of ionization potentials predicted by IP-EOM-
CCSD compared to those predicted byΔCCSD(T) from ref 38. Errors
with respect to the latter are presented as a scatter plot (left) and
histogram (right). Four molecules with errors exceeding 0.5 eV are
explicitly labeled.
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Table 1. Quasiparticle Energies (Negative of the Ionization Potentials and Electron Affinities) of Molecules in the GW100
Calculated with IP/EA-EOM-CCSD in the def2-TZVPP Basis Set

formula name HOMO−2 HOMO−1 HOMO LUMO LUMO+1 LUMO+2

He helium −24.51 (×1) 22.22 (×1) 39.82 (×3) 166.90 (×1)
Ne neon −48.33 (×1) −21.21 (×3) 20.84 (×1) 21.87 (×2) 74.27 (×3)
Ar argon −29.58 (×1) −15.63 (×2) 14.73 (×3) 17.19 (×4) 20.69 (×1)
Kr krypton −27.14 (×1) −13.98 (×3) 10.41 (×2) 12.24 (×4) 18.78 (×1)
Xe xenon −23.67 (×1) −12.23 (×3) 7.72 (×3) 8.91 (×3) 12.29 (×1)
H2 hydrogen −16.40 (×1) 4.22 (×1) 8.05 (×1) 16.04 (×1)
Li2 lithium dimer −63.39 (×1) −63.38 (×1) −5.27 (×1) −0.12 (×1) 0.99 (×2) 1.00 (×1)
Na2 sodium dimer −37.24 (×2) −37.21 (×1) −4.94 (×1) −0.26 (×1) 0.60 (×2) 0.78 (×1)
Na4 sodium tetramer −36.60 (×1) −5.59 (×1) −4.25 (×1) −0.53 (×1) −0.10 (×1) 0.10 (×1)
Na6 sodium hexamer −36.52 (×1) −5.68 (×1) −4.37 (×2) −0.49 (×1) −0.34 (×2) −0.07 (×1)
K2 potassium dimer −23.83 (×2) −23.77 (×1) −4.08 (×1) −0.32 (×1) 0.77 (×1) 0.83 (×2)
Rb2 rubidium dimer −20.09 (×2) −20.02 (×1) −3.93 (×1) −0.37 (×1) 0.18 (×1) 0.35 (×1)
N2 nitrogen −18.84 (×1) −17.21 (×1) −15.60 (×1) 3.05 (×2) 8.97 (×1) 9.47 (×1)
P2 phosphorus dimer −14.79 (×1) −10.75 (×1) −10.59 (×1) −0.10 (×2) 3.47 (×1) 6.30 (×1)
As2 arsenic dimer −14.64 (×1) −10.14 (×1) −9.91 (×2) −0.26 (×1) 3.31 (×1) 6.88 (×1)
F2 fluorine −21.09 (×1) −18.85 (×1) −15.53 (×1) 0.39 (×1) 15.34 (×1) 15.34 (×1)
Cl2 chlorine −15.98 (×1) −14.41 (×1) −11.46 (×2) −0.19 (×1) 9.10 (×1) 10.03 (×1)
Br2 bromine −14.44 (×1) −12.89 (×1) −10.54 (×1) −0.94 (×1) 7.05 (×1) 7.09 (×1)
I2 iodine −12.76 (×1) −11.38 (×2) −9.55 (×2) −1.50 (×1) 5.10 (×1) 5.15 (×1)
CH4 methane −23.38 (×1) −14.38 (×3) 3.45 (×1) 5.79 (×3) 7.88 (×3)
C2H6 ethane −13.05 (×1) −12.71 (×1) −12.71 (×1) 3.11 (×1) 4.21 (×1) 5.24 (×2)
C3H8 propane −12.25 (×1) −12.12 (×1) −12.05 (×1) 2.95 (×1) 4.13 (×1) 4.32 (×1)
C4H10 butane −11.92 (×1) −11.81 (×1) −11.56 (×1) 2.88 (×1) 3.46 (×1) 4.12 (×1)
C2H4 ethlyene −14.91 (×1) −13.11 (×1) −10.69 (×1) 2.63 (×1) 3.94 (×1) 4.60 (×1)
C2H2 ethyne −19.13 (×1) −17.23 (×1) −11.55 (×2) 3.50 (×2) 3.58 (×1) 4.53 (×1)
C4 tetracarbon −14.65 (×1) −11.46 (×1) −11.27 (×1) −2.36 (×1) −0.01 (×1) 1.71 (×1)
C3H6 cyclopropane −13.14 (×1) −10.86 (×1) −10.85 (×1) 3.46 (×1) 3.96 (×1) 4.10 (×1)
C6H6 benzene −12.14 (×2) −9.32 (×1) −9.32 (×1) 1.78 (×2) 3.11 (×1) 4.00 (×2)
C8H8 cyclooctatetraene −10.01 (×1) −10.00 (×1) −8.40 (×1) 0.79 (×1) 2.52 (×1) 2.54 (×1)
C5H6 cyclopentadiene −12.52 (×1) −11.03 (×1) −8.69 (×1) 1.77 (×1) 3.27 (×1) 4.06 (×1)
C2H3F vinyl fluoride −14.79 (×1) −13.86 (×1) −10.60 (×1) 2.80 (×1) 3.93 (×1) 4.34 (×1)
C2H3Cl vinyl chloride −13.21 (×1) −11.65 (×1) −10.13 (×1) 2.12 (×1) 3.49 (×1) 3.84 (×1)
C2H3Br vinyl bromide −13.38 (×1) −10.71 (×1) −9.29 (×1) 2.02 (×1) 3.55 (×1) 4.27 (×1)
C2H3I vinyl iodide −11.71 (×1) −9.92 (×1) −9.36 (×1) 1.40 (×1) 1.75 (×1) 3.59 (×1)
CF4 tetrafluoromethane −18.35 (×2) −17.37 (×2) −16.24 (×3) 4.89 (×1) 6.86 (×2) 9.20 (×2)
CCl4 tetrachloromethane −13.40 (×2) −12.46 (×3) −11.60 (×3) 0.86 (×1) 2.20 (×3) 5.20 (×1)
CBr4 tetrabromomethane −12.13 (×2) −11.25 (×3) −10.48 (×2) −0.49 (×1) 1.21 (×3) 4.60 (×1)
CI4 tetraiodomethane −9.99 (×2) −9.30 (×2) −1.62 (×1) 0.34 (×2) 4.73 (×2)
SiH4 silane −18.46 (×1) −12.84 (×3) 3.10 (×3) 3.71 (×1) 6.75 (×2)
GeH4 germane −38.07 (×1) −18.69 (×1) −12.53 (×2) 3.16 (×1) 3.54 (×3) 7.04 (×2)
Si2H6 disilane −12.25 (×1) −12.25 (×1) −10.71 (×1) 2.27 (×1) 2.28 (×2) 2.75 (×1)
Si5H12 pentasilane −10.84 (×1) −10.64 (×1) −9.36 (×1) 0.79 (×1) 1.57 (×1) 1.61 (×1)
LiH lithium hydride −64.54 (×1) −7.96 (×1) 0.09 (×1) 2.01 (×2) 3.41 (×1)
KH potassium hydride −24.59 (×2) −24.38 (×1) −6.13 (×1) −0.04 (×1) 1.60 (×2) 1.90 (×1)
BH3 borane −18.35 (×1) −13.31 (×2) 0.33 (×1) 3.36 (×1) 4.32 (×2)
B2H6 diborane −14.00 (×1) −13.48 (×1) −12.29 (×1) 1.20 (×1) 2.51 (×1) 3.46 (×1)
NH3 ammonia −27.78 (×1) −16.52 (×2) −10.77 (×1) 2.84 (×1) 5.26 (×2) 11.18 (×2)
HN3 hydrazoic acid −15.92 (×1) −12.25 (×1) −10.72 (×1) 2.02 (×1) 3.02 (×1) 3.17 (×1)
PH3 phosphine −20.25 (×1) −13.75 (×2) −10.57 (×1) 2.95 (×1) 3.12 (×2) 7.11 (×2)
AsH3 arsine −19.82 (×1) −13.18 (×2) −10.42 (×1) 2.86 (×1) 3.01 (×2) 7.44 (×2)
SH2 hydrogen sulfide −15.65 (×1) −13.39 (×1) −10.35 (×1) 2.79 (×1) 3.20 (×1) 7.25 (×1)
FH hydrogen fluoride −39.30 (×1) −19.84 (×1) −15.90 (×1) 3.07 (×1) 14.20 (×1) 17.24 (×1)
ClH hydrogen chloride −25.44 (×1) −16.65 (×1) −12.64 (×1) 2.70 (×1) 7.91 (×1) 12.18 (×1)
LiF lithium fluoride −33.11 (×1) −11.76 (×1) −11.28 (×2) −0.02 (×1) 2.74 (×2) 3.51 (×1)
F2Mg magnesium fluoride −14.15 (×1) −13.76 (×2) −13.71 (×1) −0.04 (×1) 1.94 (×2) 4.13 (×1)
TiF4 titanium fluoride −16.86 (×1) −16.29 (×2) −15.69 (×2) −1.06 (×2) 0.07 (×3) 0.98 (×1)
AlF3 aluminum fluoride −16.08 (×2) −15.86 (×2) −15.31 (×1) 0.67 (×1) 1.86 (×1) 3.90 (×2)
BF boron monofluoride −21.27 (×1) −18.16 (×2) −11.20 (×1) 1.51 (×2) 3.29 (×1) 4.70 (×1)
SF4 sulfur tetrafluoride −15.26 (×1) −15.04 (×1) −12.70 (×1) 0.94 (×1) 3.79 (×1) 4.86 (×1)
BrK potassium bromide −19.37 (×1) −8.41 (×1) −8.17 (×2) −0.45 (×1) 1.40 (×2) 1.73 (×1)
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compared to IP-EOM-CCSD results instead. Depending on the
choice of mean-field reference or with full self-consistency, GW-
based approximations give errors on the order of 0.3−0.7 eV.
Overall, we see that approximations in the ground-state

calculation lead to an average increase in the IP or EA and
approximations in the EOM calculation lead to an average
decrease in the IP or EA. This behavior can be understood
because most perturbative approximations to CCSD lead to
overcorrelation, which decreases the ground-state energy
(increases the IP or EA) or decreases the excited-state energy
(decreases the IP or EA).
Without any partitioning, the EOM-linCCSD, EOM-CC2,

and EOM-MBPT2 all perform similarly. Although the error
incurred by themost expensive linearized CCSD is slightly larger
(compared to the error of other approximate treamtents of the
ground state), the error is extremely systematic with a very small
spread; for example, over 50 molecules overestimate the IP by
0.1 eV and another 30 molecules overestimate the IP by 0.2 eV.
AllN5 approximate methods (based on CC2 or MBPT2, with or

Table 1. continued

formula name HOMO−2 HOMO−1 HOMO LUMO LUMO+1 LUMO+2

GaCl gallium monochloride −14.09 (×1) −11.46 (×2) −9.79 (×1) 0.27 (×2) 2.49 (×1) 6.60 (×1)
NaCl sodium chloride −20.83 (×1) −9.55 (×1) −9.12 (×2) −0.59 (×1) 1.18 (×2) 2.08 (×1)
MgCl2 magnesium chloride −12.52 (×1) −11.88 (×2) −11.76 (×2) −0.19 (×1) 1.40 (×2) 3.91 (×1)
AlI3 aluminum chloride −10.39 (×2) −10.29 (×2) −9.84 (×1) −0.33 (×1) −0.28 (×1) 2.25 (×2)
BN boron nitride −27.96 (×1) −13.69 (×1) −11.93 (×2) −3.16 (×1) 2.65 (×2) 3.69 (×1)
NCH hydrogen cyanide −20.60 (×1) −13.91 (×1) −13.90 (×1) 3.21 (×2) 3.45 (×1) 4.55 (×1)
PN phosphorus mononitride −16.37 (×1) −12.42 (×1) −11.80 (×1) 0.46 (×1) 3.40 (×1) 8.42 (×1)
H2NNH2 hydrazine −15.39 (×1) −11.28 (×1) −9.62 (×1) 2.51 (×1) 3.69 (×1) 4.55 (×1)
H2CO formaldehyde −16.04 (×1) −14.56 (×1) −10.78 (×1) 1.67 (×1) 3.68 (×1) 5.24 (×1)
CH4O methanol −14.32 (×1) −13.33 (×1) −10.18 (×1) 1.91 (×1) 3.14 (×1) 4.00 (×1)
C2H6O ethanol −13.43 (×1) −12.27 (×1) −10.61 (×1) 2.86 (×1) 3.73 (×1) 4.69 (×1)
C2H4O acetaldehyde −14.32 (×1) −13.33 (×1) −10.18 (×1) 1.91 (×1) 3.14 (×1) 4.00 (×1)
C4H10O ethoxy ethane −12.36 (×1) −11.50 (×1) −9.75 (×1) 2.96 (×1) 3.46 (×1) 3.93 (×1)
CH2O2 formic acid −14.94 (×1) −12.55 (×1) −11.42 (×1) 2.70 (×1) 3.07 (×1) 4.29 (×1)
HOOH hydrogen peroxide −15.38 (×1) −12.84 (×1) −11.39 (×1) 3.01 (×1) 3.02 (×1) 4.87 (×1)
H2O water −18.90 (×1) −14.70 (×1) −12.48 (×1) 2.88 (×1) 4.91 (×1) 13.32 (×1)
CO2 carbon dioxide −18.11 (×1) −17.99 (×2) −13.73 (×1) 2.80 (×1) 4.29 (×2) 6.59 (×1)
CS2 carbon disulfide −14.57 (×1) −13.27 (×2) −10.01 (×2) 0.29 (×2) 3.34 (×1) 4.46 (×1)
OCS carbon oxide sulfide −16.12 (×1) −16.12 (×2) −11.24 (×2) 1.85 (×2) 3.13 (×1) 4.78 (×1)
OCSe carbon oxide selenide −15.89 (×2) −15.63 (×1) −10.50 (×2) 1.44 (×2) 2.60 (×1) 4.18 (×1)
CO carbon monoxide −19.42 (×1) −15.49 (×1) −14.37 (×1) 1.22 (×2) 5.30 (×1) 6.59 (×1)
O3 ozone −13.48 (×1) −12.93 (×1) −12.79 (×1) −1.52 (×1) 5.23 (×1) 7.28 (×1)
SO2 sulfur dioxide −13.50 (×1) −13.12 (×1) −12.37 (×1) −0.34 (×1) 3.98 (×1) 4.39 (×1)
BeO beryllium monoxide −26.77 (×1) −10.97 (×1) −9.88 (×2) −2.01 (×1) 2.31 (×1) 2.48 (×1)
MgO magnesium monoxide −24.89 (×1) −8.76 (×1) −8.17 (×2) −1.29 (×1) 1.16 (×2) 2.90 (×1)
C7H8 toluene −11.74 (×1) −9.19 (×1) −8.90 (×1) 1.71 (×1) 1.85 (×1) 2.97 (×1)
C8H10 ethylbenzene −11.57 (×1) −9.15 (×1) −8.85 (×1) 1.76 (×1) 1.76 (×1) 2.85 (×1)
C6F6 hexafluorobenzene −14.09 (×1) −13.12 (×1) −10.15 (×2) 1.08 (×2) 1.15 (×1) 3.66 (×2)
C6H5OH phenol −11.99 (×1) −9.42 (×1) −8.69 (×1) 1.62 (×1) 2.35 (×1) 2.84 (×1)
C6H5NH2 aniline −11.01 (×1) −9.21 (×1) −7.98 (×1) 1.83 (×1) 2.29 (×1) 2.82 (×1)
C5H5N pyridine −10.45 (×1) −9.74 (×1) −9.72 (×1) 1.24 (×1) 1.62 (×1) 3.21 (×1)
C5H5N5O guanine −10.05 (×1) −9.81 (×1) −8.04 (×1) 1.57 (×1) 1.87 (×1) 1.98 (×1)
C5H5N5 adenine −9.59 (×1) −9.39 (×1) −8.33 (×1) 1.28 (×1) 2.06 (×1) 2.51 (×1)
C4H5N3O cytosine −9.66 (×1) −9.54 (×1) −8.78 (×1) 0.92 (×1) 2.29 (×1) 2.51 (×1)
C5H6N2O2 thymine −10.55 (×1) −10.19 (×1) −9.15 (×1) 0.77 (×1) 2.15 (×1) 2.42 (×1)
C4H4N2O2 uracil −10.65 (×1) −10.29 (×1) −9.57 (×1) 0.70 (×1) 2.10 (×1) 2.35 (×1)
CH4N2O urea −10.65 (×1) −10.52 (×1) −10.08 (×1) 2.33 (×1) 3.51 (×1) 4.09 (×1)
Ag2 silver dimer −11.08 (×2) −10.82 (×1) −7.41 (×1) −0.70 (×1) 1.00 (×2) 1.41 (×1)
Cu2 copper dimer −9.37 (×2) −9.22 (×1) −7.38 (×1) −0.34 (×1) 2.11 (×1) 2.16 (×2)
NCCu copper cyanide −12.17 (×1) −11.21 (×2) −10.69 (×1) −0.98 (×1) 1.92 (×2) 3.08 (×1)

Table 2. Mean Error (ME) and Mean Absolute Error (MAE)
in eV of Ionization Potentals (IPs) and Electron Affinities
(EAs) for Molecules Contained in the GW100 Test Seta

method IP ME (eV) IP MAE (eV) EA ME (eV) EA MAE

EOM-linCCSD 0.13 0.14 0.05 0.11
EOM-CC2 0.00 0.14 0.08 0.15
EOM-MBPT2 0.03 0.13 0.08 0.16
P-EOM-CC2 −0.08 0.12 −0.04 0.08
P-EOM-MBPT2 −0.08 0.16 −0.03 0.08
GF2@HF −0.38 0.42 −0.19 0.22
G0W0@HF39 0.26 0.35
G0W0@PBE39 −0.69 0.69
scGW39 −0.30 0.32

aError metrics are calculated with respect to IP/EA-EOM-CCSD
without approximation, except for the GW results from ref 39, which
are calculated with respect to ΔCCSD(T) results from ref 38.
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without partitioning) perform impressively well. EOM-CC2 and
EOM-MBPT2 exhibit very similar results (even on the level of
individual molecules), suggesting that the orbital relaxation due
to T̂1 is not important in many of these cases. With partitioning,
the ME becomes only slightly negative without any significant
increase in the MAE.
The qualitatively similar performances of all approximate

EOM-CCmethods and their improvement compared to that for
G0W0@HF suggests that the precise details of screening are not
important in molecules, and perhaps second-order exchange is
more important. To test this, we also show the results of IPs and
EAs calculated using the second-order Green’s function (GF2);
the mean error is large and negative,−0.38 eV for IPs and−0.19
eV for EAs, which can be compared to the IP results of G0W0@
HF, + 0.26 eV. Remarkably, the P-EOM-MBPT2 approach,
which has a cost essentially identical to that for GF2, reduces the
mean error of the latter to only −0.08 eV. This result suggests
that the combination of second-order exchange with a small
amount of screening, beyond the second-order ring diagram, is
important for quantitative accuracy. Given the extremely low
cost, we identify P-EOM-MBPT2 as an attractive low-cost
approach for IPs and EAs of larger molecules, with potential
applications in the solid state. However, it must be kept in mind
that the increased importance of screening in solids may
preclude the success of perturbative approximations.

5. CONCLUSIONS AND OUTLOOK
To summarize, we have presented a diagrammatic, algebraic,
and numerical evaluation of quasiparticle excitation energies
predicted by EOM-CCSD, especially as compared to those of
the GW approximation. Although the EOM-CCSD Green’s
function includes fewer ring diagrams than the GW approx-
imation, we find that its inclusion of many more diagram
(including ladders and exchange) produces excitation energies
that are much more accurate than those from the GW
approximation. To completely encompass all GW diagrams
requires the use of nonperturbative EOM-CCSDT.
We also investigated the accuracy of a number of cost-saving

approximations to EOM-CCSD, many of which reduce the
canonical scaling toN5 (which could be further reduced through
density-fitting79 or tensor hypercontraction80). All CC-based
approximations considered yield very small errors on average.
For systems where screening is relatively unimportant, such as
molecules or large band gap insulators, we identify P-EOM-
MBPT2 as an accurate and inexpensive N5 approach. We
attribute the success of P-EOM-MBPT2 to its exact treatment of
screening and exchange through second order (as in GF2),
combined with a small number of third-order diagrams.
We anticipate that the framework and connections laid out

here will aid future work on the GW approximation, through the
identification of the most important excluded diagrams. With
respect to IP/EA-EOM-CCSD calculations of band structures in
solids,49 the present work motivates efforts to quantify the error
induced by neglecting some of the non-TDA ring diagrams,
which are conventionally thought to be crucial for screening in
solids. In the same vein, the inclusion of triple excitations,
perhaps even perturbatively, could be an important ingredient in
recovering−and rigorously surpassing − RPA physics.
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