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The optimized effective potential (OEP) that gives accurate Kohn-Sham (KS) orbitals and orbital
energies can be obtained from a given reference electron density. These OEP-KS orbitals and orbital
energies are used here for calculating electronic excited states with the particle-particle random phase
approximation (pp-RPA). Our calculations allow the examination of pp-RPA excitation energies with
the exact KS density functional theory (DFT). Various input densities are investigated. Specifically,
the excitation energies using the OEP with the electron densities from the coupled-cluster singles
and doubles method display the lowest mean absolute error from the reference data for the low-lying
excited states. This study probes into the theoretical limit of the pp-RPA excitation energies with the
exact KS-DFT orbitals and orbital energies. We believe that higher-order correlation contributions
beyond the pp-RPA bare Coulomb kernel are needed in order to achieve even higher accuracy in
excitation energy calculations. Published by AIP Publishing. https://doi.org/10.1063/1.4994827

I. INTRODUCTION

The accurate description of electronic excited states has
long been an important and challenging topic in theoretical
chemistry. Many methods that can deal with excited states have
been developed in the past few decades. Among these meth-
ods, time-dependent density functional theory (TDDFT)1–3

has been widely used, thanks to its good balance of theoretical
accuracy and computational efficiency. However, TDDFT has
inherent problems in some challenging cases, such as double
excitations, Rydberg excitations, charge transfer excitations,
and diradical systems.4 Recently our group has developed the
particle-particle random phase approximation (pp-RPA)5–11

into an effective approach to address these challenging excita-
tion problems and we found that the pp-RPA can successfully
describe many of them. Nevertheless, as a post self-consistent-
field (SCF) method, the final pp-RPA results depend on the
SCF density functional reference, or more specifically, the
orbital energies and orbital shapes. It has been demonstrated
that better results of TDDFT calculations can be achieved12,13

with the exact KS density functional theory,14 utilizing the
optimized effective potential (OEP).15–18 In this paper, we
implement the pp-RPA with the OEP, based on the Wu-Yang
approach.17,19 With an accurate input density, the Wu-Yang
direct optimization method can produce highly accurate local
Kohn-Sham (KS) exchange-correlation potential and therefore
the corresponding KS orbitals and orbital energies. This makes
it possible to investigate the theoretical limit of the pp-RPA
with the exact KS theory.

We first briefly review the pp-RPA and OEP methods in
Sec. II. Then in Sec. III, we apply the pp-RPA with the OEP
reference to double excitations, Rydberg excitations, diradi-
cals, and regular single excitations, in order to investigate the

a)Electronic mail: weitao.yang@duke.edu

theoretical limit of the pp-RPA based on local KS references.
We also compare the results with calculations based on approx-
imate functionals from our previous work.5,9,20 We give our
final conclusion in Sec. IV.

II. METHODS
A. pp-RPA

The pp-RPA formula can be derived in a variety of ways,
including the equation-of-motion,21,22 adiabatic connection
pairing matrix fluctuation,5,6 and time-dependent density func-
tional theory with a pairing field (TDDFT-P).7 Here, we review
the TDDFT-P method as this method justifies the use of the
DFT references.

The general Hamiltonian with a pairing potential takes the
form

Ĥ = T̂ + V̂ + D̂ + Ŵ , (1)

where T̂ , V̂ , and Ŵ represent the kinetic energy operator,
external regular potential operator, and the two electron inter-
action operator, respectively. D̂ is the external pairing field
operator,

D̂ =
1
2

∫
dxdx′[D∗(x, x′)ψ̂(x′)ψ̂(x) + h.c.], (2)

where h.c. stands for the Hermitian conjugate. Note that the
total number of electrons in the system can change under a
finite D∗(x, x′). The pairing matrix under the pairing field is
defined as

κ(x, x′) = 〈Ψ|ψ†(x′)ψ†(x)|Ψ〉. (3)

Now we perturb the interacting system with a small pairing
field δD(x, x′; t). Then the change of the pairing matrix that
responds to the perturbation is
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δκ(x, x′; t) =
∫

dτdydy′K(x, x′; y, y′; t−τ)δD(y, y′; τ), (4)

where the particle-particle (pp) response function K is

K(x, x′; y, y′; t)

= −iθ(t)
〈
Ψ

gs��
[
ψ̂H (x′t)ψ̂H (xt), ψ̂†(y)ψ̂†(y′)

] ��Ψgs〉. (5)

Note that H denotes the Heisenberg picture. For a non-
interacting system with the Fourier transform from the time
domain to the energy domain and the variables from coor-
dinate representation to orbital representation, the pp linear
response function is

K0
pq,rs(ω) = (δprδqs − δqrδps)

×
θ(p − F)θ(q − F) − θ(F − p)θ(F − q)

ω − (εp + εq) + iη
, (6)

where F denotes the Fermi level. In the following discus-
sion, we will use p,q,r,s for general orbitals, i,j,k,l for occu-
pied orbitals, and a,b,c,d for virtual orbitals. Thus, the linear
response equation of the pairing matrix to the pairing field can
be expressed as

δκs
ij(ω) = −

δDs
ij(ω)

ω − (εi + εj) + iη
, (7)

δκs
ab(ω) =

δDs
ab(ω)

ω − (εa + εb) + iη
. (8)

According to the linear response theory, when δκ changes,
there arises an internal mean-field paring potential δDint, which
further influences δκ back. Here we make another approxima-
tion that the response of δDs to δκ is adiabatic. The adiabatic
pp response kernel L is thus,

Lpq,rs = 〈pq| |rs〉 + 2
∫

dx1dx2dx′1dx′2ϕ
∗
p(x1)ϕ∗q(x′1)

× (
δ2Exc[ρ, κ]

δκ∗(x1, x′1)δκ(x2, x′2)
)ρϕr(x2)ϕs(x′2), (9)

where 〈pq| |rs〉 is the antisymmetrized two-electron integral.
Combining two parts of perturbations together, we reach the
TDDFT-P equation7

[
A B
B† C

] [
X
Y

]
− ω

[
I 0
0 −I

] [
X
Y

]
= −

[
δDpp

δDhh

]
, (10)

where

Aab,cd = δacδbd(εa + εb) + Lab,cd , (11)

Bab,ij = 〈ab| |ij〉, (12)

Cij,kl = −δikδjl(εi + εj) + Lij,kl, (13)

Xab = δκab(ω), (14)

Yij = δκij(ω), (15)[
δDpp]

ab = δDab(ω), (16)
[
δDhh

]
ij
= δDij(ω). (17)

Note that to avoid redundancy, we restrict the index a > b and
i > j. Furthermore, by taking the external perturbation δD to
0, the eigenvalue equation is thus

[
A B
B† C

] [
X
Y

]
= ω

[
I 0
0 −I

] [
X
Y

]
. (18)

Since the kernel L remains unknown, we use the antisym-
metrized bare Coulomb interaction as the kernel, which leads
to the pp-RPA equation. And in the pp-RPA, the simplified
matrix elements are known explicitly now,

Aab,cd = δacδbd(εa + εb) + 〈ab| |cd〉, (19)

Bab,ij = 〈ab| |ij〉, (20)

Cij,kl = −δikδjl(εi + εj) + 〈ij | |kl〉, (21)

with the eigenvalues being two-electron addition energies

ωN+2
n = EN+2

n − EN
0 (22)

and two-electron removal energies

ωN−2
n = EN

0 − EN−2
n . (23)

If we compute from an two-electron deficient (N � 2) system,
the excitation energy is then

EN
n − EN

0 = (EN
n − EN−2

0 ) − (EN
0 − EN−2

0 ) = ωn − ω0. (24)

In order to get the excitation energies, we only need the
orbitals and orbital energies of the non-interacting (N � 2)-
electron system. The orbitals of (N � 2)-electron systems
are more contracted, but qualitatively similar to those of N-
electron systems, making it possible to qualitatively identify
the character of each double electron addition excitation and
consequently the corresponding N-electron system configu-
ration. In this work, we have used four ways to obtain this
information: (1) approximate density functional like PBE,23

(2) approximate functionals of density matrix, like HF and
B3LYP24,25 in the generalized KS calculations, (3) OEP
from accurate electron densities, and (4) OEP from densi-
ties calculated with approximate functionals of the density
matrix.

B. OEP

We use the accurate and efficient direct optimization
method for the determination of the OEP and its associ-
ated orbitals and orbital energies from a given electron den-
sity, developed by Wu and Yang.17,19 Consider an N-electron
closed-shell system with a given input electron density ρin, the
Levy constrained search26 shows that the kinetic energy is

Ts[ρ] = min
Ψdet→ρin

T [Ψdet]. (25)

Therefore, the evaluation of the kinetic energy is turned into
a constrained minimization problem, where the Lagrangian
is

Ws[Ψdet, v(r)] = 2
N/2∑

i

〈φi |T̂ |φi〉 +
∫

drvs(r){ρ(r) − ρin(r)}.

(26)
And the stationary condition will be

[T̂ + v(r)]φi = εiφi. (27)

The determinant, Ψdet, is thus an implicit functional of v(r),
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Ψdet = Ψdet[v(r)]. (28)

Then we can rewrite the Lagrangian W s as a functional only
depending on v(r),

Ws[Ψdet[v(r)], v(r)] = min
φi ,〈φi |φi〉=1

Ws[Ψdet, v(r)]. (29)

As a consequence, the OEP problem is simplified into the max-
imization of W s with respect to the potential v(r). The most
efficient way to carry out the OEP is by expanding the potential
v(r),

v(r) = vext(r) + v0(r) +
∑

t

btgt(r), (30)

where vext(r) is the external potential, v0 is a fixed refer-
ence potential, and the last term is a linear combination with
a set of finite basis functions {gt(r)} and the coefficients
{bt}. We choose the Fermi-Amaldi potential as the reference
potential,27 namely,

v0(r) =
N − 1

N

∫
ρ0(r′)
|r − r′ |

dr′, (31)

which can provide the correct long-range behavior and a
set of Gaussian functions for {gt(r)} for calculation conve-
nience. Note that ρ0(r) is a fixed reference electron density.
Now the OEP problem turns into the optimization problem of
Ws[Ψdet[v(r)], v(r)] with respect to the expansion coefficients
{bt}. One way to carry out this optimization is by applying
the Newton method. One can obtain the first and second order
derivatives (gradient and Hessian),

∂Ws

∂bt
=

∫
drgt(r){ρ(r) − ρin(r)}, (32)

Hu,t =
∂2Ws

∂bu∂bt

= 2
occ∑

i

unocc∑
a

〈φi |gu(r)|φa〉〈φa |gt(r)|φi〉

εi − εa
+ c.c., (33)

and then iteratively solve the equation

bn+1 = bn −H−1 · g, (34)

where the gradient vector is defined as gt =
∂Ws
∂bt

. We also

apply the BFGS method28 in some cases as an alternative
optimization method to avoid the inversion of the Hessian.

We use the following procedure for excitation energy
calculations:

1. Perform a self-consistent field (SCF) or post-SCF calcu-
lation for the (N � 2)-electron system to obtain the total
electron density;

2. use this density as an input for the OEP calculation to
obtain orbitals and eigenvalues;

3. calculate the excitation energies with the pp-RPA.

C. Computational details

All electron densities are calculated with Gaussian 09.29

Our OEP and spin-adapted pp-RPA20 methods are imple-
mented in the QM4D package.30 All calculations are compared
with Refs. 5, 8, and 9 and for the regular single excitation cal-
culations, we use molecules from Ref. 31. In the (N � 2)-
electron system calculations, aug-cc-pVDZ is used for the

FIG. 1. Potential basis convergence
tests with the pp-RPA-OEP from three
density sources are shown here. The first
two singlet and triplet excitations are
calculated using butadiene. The num-
ber on the x-axis represents different
potential basis sets, shown in Table I.
Aug-cc-pVDZ is chosen as the atomic
basis set, as shown in the previous work.
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TABLE I. The potential basis set for the convergence test in Fig. 1. The first
column represents the number on the x-axis in Fig. 1.

Smallest Smallest
x-label C exponent H exponent

1 30s 2�15

2 38s 2�15

3 15s/9p/2d 0.031 25/0.062 5/0.5 20s 0.007 812 5
4 19s/12p/3d 0.031 25/0.031 25/0.5
5 38s/12p/7d 2�15/0.0125/0.125

molecules in Secs. III B and III C and aug-cc-pVQZ is used
for the molecules in Secs. III D and III E. In the OEP calcu-
lations, the potential basis set is expanded in s, p, and d-type
even tempered functions. In the benchmark test of regular sin-
gle excitations, we adopt the basis set in Wu’s work,32 where
for non-hydrogen atoms, the basis has 19s/12p/3d functions.
And for small molecules, the basis has 38s/12p/7d functions
considering the computational cost.

III. RESULTS
A. Convergence test

In general, the basis set convergence needs to be verified
with both atomic orbital basis and OEP potential basis. The
basis set convergence test with correlation consistent basis
set (cc-pVXD, with X = D, T, Q) and augmented correla-
tion consistent basis set (aug-cc-pVXD, with X = D, T, Q)
has been investigated previously8 and here the aug-cc-pVDZ
basis is chosen for the convergence test of different potential
basis sets. We used butadiene for the potential basis conver-
gence test. The result is shown in Fig. 1. The convergence
with all three input densities (HF, B3LYP, and CCSD) is fast.

TABLE II. Low-lying excitations of four different molecules, compared with
Ref. 34 (in eV).a

Term Ref. HF O-HF B3LYP O-B3LYP PBE O-CCSD

BH
3Π 1.27 1.66 0.96 1.39 1.21 1.26 1.32
1Π 2.85 3.18 2.74 3.16 3.02 3.07 3.11
3Σ(D) 5.04 5.51 4.25 5.12 4.78 4.89 5.04
1∆(D) 6.06 6.10 5.13 5.97 5.68 5.80 5.97
CH+

3Π 1.15 1.72 0.75 1.15 0.94 1.01 1.23
1Π 3.07 3.59 2.79 3.17 2.99 3.07 3.27
1∆(D) 7.01 7.37 5.79 6.58 6.21 6.38 6.87
1Σ(D) 8.45 8.62 7.17 7.94 7.60 7.77 8.25
CO
3Π 6.32 5.62 5.29 5.95 5.58 5.98 6.28
1Π 8.51 7.83 7.53 8.13 7.76 8.13 8.41
CH2O
3A2 3.50 2.04 2.07 3.41 3.32 3.61 3.44
1A2 3.94 2.38 2.52 3.93 3.86 4.16 3.99

MSE −0.13 −0.85 −0.11 −0.35 −0.14 0.00
MAE 0.60 0.85 0.21 0.38 0.29 0.10

aHF stands for pp-RPA with HF references, and O-HF stands for the pp-RPA-OEP with a
given HF density (pp-RPA-OEP-HF). Double excitations are marked as (D). MSE refers
to mean signed error and MAE refers to mean absolute error.

TABLE III. Rydberg Excitations of BH, CH+, and CO (in eV).

Term Ref. HF O-HF B3LYP O-B3LYP PBE O-CCSD

BH
3Σ 7.04 6.60 7.60 7.65 7.79 7.87 8.27
CH+

3Σ 11.41 10.94 11.83 11.69 11.80 11.91 12.86
1Σ 13.42 12.64 15.12 14.74 15.10 15.24 16.24
CO
3Σ+ 10.40 8.79 10.00 12.19 12.57 12.91 12.67
1Σ+ 10.78 8.79 10.17 12.77 13.22 13.52 13.07

MAE 1.06 0.74 1.20 1.49 1.68 2.01

According to Table I, 1 and 2 only contain s-type Gaussian
functions in the potential basis set, and 3, 4, and 5 contain
s, p, and d�type Gaussian functions. We observed that exci-
tation energies slightly changed with the existence of p and
d�type functions. This is because p and d�type functions
can capture the non-spherical effects. The potential basis set
with 19s/12p/3d functions (x-label 4 in Fig. 1) is considered
to be converged. Therefore, we took this potential basis set
and aug-cc-pVDZ as the atomic basis set for regular single
excitations. And for small molecules, 38s/12p/7d is used since
the computational cost of small molecules is low.

B. Small molecules

We tested four small molecules, shown in Table II. Both
single and double excitations are captured by the pp-RPA. The
pp-RPA with OEP orbitals and orbital energies with an input
coupled-cluster singles and doubles (CCSD) density (pp-RPA-
OEP-CCSD) provides the best excitation energies, where the
mean signed error is 0.00 eV and the mean absolute error is
0.10 eV. However, other density sources do not perform as
well. For the pp-RPA-OEP-HF method, the mean absolute
error is 0.85 eV, while that of the pp-RPA-HF is 0.60 eV,
similarly for the pp-RPA-OEP-B3LYP and the pp-RPA-
B3LYP (0.38 eV and 0.21 eV, respectively). This is reasonable
because the CCSD density is an accurate density source so that
the OEP with a CCSD density can provide accurate orbitals
and orbital energies, while the quality of the electron densi-
ties calculated by the HF and B3LYP is not good enough for
these small molecules. It is encouraging that the best KS refer-
ence here from O-CCSD (OEP with CCSD density) provides
excellent accuracy, the best overall in this test set. However,

TABLE IV. Adiabatic singlet-triplet gaps for diatomic diradicals (in
kcal/mol).a

Mol Expt. HF O-HF B3LYP O-B3LYP PBE O-PBE O-CCSD

NH 35.9 30.9 39.6 38.5 37.5 40.5 38.6
OH+ 50.5 45.4 48.7 52.3 49.7 54.2 50.0
NF 34.3 28.6 29.4 28.7 28.3 28.3 28.0 29.0
O2 22.6 23.1 22.8 23.6 22.9 23.5 23.3 22.9

MAE 4.1 2.7 2.8 2.2 3.8 2.6

aGeometries and experimental values are from Refs. 36 and 37. The basis set for all
calculations is aug-cc-pVDZ.



134105-5 Jin et al. J. Chem. Phys. 147, 134105 (2017)

TABLE V. Adiabatic singlet-triplet gaps for methylene (in kcal/mol).a

Ref. HF O-HF B3LYP O-B3LYP PBE O-PBE O-CCSD

1A1 9.7 −2.4 10.5 3.7 7.9 5.9 5.5 0.0
1B1 32.5 26.3 26.7 32.0 32.0 33.5 33.2 38.0
21A1 58.3 45.6 53.0 52.9 52.9 54.8 55.0 64.7

aGeometries are from Ref. 41. Reference values are calculated with EOM-SF-
CCSD(dT)/aug-cc-pVQZ.42

the KS OEP results from other densities (O-HF and O-B3LYP)
do not perform better than the corresponding generalized KS
(GKS) results (HF or B3LYP).

In terms of the accuracy, The equation-of-motion cou-
pled cluster method restricted to single and double excitations
(EOM-CCSD)33 performs slightly better than the OEP-pp-
RPA. However, the main goal of this work is to investigate
the limit of the pp-RPA, rather than promoting the computa-
tional method of the pp-RPA with the electron density from
CCSD calculations.

C. Rydberg excitations

Rydberg excitations of the above molecules are also
computed, shown in Table III. The pp-RPA-OEP-CCSD
overestimates the excitation energies, which behaves slightly

TABLE VI. Vertical excitation energies of the benchmark test in regular single excitations (in eV). TD calculations
refer to standard TDDFT calculations.

Mol Exci. Ref. HF O-HF B3LYP O-B3LYP PBE TD-B3LYP TD-PBE O-CCSD

Ethene 3B1u 4.5 3.92 3.43 3.62 3.48 3.48 4.05 4.24
Ethene 1B1u 7.8 6.26 7.71 8.45 8.18 8.85 7.38 7.39
Butadiene 3Bu 3.2 3.22 2.39 2.53 2.26 2.28 2.79 2.95 2.34
Butadiene 3Ag 5.08 5.60 5.48 6.10 5.76 5.85 4.85 4.99 5.69
Butadiene 1Bu 6.18 5.49 6.23 6.57 6.03 6.51 5.56 5.44 6.37
Butadiene 1Ag 6.55 5.92 5.92 6.44 6.45 6.11 6.49 6.11 6.02
Hexatriene 3Bu 2.4 2.59 1.53 1.88 1.59 1.61 2.12 2.28 1.61
Hexatriene 3Ag 4.15 5.20 4.22 4.86 4.41 4.47 3.94 4.04 4.41
Hexatriene 1Ag 5.09 5.42 4.32 4.99 4.45 4.49 5.50 5.02 4.86
Hexatriene 1Bu 5.1 5.03 4.53 5.29 5.00 5.13 4.60 4.44 4.46
Octetraene 3Bu 2.2 2.15 1.25 1.49 1.22 1.21 1.71 1.87
Octetraene 3Ag 3.55 4.75 3.37 4.00 3.52 3.57 3.26 3.36
Octetraene 1Ag 4.47 5.02 3.47 4.08 3.50 3.53 4.80 4.17
Octetraene 1Bu 4.66 4.58 3.82 4.50 4.20 4.29 3.96 3.78
Cyclopropene 3B2 4.34 4.22 3.87 4.08 3.91 3.91 3.70 3.79 3.96
Cyclopropene 1B2 7.06 5.87 6.68 7.29 7.20 7.31 6.09 5.91 7.26
Cyclopentadiene 3B2 3.25 3.12 2.53 2.66 2.53 2.53 2.74 2.91 2.63
Cyclopentadiene 3A1 5.09 5.45 5.05 5.33 4.99 5.07 4.75 4.87 5.03
Cyclopentadiene 1B2 5.55 5.16 5.00 5.46 5.33 5.45 4.95 4.88 5.24
Cyclopentadiene 1A1 6.31 6.01 6.14 6.42 6.12 6.16 6.40 5.78 6.23
Norbornadiene 3A2 3.72 3.77 3.46 3.51 3.42 3.58 3.10 3.16 3.54
Norbornadiene 3B2 4.16 4.49 4.49 4.34 4.45 4.51 3.63 3.78 4.45
Norbornadiene 1A2 5.34 3.95 5.07 5.21 5.13 5.34 4.70 4.40 5.18
Norbornadiene 1B2 6.11 4.58 6.67 6.84 6.83 6.99 5.28 4.94 6.72
Furan 3B2 4.17 3.82 3.37 3.49 3.28 3.37 3.70 3.89 3.50
Furan 3A1 5.48 5.79 5.01 5.37 5.02 5.12 5.18 5.25 4.98
Furan 1B2 6.32 5.08 6.06 6.57 6.37 6.58 5.93 5.88 6.42
Furan 1A1 6.57 6.61 6.62 6.88 6.52 6.65 6.58 6.28 6.68
s-tetrazine 3B3u 1.89 3.28 2.05 2.19 1.93 1.86 1.47 1.15 1.85
s-tetrazine 3Au 3.52 5.38 3.52 3.67 3.27 3.16 3.15 2.54 3.13
s-tetrazine 1B3u 2.24 3.78 2.55 2.73 2.46 2.41 2.27 1.85 2.38
s-tetrazine 1Au 3.48 5.59 3.76 3.67 3.50 3.40 3.54 2.87 3.36
Formaldehyde 3A2 3.5 1.65 1.84 3.15 3.08 3.40 3.10 2.97 3.03
Formaldehyde 1A2 3.88 2.00 2.26 3.68 3.62 3.97 3.83 3.71 3.61
Acetone 3A2 4.05 3.10 3.01 4.13 3.94 4.24 3.68 3.52 4.38
Acetone 1A2 4.4 3.38 3.41 4.56 4.44 4.66 4.31 4.14 4.82
Benzoquinone 3B1g 2.51 4.74 2.78 2.93 2.44 1.93 1.42
Benzoquinone 1B1g 2.78 4.98 2.99 3.14 2.65 2.43 1.87
Total MSE 0.00 −0.37 0.06 −0.22 −0.12 −0.35 −0.50 −0.13
Total MAE 0.92 0.52 0.40 0.38 0.40 0.40 0.50 0.35
Singlets MSE −0.27 −0.36 0.20 −0.10 0.03 −0.28 −0.58 −0.04
Singlets MAE 1.08 0.48 0.36 0.27 0.33 0.38 0.58 0.27
Triplets MSE 0.29 −0.45 −0.02 −0.34 −0.27 −0.42 −0.41 −0.23
Triplets MAE 0.71 0.55 0.46 0.48 0.44 0.42 0.41 0.43
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worse than the pp-RPA with PBE or B3LYP. In general,
the pp-RPA does not predict Rydberg excitations as accu-
rately as it does for the low-lying excitations with both
approximated density functionals or functionals of density
matrices.

D. Diradicals

When two electrons are removed from a diradical system,
the remaining (N � 2)-electron system is generally a closed-
shell singlet system, which can be well described by some well-
known density functionals like B3LYP or PBE. This is ideal
for the pp-RPA calculation because it starts with an (N � 2)-
electron system. Therefore, the pp-RPA is expected to describe
properties of diradicals well, for example, singlet-triplet (ST)
gaps. Two types of ST gaps are usually considered: vertical ST
gaps, Egv , are directly calculated from the pp-RPA equation,
while adiabatic gaps, Ega , need a correction term given by the
geometry difference of the N-electron system. In general, two
types of corrections are carried out in calculations9

Ega = ES,Sgeo − ET ,Tgeo = Egv,Sgeo + (ET ,Sgeo − ET ,Tgeo ), (35)

Ega = ES,Sgeo − ET ,Tgeo = Egv,Tgeo + (ES,Sgeo − ES,Tgeo ). (36)

In our cases, Eq. (35) is adopted as the correction equation.
We tested the singlet-triplet gaps for diradicals with five

molecules, four of which are diatomic diradicals and the other
one is a carbene-like diradical. The ST gaps for diatomics are in
Table IV. In this case, the pp-RPA-OEP results are consistently
better than the pp-RPA results calculated with approximate
density functionals. Especially for the pp-RPA-OEP-HF, the
mean absolute error decreases from 4.1 to 2.7 kcal/mol. This
result shows that the pp-RPA calculated with the DFT ref-
erences is better than the HF references. Here we observe the
OEP HOMO-LUMO degeneracy problem with the CCSD den-
sities of NH and OH+. This phenomenon was addressed by
Rohr35 and it also affects the ST gaps with the PBE densities.
The pp-RPA-OEP-PBE differs from pp-RPA-PBE mainly in
the long-range behavior of the local potential; however, for
NH and OH+, their results differ by 1.9 and 4.2 kcal/mol,
respectively.

The ST gaps of methylene are shown in Table V. Methy-
lene has two non-degenerate frontier orbitals—one σ orbital
and one π orbital with different symmetries. The ground state is
3B1, where one electron occupies the σ orbital and one occu-
pies the π orbital. Three excited states, 1A1, 1B1, and 21A1,

represent three singlet states, σ2, σ1π1, and π2, respectively.
Note that 1B1 is an open-shell singlet. The result shows that
for 1A1, the pp-RPA-OEP-HF gives the best estimation, while
for other two states, the pp-RPA-OEP results with other three
densities are better than those with the HF density. In fact,
for methylene, the first adiabatic gap had historically been a
puzzle. The reason is that the singlet energy with 1A1 geom-
etry is fairly close to or lower than the triplet energy.38–40 In
our calculation, the pp-RPA-OEP-CCSD underestimates this
gap (0.0 kcal/mol) and pp-RPA-HF and pp-RPA-B3LYP also
underestimate this gap.

E. Regular single excitations

The regular single excitation results of 12 molecules are
shown in Table VI, which contains 19 triplet and singlet
excitations. The total mean absolute error (MAE) shows that
the pp-RPA-OEP methods perform consistently better than
the pp-RPA calculated with approximate density functionals.
The pp-RPA-OEP-CCSD method still gives the best excita-
tion energies. For HF, the MAE of the pp-RPA-OEP-HF is
0.52 eV, which significantly improves the pp-RPA-HF result
(0.92 eV). And the MAE of the pp-RPA-OEP-B3LYP is
slightly better the pp-RPA-B3LYP (0.38 eV versus 0.40 eV).
This reflects that excitation energies from the pp-RPA are bet-
ter described with KS density functional references rather than
GKS references from density matrix functional in our regular
single excitations. In addition, from the total mean signed error
(MSE), we notice that the pp-RPA-OEP underestimates exci-
tation energies, which behaves similar with the pp-RPA-PBE,
shown in Fig. 2. However, compared with the TDDFT results
from B3LYP and PBE functionals, pp-RPA has better MSEs.
Standard TDDFT calculations with B3LYP and PBE strongly
underestimate both singlet and triplet excitations, as shown in
Table VI.

Moreover, the singlet and triplet excitations behave differ-
ently with the pp-RPA-OEP methods. Our method improves
the accuracy of predictions of singlet excitations. For HF,
the improvement is 0.6 eV in terms of the MAE. However,
the error in triplet excitations is nearly unchanged. And for
B3LYP, triplet excitations with the pp-RPA-OEP-B3LYP have
an MAE of 0.48 eV, which is slightly larger than the pp-RPA-
B3LYP (0.46 eV). Therefore, singlet excitations are better
described than triplet excitations by the pp-RPA for regu-
lar single excitations. MSEs are visually shown in Fig. 2,
where the pp-RPA-OEP underestimates both singlet and triplet

FIG. 2. Error distribution of the pp-
RPA and the pp-RPA-OEP results with
HF and B3LYP densities. It can be
noticed that the pp-RPA-OEP results
mostly underestimate the excitation
energies. And singlet excitations are
well captured by the pp-RPA-OEP in
contrast with triplet excitations.
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excitations. This shows that the pp-RPA with DFT references
will underestimate excitation energies, which is similar to
previous results.20

IV. CONCLUSION

We combined the OEP and the pp-RPA method together
to calculate excitation energies. We have applied our method to
double excitations, Rydberg excitations, diradicals, and regu-
lar single excitations. Among our SCF and post-SCF methods,
the CCSD method provides the most accurate electron den-
sities. And consequently, the pp-RPA-OEP-CCSD approach
overall gives the best estimation of excitations. Other input
densities are not as good in all systems. For example, the MAE
of the pp-RPA-OEP-B3LYP (0.38 eV) is larger than that of
the pp-RPA directly calculated with B3LYP (0.21 eV) in small
molecules calculations; however, for regular single excitations,
the pp-RPA-OEP performs slightly better. Moreover, the MSE
shows that the pp-RPA-OEP method generally underestimates
excitation energies. The pp-RPA-OEP-CCSD approaches the
theoretical limit of the pp-RPA in excitation energy calcula-
tions based on KS references. However, the MAE in the regular
single excitations of the pp-RPA-OEP-CCSD is still 0.35 eV.
This MAE illustrates the intrinsic limitation of the pp-RPA
method based on KS references. In order to achieve excitation
energies with a higher accuracy, one needs to go beyond the
pp-RPA approximation with the consideration of more general
kernel within the TDDFT-P formulation.
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