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ABSTRACT: Electron binding energies are evaluated as differences in total energy
between the N- and (N ± 1)-electron systems calculated by the nth-order Møller−Plesset
perturbation (MPn) theory using the same set of orbitals. The MPn energies up to n = 30
are, in turn, obtained by the determinant-based method of Knowles et al. (Chem. Phys.
Lett. 1985, 113, 8−12). The zeroth- through third-order electron binding energies thus
determined agree with those obtained by solving the Dyson equation in the diagonal and
frequency-independent approximations of the self-energy. However, as n → ∞, they con-
verge at the exact basis-set solutions from the Dyson equation with the exact self-energy,
which is nondiagonal and frequency-dependent. This suggests that the MPn energy dif-
ferences define an alternative diagrammatic expansion of Koopmans-like electron binding
energies, which takes into account the perturbation corrections from the off-diagonal elements and frequency dependence of the
irreducible self-energy. Our analysis shows that these corrections are included as semireducible and linked-disconnected
diagrams, respectively, which are also found in a perturbation expansion of the electron binding energies of the equation-of-
motion coupled-cluster methods. The rate of convergence of the electron binding energies with respect to n and its acceleration
by Pade ́ approximants are also discussed.

1. INTRODUCTION
The ability to perform calculations of a systematic electron-
correlation method at any rank and to obtain reliable reference
data is critical for the subsequent development of the method
into an efficient algorithm for practical applications. Knowles
et al.1 reported a general-orderMøller−Plesset perturbation (MP)
method, which solved its recursive equation for perturbation
corrections to wave functions expanded as linear combinations of
Slater determinants using a full configuration-interaction (FCI)
algorithm.2 Three groups3−5 independently developed a general-
order coupled-cluster (CC) method, also adopting the
determinant-based FCI algorithm. This was immediately
extended6,7 to excited, electron-detached, and electron-attached
states in the equation-of-motion (EOM) CC formalism.8,9

Truncated configuration-interaction (CI) methods2 for any type
of states are inherently general-order methods, if the determinant-
based algorithm is used.
One-electron many-body Green’s function (GF) or elec-

tron propagator theory10−19 also forms a systematic series of
approximations. It computes electron-detachment and -attach-
ment energies (collectively, electron binding energies) directly
from the Dyson equation and not as energy differences. It is
rigorously (i.e., diagrammatically) size-consistent and is thus
applicable to solids. Given the attention paid to energy bands
(which are electron binding energies as a function of the wave
vector) in characterizing the properties and functions of
advanced materials, GF theory is of crucial importance today.
Quasiparticle (i.e., electron-correlated) energy bands of one-
dimensional solids obtained with the second-order GF (GF2)
method were reported20−23 to be considerably more accurate
than those obtained from theHartree−Fock (HF)method. They

can furthermore be made systematically more accurate by raising
the perturbation order, unlike the energy bands obtained from
density-functional approximations, which also tend to be
unreliable.24

However, GF theory has thus far resisted a general-order
implementation for several reasons. First, GF theory is almost
always defined diagrammatically, i.e., in the language that is
fundamentally incongruous to the determinant-based (i.e.,
CI-like) implementation. The same applies to the superoperator
algebra10,13,25 and to the Dyson−Gell-Mann−Low time-depend-
ent perturbation theory derivation.26,27 Second, GF theory is
based on the Dyson equation (not the Schrödinger equation),
and its formulation does not explicitly refer to wave functions,
which a determinant-based algorithm stores and manipulates.
Whereas two of the authors as well as others implemented partial
and full third-order28−39 and partial and full fourth-order self-
energies30,40−42 both within the GF and EOM frameworks,
higher-order GF methods are yet to be developed and detailed
knowledge about convergence is lacking. To obtain these, a general-
order implementation, which can generate reliable reference data up
to high orders, is paramount in view of the fact that there are
many more diagrams in the nth-order GF (GFn) method than in
the nth-order MP (MPn) method (e.g., 18 Hugenholtz diagrams
in GF3 versus three in MP3).
In this article, we report a general-order GF method with a

determinant-based algorithm and document electron binding
energies including up to nth-order self-energies (0 ≤ n ≤ 30)
for several small molecules. Here, the nth-order self-energy is

Received: January 4, 2015
Published: February 20, 2015

Article

pubs.acs.org/JCTC

© 2015 American Chemical Society 1595 DOI: 10.1021/acs.jctc.5b00005
J. Chem. Theory Comput. 2015, 11, 1595−1606



pubs.acs.org/JCTC
http://dx.doi.org/10.1021/acs.jctc.5b00005


defined as the difference in the MPn energy between the N- and
(N ± 1)-electron systems, all of which are described with the HF
orbitals and orbitals energies of the N-electron system. These
MPn energies are, in turn, calculated at any n by the general-order
MP method of Knowles et al.1 We call this procedure ΔMPn,
which must not be confused with the simple difference in MPn
energies obtained with the HF orbitals individually determined
for N- and (N ± 1)-electron systems; nowhere in a ΔMPn cal-
culation for a closed-shell molecule is a HF calculation of an
open-shell molecule performed, which tends to suffer from spin
contamination.43 While ΔMPn implemented algebraically was
used by Chong et al.44−46 in their analysis of GFn at low orders,
little is known about its behavior at n > 3.
For 0 ≤ n ≤ 3, the electron binding energies obtained from

ΔMPn are identified as the values determined with the self-
energies in the diagonal approximation and evaluated at the HF
orbital energies, namely, in the frequency-independent approx-
imation. However, as n→∞, they converge at the exact basis-set
values obtained with FCI or with the full GF method using the
exact self-energy, which is nondiagonal and frequency-dependent.
This suggests that ΔMPn includes the perturbation corrections
due to the off-diagonal elements and frequency dependence of
the irreducible self-energy exactly at n = ∞. These corrections
are shown to be represented as semireducible and linked-
disconnected diagrams, respectively, according to our analysis of
low-order examples. While it is well-known that a perturbation
expansion of the nondiagonal, frequency-dependent self-energy
is convergent at exactness, we show that a perturbation expansion
of the diagonal, frequency-independent self-energy is also con-
vergent at the same limit insofar as these new classes of diagrams
are taken into account. We furthermore show that a perturbation
expansion of the electron binding energies obtained from the
EOM-CC methods also contains the same classes of diagrams.
Hence, ΔMPn suggests an alternative perturbation approach

to GF theory with a potentially streamlined algorithm, which
does not involve diagonalization or self-consistent solution of the
Dyson equation, while converging at the exact limits. Its draw-
backs are the reduced applicability to just Koopmans-like final
states and the inability to resist divergence, as this ability is
conferred by a frequency-dependent self-energy. In this work,
therefore, we also numerically monitor the electron binding
energies of ΔMPn for a few molecules as a function of n to
examine their convergence rates and whether the correct
converged limits can be deduced from divergent series. We show
that Pade ́ approximants can extrapolate the correct converged limit
within a fewmEh from divergent series, although it proves to be less
effective in accelerating the convergence rates elsewhere.

2. THEORY
Throughout this article, atomic units are adopted. We use i, j, k, l,
m, and n (a, b, c, and d) to label occupied (virtual) orbitals in the
spin-restricted HF determinant of an N-electron system in its
ground state (N is an even number) and p, q, r, and s to signify
either type of orbitals. We furthermore employ x and y to
designate an appropriate type of orbitals from which an electron
is removed or added. Unless otherwise noted, all orbitals refer to
canonical HF spin-orbitals.
2.1. One-ElectronMany-BodyGreen’s Function theory.

The central equation of GF theory is the Dyson equation10−19

ω ω ω ω ωΣ= +G G G G( ) ( ) ( ) ( ) ( )0 0 (1)

which relates the exact one-electron Green’s function, G(ω),
with the zeroth-order (in our case, HF) one-electron Green’s

function, G0(ω), through Dyson self-energy, Σ(ω). In a finite
basis set, they all are L-by-L matrices, where L is the number of
orbitals, and are dependent on frequency, ω.
In the basis of the HF orbitals, the matrix elements of the exact

and HF Green’s functions are given, respectively, by

∑
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where †̂x creates an electron in the xth orbital, ̂x annihilates the
same, NΨn is the exact wave function of the nth state (n = 0 being
the ground state) of the N-electron system, NEn is the exact
energy of the same state, and ϵx is the energy of the xth orbital.
Hence, G(ω) has poles at exact negative electron-detachment

energies (NE0 − N−1En) and exact negative electron-attachment
energies (N+1En − NE0), whereas G0(ω) has poles at the energies
of the HF orbitals, which are related to the electron-detachment
and -attachment energies of HF theory in the Koopmans
approximation. A bound anionic state is thus often foreshadowed
by a negative, virtual, HF orbital energy.
Multiplying eq 1 with G0

−1(ω) from the left and G−1(ω) from
the right, we obtain the inverse Dyson equation

ω ω ωΣ= +− −G G( ) ( ) ( )0
1 1

(4)

Since G(ω) diverges at an exact electron binding energy, say ω

ω ω ωΣ= = −− −G G0 det{ ( )} det{ ( ) ( )}1
0

1
(5)

One way to solve eq 5 is to use a new set of orbitals that brings
G−1(ω) into a diagonal form. Since

ϵω ω= −−G 1( )0
1

(6)

with {ϵ}xy = δxyϵx in the basis of the HF orbitals, the new orbitals
diagonalize ϵ +Σ(ω) also. Let Σ̃x(ω) be the xth diagonal element
of ϵ + Σ(ω) in this new basis. Equation 5 then simplifies to

∏ ω ω= − Σ̃0 { ( )}
x

x
(7)

or

ω ω= Σ̃ ( )x (8)

which is to be solved for ω by bringing it to self-consistency
between the left- and right-hand sides (whereupon the xth orbital
becomes a Dyson orbital).
To distinguish from approximate solutions to be discussed

below, we call the solution of the above equation the non-
diagonal, self-consistent solution. The recursive structure of the
inverse Dyson equation allows a single eq 8 to have multiple
roots, corresponding not only to the fundamental (Koopmans)
but also to satellite (shakeup) transitions.
In the diagonal approximation, the off-diagonal elements of

G−1(ω) [thusΣ(ω)] in the basis of the HF orbitals are neglected.
Then, eq 5 reduces to

∏ ω ω= − ϵ − Σ0 { ( )}
x

x x
(9)
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where Σx(ω) is the xth diagonal element ofΣ(ω). This leads to a
recursive equation

ω ω= ϵ + Σ ( )x x (10)

which is, again, to be solved forω, making the left- and right-hand
sides self-consistent. We call this the diagonal approximation.47

A simpler alternative to seeking self-consistent solutions is to
evaluate the self-energy at ω = ϵx, that is

ω = ϵ + Σ ϵ( )x x x (11)

We call this method the diagonal, frequency-independent
(ω-independent) approximation.47 This may be justified when
ϵx is sufficiently far from any of the poles of Σx(ω), where the
latter is nearly constant with ω. It gives the energies of the
fundamental transitions only.
2.2. Feynman−Goldstone Diagrams. The self-energy in

the basis of the HF orbitals is expanded into a diagrammatic
perturbation series.26,27 In the diagonal approximation, we can
write

∑ω ω= Σ
=

( )n

m

n

x
m( )

0

( )

(12)

where ω(n) is the electron binding energy in the nth-order
perturbation theory and Σx

(m)(ω) is the mth-order perturbation
correction to the self-energy. The Møller−Plesset partitioning
of the Hamiltonian, ̂ = ̂ + ̂H H V0 , is used, where Ĥ0 is the sum
of the Fock operators and ̂V is the fluctuation potential. This
partitioning is consistent with G0(ω) being defined by HF
theory. Hence, Σx

(0)(ω) = ϵx.
Themth-order correction to the self-energy,Σx

(m), is the sum of
contributions from all Feynman−Goldstone diagrams with
m interaction ( ̂V ) vertexes that are linked, irreducible, and
open with exactly two external edges or “stubs”.26,27 These
diagrams are then interpreted expediently according to
the established rules26,27 into algebraic expressions of Σx

(m).
These rules are rigorously derivable by the Dyson−Gell-Mann−
Low time-dependent perturbation theory26,27 and are mathe-
matically equivalent to the superoperator algebra.10,13,18,25 The
diagrammatic method, however, can provide unique, graphical
information about size consistency of GF theory,48−50 the recur-
sive structure of the Dyson equation,26,50 the concept of edge
insertion,50−52 etc.
Figure 1 draws the MP2 energy diagram as diagram A. The

closed, linked nature of this diagram ensures the extensivity of the

MP2 energy.48,49,53 Specifically, each four-edge vertex (repre-
senting a two-electron integral) contributes a factor of V−1 to the
volume (V) dependence of the diagram, and each independent
internal edge (a line connecting two vertexes), a factor of V. Of
the four internal edges in diagram A, only three are independent
with the fourth determined by the momentum conservation law.

Together, diagram A scales as V−2V3 = V and is thermodynami-
cally extensive.
Self-energy diagrams can be generated by “cutting an edge” of

closed diagrams with the same order (plus additional ones, in
some instances31) in all topologically distinct ways. Cutting the
ith edge of diagram A, we obtain self-energy diagram B. Cutting
the bth edge spawns self-energy diagram C. The edge that has
been cut becomes two external edges, which do not contribute to
the V dependence of the diagram. Diagrams B and C, therefore,
scale as V−2V2 = V0 and represent thermodynamically intensive
quantities.
These diagrams are directly translated to algebraic expressions

according to the established rules found in, e.g., Mattuck.26 For
future use, we translate diagrams B and C into algebraic forms

∑ω ωΣ = ⟨ || ⟩⟨ || ⟩
+ ϵ − ϵ − ϵ
xj ab ab xj

( ) 1
2x

j a b j a b

(2B)

, , (13)

∑ω ωΣ = ⟨ || ⟩⟨ || ⟩
+ ϵ − ϵ − ϵ
ij ax ax ij

( ) 1
2x

i j a a i j

(2C)

, , (14)

Figure 2 shows an example of an unlinked diagram. An
unlinked diagram is a special case of a disconnected diagram and

contains at least one closed subdiagram. Such diagrams must be
excluded because they have nonphysical size dependence. The
algebraic interpretation of an unlinked diagram is the product of
the interpretations of the subdiagrams. The left subdiagram of
diagram D is closed and scales as V1, whereas the right one scales
as V0. As a whole, diagram D displays V1 dependence, which is
incorrect as a self-energy diagram.
Figure 3 is an example of a reducible diagram, characterized by

one or more articulation edges. An articulation edge is the one

whose removal leaves the diagram disconnected. Reducible
diagrams are also barred from the self-energy in the diagonal
approximation because they are already included owing to the

Figure 1. MP2 energy diagram and second-order diagonal self-energy
diagrams in the Hugenholtz style.

Figure 2. An unlinked fourth-order diagonal self-energy diagram in the
Hugenholtz style.

Figure 3. A reducible fourth-order diagonal self-energy diagram in the
Hugenholtz style.
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recursive structure of the Dyson equation and their explicit
inclusion results in double counting of one and the same diagram.

ω ω ω ω ω
ω ω ω

ω ω

= + Σ
+ Σ
× Σ +

G G G G

G G

G

{ ( )} { ( )} { ( )} ( ){ ( )}

{ ( )} ( ){ ( )}

( ){ ( )} ...

xx xx xx x xx

xx x xx

x xx

0 0 0

0 0

0 (15)

For instance, diagram E is a part of the third term of the right-
hand side, once diagram C is in the self-energy. Note that the
external and articulation edges share the same label. If they do
not, then this diagram accounts for a nonredundant contribution
from the off-diagonal elements of the irreducible second-order
self-energy and is no longer considered to be reducible. We call
such diagrams semireducible.
2.3. ΔMP Method. Here, we introduce what we call the

ΔMPn method, in which the nth-order “self-energy” (whose de-
finition, as shown below, differs from the usual one) is obtained
as the MPn energy difference between the N- and (N ± 1)-
electron systems.44−47 The energies of the latter are calculated
with the HF orbitals and orbital energies determined for the
N-electron system. This ΔMPn approach provides well-defined
formulas for electron binding energies at any order of per-
turbation theory, which are valid for Koopmans-like final states; it
is alternative to methods using frequency-dependent self-
energies, which require a pole search. In this work, the MPn
energies with any value of n are obtained by the general-orderMP
method of Knowles et al.,1 thus realizing an implementation of a
general-order GF method having a FCI computational cost.
Let MΨx

(n) and MEx
(n) be the nth-order perturbation corrections

to the wave function and energy of theM-electron state (M = N
or N ± 1); N±1Ψx

(n) corresponds to the Koopmans-like final state
in which an electron is added to or removed from the xth orbital
and NΨx

(n) to the ground state, where x = 0. They are determined
by solving the recursive equations of the Rayleigh−Schrödinger
perturbation theory (RSPT)

∑Ψ = ̂ ̂ Ψ − ̂ Ψ−

=

−RV R EM
x
n M M

x
n M

m

n
M

x
m M

x
n m( ) ( 1)
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̂ = − ̂ −R E H( )M M
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0
1

(17)
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= ⟨ Ψ | ̂ | Ψ ⟩−E VM
x

n M
x

M
x
n( ) (0) ( 1)

(18)

for n ≥ 1. We use the single determinant MΦx as the initial
(zeroth-order) wave function to commence the recursion,
i.e., MΨx

(0) = MΦx, where
NΦ0 is the HF ground-state determinant

and N±1Φx is the determinant in which an electron is added to or
removed from the xth orbital of NΦ0. All of the orbitals entering
these determinants, Ĥ , Ĥ0, and ̂V are the HF orbitals of the
N-electron system.
We express each of {MΨx

(n)} as a CI vector in the determinant
basis, as described by Knowles and Handy.2 It should be
understood that the determinant contribution in MΨx

(n) that
causes a divergence in the resolvent, M ̂R , is excluded.54 The
difference in the nth-order energy between N- and (N ± 1)-
electron cases gives an nth-order self-energy, that is

Σ = − −E Ex
n N n N

x
n( )

0
( ) 1 ( )

(19)

Σ = −+ E Ex
n N

x
n N n( ) 1 ( )

0
( )

(20)

In eqs 19 and 20, we intentionally omitted the frequency
argument of the self-energies. This is because whether they
correspond to the frequency-independent one, Σx

(n)(ϵx), or the
self-consistent one, Σx

(n)(ω), varies with n. Also, depending
on n, the ΔMPn result may or may not be equal to the value
obtained from the diagonal approximation of the irreducible self-
energy. This fascinating observation is addressed and analyzed in
the following.
At this stage, we note that the self-energies from ΔMP0 are

well-known47 to be the HF orbital energies

Σ = ϵx x
(0)

(21)

which are diagonal and independent of frequency. The ΔMP1
corrections to the self-energies are shown to be zero47

Σ = 0x
(1)

(22)

which are also diagonal and frequency-independent. It is also
known25,47 analytically that the corrections due to ΔMP2 are
the second-order self-energies in the diagonal and frequency-
independent approximations:

Σ = Σ ϵ + Σ ϵ( ) ( )x x x x x
(2) (2B) (2C)

(23)

See eqs 13 and 14 for the definitions of the terms in the right-
hand side.

2.4. Full GF Method. Using the determinant-based
algorithm,2 we additionally perform hole-particle FCI to obtain
the exact electron binding energies within a basis set.7 They cor-
respond to the self-consistent solutions of the Dyson equation
using the exact self-energy without the diagonal or frequency-
independent approximation. They are used for comparison with
the electron binding energies from ΔMPn. We also calculate the
electron binding energies in the diagonal and/or frequency-
independent treatment but without any further approximation
(such as a finite-order perturbation approximation to the self-
energy) by the procedure called “full GF” described below.
First, we use hole-particle FCI to obtain the exact ground-state

energy and wave function of the N-electron system and all of the
exact ground- and excited-state energies and wave functions of
the (N ± 1)-electron systems. Substituting them in eq 2, we
obtain the L-by-L matrix of G(ω) at any given ω. The
computational machinery of acting †̂x and ̂y on wave functions
is furnished by the determinant-based algorithm.2,7

Next, we find a unitary matrix U(ω) that diagonalizes G(ω)

ω ω ω ω=†U G U g( ) ( ) ( ) ( ) (24)

where g(ω) is a diagonal matrix

ω δ ω=g g{ ( )} ( )xy xy x (25)

In this new basis, the inverse Dyson equation (eq 5) is simplified to

∏ω ω= =−G
g

0 det{ ( )} 1
( )x x

1

(26)

or

ω=
g

0 1
( )x (27)

for each x. The roots of this equation are the exact electron
binding energies without the diagonal or frequency-independent
approximation. It is confirmed that they agree with the results of
hole-particle FCI.
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In the basis of the HF orbitals, G−1(ω) is obtained by the back
transformation

ω ω ω ω=− − †G U g U( ) ( ) ( ) ( )1 1
(28)

where g−1(ω) is the diagonal matrix whose xth diagonal ele-
ment is {gx(ω)}

−1. The diagonal approximation neglects all off-
diagonal elements of G−1(ω) in the basis of the HF orbitals. The
inverse Dyson equation then becomes

∏ ω ω ω= − †U g U0 { ( ) ( ) ( )}
x

xx
1

(29)

or

ω ω ω= − †U g U0 { ( ) ( ) ( )}xx
1

(30)

for each x. The roots of this equation correspond to the solutions
of the Dyson equation using the exact self-energy in the diagonal
approximation.
The electron binding energies in the diagonal, frequency-

independent approximation are evaluated by

ω = ϵ + Σ ϵ( )x x x (31)

= ϵ − ϵ ϵ ϵ− †U g U{ ( ) ( ) ( )}x x x x xx
1

(32)

3. RESULTS
The general-order GF (ΔMP) method was applied to the nth-
order electron binding energies (0 ≤ n ≤ 30) of the two highest
occupied spatial orbitals (HOMO − 1 and HOMO) and the
lowest unoccupied spatial orbital (LUMO) of BH. The full GF
method was also employed for the same orbitals of BH. The
general-order GF (ΔMP) method also calculated the nth-order
electron binding energies (0 ≤ n ≤ 30) of the HOMO − 1,
HOMO, LUMO, and LUMO + 1 of CH+ and C2. The bond
distances, basis sets used, and orbital spaces considered in the
correlation treatment as well as the HF and FCI energies are
given in the captions of the tables compiling those results.
Table 1 compares the results of determinant-based GFn

(ΔMPn) with those from the corresponding algebraic
implementations in the diagonal approximation at low orders
(0 ≤ n ≤ 3). The determinant-based GFn program evaluates eqs
19 and 20, whereas the algebraic GFn program implements
equations such as 13 and 14 in the case of n = 2. The algebraic
GF3 program implements all 18 GF3 self-energy diagrams listed

in Figure 6.2 of Jørgensen and Simons13 and interpreted
algebraically in Appendix D of Linderberg and Öhrn10 and as
eq 4.2 of Ferreira et al.39 The table also lists the full GF results
with and without the diagonal or frequency-independent
approximation.
As mentioned above, it has been shown47 analytically that the

electron binding energies ofΔMP0 andΔMP1 are theHF orbital
energies. The electron binding energies ofΔMP2 are those in the
diagonal, frequency-independent approximation. Sure enough,
the determinant-based GFn (ΔMPn) results agree identically
with the algebraic GFn results in the diagonal, frequency-
independent approximation for 0 ≤ n ≤ 3, mutually verifying
their implementations. The self-consistent solutions of the
Dyson equation (i.e., with the frequency-dependent self-energy)
at the second and third orders, on the other hand, differ distinctly
from the ΔMP2 or ΔMP3 values.
Remarkably, determinant-based GFn (ΔMPn) converges to-

ward the exact solution, i.e., without the diagonal or frequency-
independent approximation, as n → ∞. Hence, ΔMPn uses the
diagonal and frequency-independent approximations at low
orders (at least n ≤ 3), but it eventually converges at the exact
results without either approximation. Note that the full
GF method with the diagonal and/or frequency-independent
approximation does incur some errors and it is not that one or
both of these approximations have no effect at n = ∞. In other
words, ΔMPn takes into account the effects of the off-diagonal
elements and frequency-dependence of the exact, irreducible
self-energy without diagonalization or seeking self-consistent
solutions of a recursive equation.
One trivial justification for this observation is that the MPn

series for N- and (N ± 1)-electron systems is individually con-
vergent toward the exact total energies and, therefore, their
differences should also converge at the exact self-energies, which
are nondiagonal and frequency-dependent. In Sections 4.1 and 4.2,
we offer more detailed, if speculative, explanations of this
phenomenon. In short, ΔMPn includes the effects of the off-
diagonal elements and frequency dependence of the self-energy
as perturbation corrections and the first such nonzero cor-
rections occur in fourth order (hence, the agreement with the
diagonal, frequency-independent results at n ≤ 3). In other
words, ΔMPn defines an alternative, converging, diagrammatic
perturbation expansion of the self-energy. Unlike Dyson’s orig-
inal definition of the exact self-energy, however, this new

Table 1. Electron Binding Energies (in Eh) of BH (rBH = 1.232 Å) Calculated with the STO-3G Basis Seta

method algorithm approximation HOMO − 1 HOMO LUMOb

HF algebraic diagonal, ω-independent −0.57349 −0.24654 0.26994
GF0 = ΔMP0 determinant ΔMP −0.57349 −0.24654 0.26994
GF1 = ΔMP1 determinant ΔMP −0.57349 −0.24654 0.26994
GF2 = ΔMP2 determinant ΔMP −0.57656 −0.24400 0.26330
GF2 algebraic diagonal, ω-independent −0.57656 −0.24400 0.26330
GF2 algebraic diagonal −0.57649 −0.24407 0.26343
GF3 = ΔMP3 determinant ΔMP −0.57333 −0.24766 0.26724
GF3 algebraic diagonal, ω-independent −0.57333 −0.24766 0.26724
GF3 algebraic diagonal −0.57334 −0.24761 0.26732
GF30 = ΔMP30 determinant ΔMP −0.55487 −0.25700 0.27470
full GF determinant diagonal, ω-independent −0.55010 −0.25837 0.27497
full GF determinant diagonal −0.55326 −0.25737 0.27470
full GF = FCI determinant none −0.55488 −0.25700 0.27470

aThe lowest spatial orbital is kept frozen in the correlation treatment. The HF and FCI energies of the ground state are −24.752788Eh and
−24.809629Eh, respectively. bDoubly degenerate.
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expansion is limited to Koopmans-like electron binding energies
and can be divergent.
Table 2 lists the electron binding energies of CH+ up to

thirtieth order. The errors from the exact (FCI) electron binding
energies are plotted in Figure 4. The results at n = 0 and 1 are
equal to the HF values and the first nonzero correlation

corrections occur at n = 2, which are substantial. The corrections
from n ≥ 3 are more incremental and progressively smaller,
forming rather smoothly converging series, unless they diverge as
they do for LUMO+ 1.We do not necessarily observe “staircase”
convergence behavior for MPn, although the results of C2 (see
below) do display oscillatory convergence.
When the electron binding energies converge as n→∞, again,

they do so at the exact values obtained by solving the Dyson
equation self-consistently and without the diagonal approxima-
tion. From this calculation, it is unknown whether or to what
extent these approximations slow the convergence, except for
LUMO + 1, which we now discuss.
The electron binding energies of LUMO + 1 show a sign of

divergence. Generally, the higher- or lower-lying the orbitals are
and the higher the perturbation order is, the greater the chance
of encountering this problem. For instance, the denominators in
the algebraic second-order self-energy expression10,13,47 in the
diagonal and frequency-independent approximations (see eqs 13
and 14) cannot vanish when

ϵ − < ϵ < ϵ +E Eg x gHOMO LUMO (33)

where ϵHOMO and ϵLUMO are the HF energies of the HOMO and
LUMO and Eg = ϵLUMO − ϵHOMO. For orbitals that satisfy this
condition, the second-order self-energies are not divergent. All of
the orbitals (including LUMO + 1) in Table 2 satisfy this con-
dition and hence the calculated second-order electron binding
energies are indeed reasonable. However, with increasing order,

Table 2. Electron Binding Energies (in Eh) of CH
+ (rCH = 1.120 Å) with the 6-31G* Basis Set as a Function of Perturbation

Order na

n HOMO − 1 HOMO LUMOb LUMO + 1 annotation

0 −1.25371 −0.87474 −0.32787 −0.04260 GF0 = HF
1 −1.25371 −0.87474 −0.32787 −0.04260 GF1 = HF
2 −1.24254 −0.86615 −0.37798 −0.06077 GF2 = ΔMP2
3 −1.24346 −0.86966 −0.37510 −0.06265 GF3 = ΔMP3
4 −1.24304 −0.87227 −0.37437 −0.06332 GF4 = ΔMP4
5 −1.24158 −0.87398 −0.37315 −0.06379 GF5 = ΔMP5
6 −1.23985 −0.87493 −0.37231 −0.06458 GF6 = ΔMP6
7 −1.23833 −0.87546 −0.37191 −0.06583 GF7 = ΔMP7
8 −1.23712 −0.87575 −0.37169 −0.06773 GF8 = ΔMP8
9 −1.23620 −0.87591 −0.37158 −0.07064 GF9 = ΔMP9
10 −1.23554 −0.87600 −0.37153 −0.07513 GF10 = ΔMP10
11 −1.23508 −0.87604 −0.37151 −0.08213 GF11 = ΔMP11
12 −1.23478 −0.87607 −0.37150 −0.09308 GF12 = ΔMP12
13 −1.23459 −0.87608 −0.37150 −0.11029 GF13 = ΔMP13
14 −1.23448 −0.87609 −0.37150 −0.13739 GF14 = ΔMP14
15 −1.23442 −0.87610 −0.37150 −0.18011 GF15 = ΔMP15
16 −1.23440 −0.87610 −0.37150 −0.24746 GF16 = ΔMP16
17 −1.23440 −0.87610 −0.37150 −0.35371 GF17 = ΔMP17
18 −1.23441 −0.87610 −0.37151 −0.52129 GF18 = ΔMP18
19 −1.23443 −0.87610 −0.37151 −0.78560 GF19 = ΔMP19
20 −1.23445 −0.87610 −0.37151 −1.20242 GF20 = ΔMP20
30 −1.23453 −0.87610 −0.37151 −107.692 GF30 = ΔMP30
∞ −1.23453 −0.87610 −0.37151 −0.06398 FCIc

−1.24588 −0.87876 −0.37301 −0.06250 CCSDd

−1.23505 −0.87614 −0.37179 −0.06374 CCSDTd

−1.23453 −0.87610 −0.37151 −0.06393 CCSDTQd

aThe lowest and highest spatial orbitals are kept frozen in the correlation treatment. The HF and FCI energies of the ground state are −37.895388Eh
and −37.990913Eh, respectively. bDoubly degenerate. cCI(4h-3p) for HOMO − 1 and HOMO and CI(4h-5p) for LUMO and LUMO + 1.
dIP-EOM-CCSD(2h-1p), IP-EOM-CCSDT(3h-2p), or IP-EOM-CCSDTQ(4h-3p) for HOMO − 1 and HOMO and EA-EOM-CCSD(1h-2p),
EA-EOM-CCSDT(2h-3p), or EA-EOM-CCSDTQ(3h-4p) for LUMO and LUMO + 1. See also Hirata et al.7

Figure 4.Convergence of the electron binding energies of CH+ with the
perturbation order (Table 2). The thick, semitransparent lines are the
Pade ́ approximants of the series with the same color (Table 3).
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the radius of convergence contracts, ultimately causing the
nonconvergence of LUMO + 1.43,55,56

One way to rectify the nonconvergence is to use Pade ́
approximants, which require only a series with a minimum of two
members. Table 3 compiles the extrapolated self-energies by
[M,M − 1]or [M,M] Pade ́ approximants, obtained using the
formulas given by Laidig et al.57 For convergent series, that is, for

HOMO−1, HOMO, and LUMO, the clear benefit of Pade ́
approximants appears only at high orders such as n ≥ 9
(Figure 4), where the order (n) is defined as the highest-order
self-energy needed for the extrapolation, i.e., 2M + 1 for [M,M− 1]
and 2M + 2 for [M,M]. For LUMO + 1, Pade ́ approximants can
bring the nonconvergent series into a rapidly convergent one
within a few mEh of the exact value across a range of Pade ́ orders,
i.e., 3 ≤ n ≤ 30.
The electron binding energies obtained from the ionization-

potential and electron-attached EOM-CC (IP-EOM-CC and
EA-EOM-CC) methods7−9,58,59 are rapidly convergent with the
rank of the excitation operators included in the formalisms.
Judging from the results for HOMO and LUMO, IP-EOM-
CCSD and EA-EOM-CCSD seem able to achieve comparable
accuracy withΔMP4 orΔMP5. See Section 4.3 for a comparative
perturbation analysis of IP-EOM-CCSD and ΔMPn.
Table 4 lists the electron binding energies of C2. C2 has a

greater degree of nondynamical correlation (caused by near
degeneracy of partially filled 2σg, 1πu, and 3σg orbitals

59) than BH
or CH+, but the convergence is reasonably rapid. Unlike CH+,
however, the convergence is oscillatory, as seen in Figure 5, re-
ndering some of the low-order self-energies (such as at n = 2 or 3)
rather poor. It also seems to make Pade ́ approximants less
effective. It is interesting to note that the IP-EOM-CC series for
this molecule is also oscillatory with the CC rank.7

4. DISCUSSION
4.1. Corrections Due to the Off-Diagonal Elements of

the Self-Energy. The ΔMPn results agree with the electron
binding energies in the diagonal approximation at n≤ 3, but they
converge at the exact, nondiagonal values at n = ∞. This is
because, at n≥ 4,ΔMPn includes perturbation corrections due to

Table 3. Pade ́Approximants of the Electron Binding Energies
(in Eh) of CH

+a

Pade ́ nb HOMO − 1 HOMO LUMO LUMO + 1

[1,0] 3 −1.24339 −0.86864 −0.37526 −0.06287
[1,1] 4 −1.24317 −0.87994 −0.37412 −0.06369
[2,1] 5 −1.24347 −0.87712 −0.37701 −0.06554
[2,2] 6 −1.24093 −0.87458 −0.36704 −0.06331
[3,2] 7 −1.23626 −0.87611 −0.37201 −0.06253
[3,3] 8 −1.22984 −0.87610 −0.37139 −0.06225
[4,3] 9 −1.23385 −0.87610 −0.37148 −0.06226
[4,4] 10 −1.23412 −0.87610 −0.37149 −0.06225
[5,4] 11 −1.23457 −0.87610 −0.37150 −0.06057
[5,5] 12 −1.23452 −0.87610 −0.37157 −0.06415
[6,5] 13 −1.23452 −0.87610 −0.37151 −0.06356
[6,6] 14 −1.23452 −0.87610 −0.37151 −0.06317
[7,6] 15 −1.23453 −0.87610 −0.37151 −0.06281
[7,7] 16 −1.23454 −0.87610 −0.37151 −0.06324
[8,7] 17 −1.23454 −0.87610 −0.37151 −0.06363
[8,8] 18 −1.23453 −0.87610 −0.37148 −0.06381
[9,8] 19 −1.23452 −0.87610 −0.37151 −0.06394
[9,9] 20 −1.23455 −0.87610 −0.37151 −0.06226
[14,14] 30 −1.23453 −0.87610 −0.37151 −0.06399

aSee also Table 2. bThe highest-order self-energy used is as follows:
n = 2M + 1 for [M,M − 1] Pade ́ and n = 2M + 2 for [M,M] Pade.́

Table 4. Electron Binding Energies (in Eh) of C2 (rCC = 1.262 Å) with the 6-31G Basis Set as a Function of Perturbation Order na

n HOMO − 1 HOMOb LUMO LUMO + 1b annotation

0 −0.51235 −0.44816 −0.10057 0.16318 GF0 = HF
1 −0.51235 −0.44816 −0.10057 0.16318 GF1 = HF
2 −0.54478 −0.47645 −0.06928 0.18099 GF2 = ΔMP2
3 −0.51450 −0.41986 −0.07715 0.17051 GF3 = ΔMP3
4 −0.54183 −0.45567 −0.05745 0.18290 GF4 = ΔMP4
5 −0.53347 −0.43824 −0.05849 0.17931 GF5 = ΔMP5
6 −0.53823 −0.44338 −0.05408 0.18287 GF6 = ΔMP6
7 −0.54022 −0.44412 −0.04937 0.18452 GF7 = ΔMP7
8 −0.53866 −0.44205 −0.05095 0.18382 GF8 = ΔMP8
9 −0.54150 −0.44508 −0.04659 0.18638 GF9 = ΔMP9
10 −0.54028 −0.44378 −0.04803 0.18534 GF10 = ΔMP10
11 −0.54117 −0.44500 −0.04626 0.18666 GF11 = ΔMP11
12 −0.54123 −0.44524 −0.04638 0.18644 GF12 = ΔMP12
13 −0.54098 −0.44523 −0.04622 0.18671 GF13 = ΔMP13
14 −0.54136 −0.44580 −0.04591 0.18684 GF14 = ΔMP14
15 −0.54105 −0.44563 −0.04607 0.18685 GF15 = ΔMP15
16 −0.54117 −0.44588 −0.04595 0.18685 GF16 = ΔMP16
17 −0.54111 −0.44589 −0.04597 0.18695 GF17 = ΔMP17
18 −0.54104 −0.44587 −0.04604 0.18680 GF18 = ΔMP18
19 −0.54108 −0.44595 −0.04599 0.18694 GF19 = ΔMP19
20 −0.54100 −0.44588 −0.04607 0.18680 GF20 =ΔMP20
30 −0.54097 −0.44582 −0.04611 0.18679 GF30 = ΔMP30
∞ −0.54097 −0.44582 −0.04611 0.18679 FCIc

aThe two lowest and two highest spatial orbitals are kept frozen in the correlation treatment. The HF and FCI energies of the ground state are
−75.349114Eh and −75.609844Eh, respectively. bDoubly degenerate. cCI(8h-7p) for HOMO − 1 and HOMO and CI(8h-9p) for LUMO and
LUMO + 1.
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the off-diagonal elements of the irreducible self-energy. The
following is an illustration of how this occurs at n = 4.
Equation 7 indicates that the exact electron binding energies

are the eigenvalues of ϵ + Σ(ω). Considering ϵ of this matrix the
zeroth-order part and Σ(ω) the perturbation, the xth eigenvalue
(ωx) of ϵ + Σ(ω) is expanded in a perturbation series

∑ω ω
ω ωΣ Σ

= ϵ + Σ + ϵ − ϵ +
≠

( )
{ ( )} { ( )}

...x x x
y x

xy yx

x y (34)

Substituting ω = ϵx in the right-hand side, we obtain a
perturbation formula for ωx in the nondiagonal, frequency-
independent approximation. The truncation of this equation
after the second term amounts to the diagonal approximation
(eq 11). The third term is, therefore, the leading-order
contribution from the off-diagonal elements of the irreducible
self-energy. The restriction in the summation index, y≠ x, in this
term is related to the removal of reducible diagrams such as E in
Figure 3. This diagram has the shared label (x) between the
external and articulation edges, which corresponds to the
excluded value of the index (y = x) in eq 34, which, if retained,
causes a divergence.
Figure 6 illustrates how diagrammatic contributions from the

third term of eq 34 are included in ΔMP4. Diagram F is an MP4

energy diagram from which reducible diagrams can be
generated upon cutting either the ath or ith edge. Diagram
G is the same diagram for the (N− 1)-electron system with the
vacant xth orbital. Since, in the latter, the xth orbital is classified
as a virtual orbital, the ath orbital index in diagram G runs over
all virtual orbitals in NΦ0 as well as x, whereas the range of the
ith index excludes x. Hence, the differences between diagrams
F and G give rise to self-energy diagrams H and I in ΔMP4.
They are identified as semireducible diagrams and are
concatenation of two second-order irreducible self-energy
diagrams with an articulation edge. They are not reducible
diagrams such as E because the label of the articulation edge
differs from that of the external edges in each case. In fact, the
combined range of the articulation-edge index in diagrams H
and I is all orbitals except x, in agreement with the third term
in eq 34.
In short, semireducible diagrams such as H and I account for

the effect of the off-diagonal elements of the irreducible self-
energy. Figure 6 furthermore indicates that the lowest order at
which semireducible diagrams arise and hence the diagonal
approximation and ΔMPn differ from each other is four (recall
that the first-order self-energy is zero). This is consistent with the
observation that ΔMPn (0 ≤ n ≤ 3) agree with the results
obtained in the diagonal approximation.

4.2. Corrections Due to the Frequency Dependence of
the Self-Energy. The ΔMPn method yields electron binding
energies in the frequency-independent approximation at 0≤ n≤ 3,
but it gives the self-consistent solutions of the Dyson equation
with the frequency-dependent self-energy at n = ∞. It thus
follows that ΔMPn includes perturbation corrections due to the
frequency dependence of the self-energy. Such corrections may
be written in a Taylor series of eq 10, which reads

∑ ∑

∑ ∑

ω ω
ω

ω
ω

= ϵ + Σ ϵ + ∂Σ
∂ Σ ϵ

+ ∂ Σ
∂

Σ ϵ Σ ϵ +
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=
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(35)

Since Σx
(1)(ω) = 0, the first nonvanishing contribution occurs

at n = 4 or, more specifically

∑ω ω
ω= ϵ + Σ ϵ + ∂Σ

∂ Σ ϵ
= ϵ

( )
( )

( )x x
m

x
m

x
x

x x
(4)

2

4
( )

(2)
(2)

x (36)

This is consistent with the observation that the third- and lower-
order self-energies of ΔMPn are in the frequency-independent
approximation. Using eqs 13 and 14, we find

∑

∑

ω
ω

∂Σ
∂ = − ⟨ || ⟩⟨ || ⟩

ϵ + ϵ − ϵ − ϵ

− ⟨ || ⟩⟨ || ⟩
ϵ + ϵ − ϵ − ϵ

ϵ

xj ab ab xj

ij ax ax ij

( ) 1
2 ( )

1
2 ( )

x

j a b x j a b

i j a x a i j

(2)

, ,
2

, ,
2

x

(37)

Hence, the corrections due to the last term of eq 36 is
diagrammatically represented partially as Figure 7. It is dis-
connected, but still linked (since there is no closed subdiagram),
reflecting the simple product nature of the last term in eq 36. It
does not, however, destroy the size consistency ofΔMP4 for the
following reason: Each subdiagram in diagram J is isomorphic to

Figure 5. Same as Figure 4 but for C2.

Figure 6.MP4 energy diagrams of theN- and (N − 1)-electron systems
(diagrams F and G) and the corresponding semireducible fourth-order
diagonal self-energy diagrams (diagrams H and I) obtained as their
differences. The double-lined edges in diagram G have different ranges
of edge indexes between N- and (N − 1)-electron systems.
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a self-energy diagram and scales as V0, rendering diagram J as
a whole scale as V0V0 = V0 (intensive). In other words, diagram J
satisfies the intensive diagram theorem48,49 and is size-consistent.
Now we proceed to show that ΔMPn takes into account

linked-disconnected diagrams such as J and thus includes the
corrections due to the frequency dependence of the exact self-
energy. We take n = 3 as an example and make the following
modification to the partitioning of the Hamiltonian, so that
Σx
(1)(ω) is no longer zero and there is a nonvanishing correction

due to the frequency dependence at the third order.
Assuming the canonical HF orbitals of the N-electron system,

we set

∑ ∑ ζ̂ = + ϵ ̂ ̂ + ̂ ̂† †H E p p p p{ } { }
p

p
p

p0 HF
(38)

∑ ∑ ζ̂ = ⟨ || ⟩ ̂ ̂ ̂ ̂ − ̂ ̂† † †V pq rs p q sr p p1
4

{ } { }
p q r s p

p
, , , (39)

where EHF is the HF energy of the N-electron system in the
ground state, ζp is a constant shift (whose value is independent
of p), and {...} denotes a normal-ordered sequence of oper-
ators.54 They lead to

ζ= − ϵ −− E EN
x x x

1 (0)
HF (40)

ζ=− EN
x x

1 (1)
(41)

and

=E EN
0
(0)

HF (42)

=E 0N
0
(1)

(43)

Therefore

ω ζΣ = − = ϵ +−E E( )x
N N

x x x
(0)

0
(0) 1 (0)

(44)

ω ζΣ = − = −−E E( )x
N N

x x
(1)

0
(1) 1 (1)

(45)

Note that neither is dependent on ω.
As discussed above, we expect the frequency dependence of

the self-energy (such as diagram J) to be disconnected. It is
also well-established that MP3 (or MPn at any order) for the
N-electron system is free of disconnected (or unlinked)
diagrams.47,54 It must, therefore, come from the incomplete
cancellation of disconnected terms in the (N − 1)-electron
system. In other words, we aim to show that

ω
ω

∂Σ
∂ Σ ϵ = −

ϵ

−E E
( )

( ) { } { }x
x x

N N
(2)

(1)
0
(3)

dc
1

0
(3)

dc

x (46)

with

=E{ } 0N
0
(3)

dc (47)

= − ⟨Φ | ̂ ̂ ̂ ̂ |Φ ⟩ + ⟨Φ | ̂ ̂ ̂ ̂ ̂ |Φ ⟩− E E VRRV VRVRV{ }N
x x x x x

1
0
(3)

dc
(1)

dc
(48)

where subscript dc stands for disconnected contributions and
superscript N − 1 is omitted in eq 48 and thereafter. Note that
the first term in eq 48 is entirely a disconnected contribution
because it is a simple product of two factors (thus carrying no
dc qualifier). In the left-hand side of eq 46, we need not con-
sider (∂Σx

(1)/∂ω)ϵx Σx
(2) (ϵx) because the derivative factor is zero,

as per eq 45.
The nonvanishing contributions in ⟨Φx| ̂ ̂ ̂ ̂VRRV |Φx⟩ arise from

the 2h-1p (two-hole, one-particle) and 3h-2p (three-hole, two-
particle) sectors of the resolvent
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where Ex = ⟨Φx|Ĥ0|Φx⟩, Eij
a = ⟨Φij

a|Ĥ0|Φij
a⟩, etc. The disconnected

contribution in ⟨Φx| ̂ ̂ ̂ ̂ ̂VRVRV |Φx⟩ comes from the 3h-2p sector
only
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ζ
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In the last equality, we have used the fact that the terms in
eq 51 containing factors of ζi, ζj, ζa, and ζb are connected because

Figure 7.A linked-disconnected (thus size-consistent) fourth-order self-
energy diagram. A wiggly line is a resolvent line.54 Since the algebraic
interpretation of a disconnected diagram is the simple product of the
interpretations of subdiagrams, the chronological order of vertexes in
different subdiagrams is immaterial and left unspecified.
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i, j, a, and b are among the summation indexes, whereas the term
containing ζx is disconnected.
Substituting eqs 50 and 52 into eq 48, we obtain

∑

∑

ζ

ζ

⟨Φ | ̂ ̂ ̂ ̂ |Φ ⟩ − ⟨Φ | ̂ ̂ ̂ ̂ ̂ |Φ ⟩

= − ⟨ || ⟩⟨ || ⟩
ϵ + ϵ − ϵ − ϵ

−

− ⟨ || ⟩⟨ || ⟩
ϵ + ϵ − ϵ − ϵ

−

E VRRV VRVRV
ij ax ax ij

xj ab ab xj

1
2 ( )

( )

1
2 ( )

( )

x x x x x

i j a i j a x
x

j a b x j a b
x

(1)
dc

, ,
2

, ,
2

(53)

which is found to be equal to the left-hand side of eq 46.
Essentially the same proof can be constructed for ΔMP3
between the (N + 1)- and N-electron systems.
We have shown that ΔMP3 (with a modified partitioning of

the Hamiltonian) contains the third-order correction due to the
frequency dependence of the exact self-energy in the form
of eq 35. We conjecture that this holds true at higher orders and
with theMøller−Plesset partitioning of the Hamiltonian, making
ΔMPn converge at the exact, self-consistent solutions of the
Dyson equation as n → ∞.
4.3. Relationship to EOM-CC. The diagrammatic corre-

spondence between the CC and MP methods for the ground
state is well-established.54,60 Since the IP- and EA-EOM-CC
methods with the N-electron HF reference wave function yield
converging results for electron binding energies, they should
account for all diagrammatic contributions in ΔMPn. Here, we
show that self-energy diagrams B and C (Figure 1) as well as
semireducible diagrams H and I (Figure 6) and linked-
disconnected diagram J (Figure 7) ofΔMPn are indeed included
in IP-EOM-CCSD in the case of electron-detachment energies.
The CI-like eigenvalue equations of IP-EOM-CCSD can be

written as

∑ ∑ω− = −ϵ − ⟨ || ⟩ − ⟨ || ⟩ +r r ij ak r ij ab t r1
2

1
2

...k k k
i j a

ij
a

i j a b
ik
ab

j
, , , , ,

(54)

∑ω− = −ϵ − ϵ + ϵ − ⟨ || ⟩ +r r ak ij r( ) ...ij
a

i j a ij
a

k
k

(55)

where only relevant terms are shown and the eigenvalue
(electron-detachment energy),ω, is multiplied by−1 to facilitate
the correspondence withΔMPn. Here, tij

ab is the amplitude of the
cluster excitation operator, which is known from the preceding
CCSD calculation, and rk and rij

a are the amplitudes of the 1h and
2h-1p ionization operators to be determined by solving these
equations.
The zeroth-order perturbation approximations to ω and rk

for the Koopmans-like final state in which the xth orbital is
vacant are

Σ = ϵx x
(0)

(56)

δ=rk kx
(0)

(57)

Substituting these into eq 55 truncated after the second term
yields the first-order approximation to rij

a as

= ⟨ || ⟩
ϵ + ϵ − ϵ − ϵr

ax ij
ij
a

x a i j

(1)

(58)

The corresponding approximation to tij
ab is the MP1 excitation

amplitude

= ⟨ || ⟩
ϵ + ϵ − ϵ − ϵt

ab ij
ij
ab

i j a b

(1)

(59)

Substituting these into eq 54 gives the second-order correction to
ω, which reads

∑ ∑

∑

∑

Σ = ⟨ || ⟩ + ⟨ || ⟩

= ⟨ || ⟩⟨ || ⟩
ϵ + ϵ − ϵ − ϵ

+ ⟨ || ⟩⟨ || ⟩
ϵ + ϵ − ϵ − ϵ

ij ax r ij ab t r

ij ax ax ij

ab ix ix ab

1
2

1
2

1
2

1
2

x
i j a

ij
a

i j a b
ix
ab

j

i j a x a i j

i a b x i a b

(2)

, ,

(1)

, , ,

(1) (0)

, ,

, , (60)

which agrees exactly with the sum of eqs 13 and 14 at ω = ϵx
(diagrams B and C). Here, we define the perturbation order by
the number of appearances of the fluctuation potential in each
term.
A part of the second-order correction to rk can be obtained by

substituting eqs 56−58 into eq 54 truncated after the second
term, yielding

∑

∑

= Σ − ϵ ⟨ || ⟩

= ⟨ || ⟩⟨ || ⟩
ϵ + ϵ − ϵ − ϵ ϵ − ϵ

≠
−r ij ak r

ax ij ij ak

{ } 1
2

1
2 ( )( )

k x x k
i j a

ij
a

i j a x a i j x k

(2) (0) 1

, ,

(1)

, , (61)

Note that this expression is valid only for k ≠ x, lest it diverges.
This in conjunction with eq 55 truncated after the second term
suggests the third-order correction to rij

a as

∑

∑ ∑

= Σ + ϵ − ϵ − ϵ ⟨ || ⟩

= ⟨ || ⟩⟨ || ⟩⟨ || ⟩
ϵ + ϵ − ϵ − ϵ ϵ − ϵ ϵ + ϵ − ϵ − ϵ

−
≠

≠

r ak ij r

bx lm lm bk ak ij

{ }

1
2 ( )( )( )

ij
a

x a i j
k

k x

l m b k x x b l m x k x a i j

(3a) (0) 1 (2)

, ,

(62)

Its substitution into the second term in the right-hand side
of eq 54 leads to a fourth-order correction to ω

∑

∑ ∑ ∑

Σ = ⟨ || ⟩

= ⟨ || ⟩⟨ || ⟩⟨ || ⟩⟨ || ⟩
ϵ + ϵ − ϵ − ϵ ϵ − ϵ ϵ + ϵ − ϵ − ϵ≠

ij ax r

bx lm lm bk ak ij ij ax

1
2

1
4 ( )( )( )

x
i j a

ij
a

i j a l m b k x x b l m x k x a i j

(4a)

, ,

(3a)

, , , ,

(63)

which is exactly the contribution from semireducible diagram
H at ω = ϵx, accounting for the off-diagonal elements of the
irreducible self-energy (diagram C). The index restriction, k ≠ x,
distinguishes this term from reducible diagram E.
Another third-order correction to rij

a can be obtained by
adopting the second-order approximation for ω in eq 55
truncated after the second term

∑+ = Σ + Σ + ϵ − ϵ − ϵ ⟨ || ⟩

≈ ⟨ || ⟩
ϵ + ϵ − ϵ − ϵ − Σ ⟨ || ⟩

ϵ + ϵ − ϵ − ϵ

−r r ak ij r

ax ij ax ij

{ }

( )

ij
a

ij
a

x x a i j
k

k

x a i j

x

x a i j

(1) (3b) (2) (0) 1 (0)

(2)

2

(64)

In the second equality, a use is made of the Maclaurin series:
(1 + δ)−1 ≈ 1 − δ, with δ = (2)Σx/(ϵx + ϵa − ϵi − ϵj). Substitution
of the third-order correction into eq 54 gives a fourth-order
correction to ω in the form
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∑

∑

Σ = ⟨ || ⟩

= − ⟨ || ⟩⟨ || ⟩
ϵ + ϵ − ϵ − ϵ

Σ

ij ax r

ax ij ij ax

1
2

1
2 ( )

x
i j a

ij
a

i j a x a i j
x

(4b)

, ,

(3b)

, ,
2

(2)

(65)

which accounts for two of the linked-disconnected diagram
contributions in the last term of eq 36 analogous to diagram J.
Nooijen and Snijders pointed out61,62 that IP- and EA-EOM-CC

can be viewed as a GF theory.

5. CONCLUSIONS
An nth-order self-energy can be defined as the difference in MPn
energy between the N- and (N ± 1)-electron systems (ΔMPn),
which are, in turn, evaluated by the determinant-based, general-
order MPn method1 at any n. This constitutes a general-order
implementation of a one-electron GF method.
The electron binding energies calculated with ΔMPn (n ≤ 3)

agree identically with the solutions of the Dyson equation in the
diagonal and frequency-independent approximations to the self-
energy. However, the converged limits of the binding energies at
n =∞ (if they do converge) are the exact basis-set values, that is,
the solutions of the Dyson equation with the exact, nondiagonal,
frequency-dependent self-energy. This suggests that the electron
binding energies of ΔMPn include perturbation corrections
due to the off-diagonal elements and frequency dependence of
the self-energy, which may be zero at n ≤ 3 but are nonzero else-
where. Therefore,ΔMPn defines a new, converging expansion of
the exact self-energies for Koopmans-like transitions, whose
computer implementation does not involve diagonalization
or self-consistent solutions of a recursive equation. Our dia-
grammatic analysis shows that these corrections are accounted
for by semireducible and linked-disconnected diagrams. The
lowest order at which these diagrams appear is four and these
fourth-order diagrams are also included in IP- or EA-EOM-
CCSD.
In CH+, the electron binding energies of ΔMPn display

smooth, nearly monotonic convergence at n > 2, unless they
display a sign of divergence. Pade ́ approximants are shown to
extrapolate the correct limit within a few mEh from these
apparently divergent series. In C2, the electron binding energies
of the four frontier orbitals are oscillatory but convergent. The
approximations defined by ΔMPn are, therefore, expected to
be useful up to high orders and especially so when combined
with Pade ́ approximants in the case of divergent series. Each
diagrammatic contribution of ΔMPn can be recast into a single
high-dimensional integral and subject to a highly scalable Monte
Carlo evaluation,63 owing to the aforementioned inherent
algorithmic simplicity.
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