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Time-dependent density functional theory~TDDFT! is applied for calculation of the excitation
energies of the dissociating H2 molecule. The standard TDDFT method of adiabatic local density
approximation~ALDA ! totally fails to reproduce the potential curve for the lowest excited singlet
1Su

1 state of H2. Analysis of the eigenvalue problem for the excitation energies as well as direct
derivation of the exchange-correlation~xc! kernel f xc(r ,r 8,v) shows that ALDA fails due to
breakdown of its simple spatially local approximation for the kernel. The analysis indicates a
complex structure of the functionf xc(r ,r 8,v), which is revealed in a different behavior of the
various matrix elementsK1c,1c

xc ~between the highest occupied Kohn–Sham molecular orbitalc1 and
virtual MOscc) as a function of the bond distanceR~H–H!. The effect of nonlocality off xc(r ,r 8)
is modeled by using different expressions for the corresponding matrix elements of different
orbitals. Asymptotically corrected ALDA~ALDA-AC ! expressions for the matrix elementsK12,12

xc(st)

are proposed, while for other matrix elements the standard ALDA expressions are retained. This
approach provides substantial improvement over the standard ALDA. In particular, the ALDA-AC
curve for the lowest singlet excitation qualitatively reproduces the shape of the exact curve. It
displays a minimum and approaches a relatively large positive energy at largeR~H–H!. ALDA-AC
also produces a substantial improvement for the calculated lowest triplet excitation, which is known
to suffer from the triplet instability problem of the restricted KS ground state. Failure of the ALDA
for the excitation energies is related to the failure of the local density as well as generalized gradient
approximations to reproduce correctly the polarizability of dissociating H2. The expression for the
response functionx is derived to show the origin of the field-counteracting term in the xc potential,
which is lacking in the local density and generalized gradient approximations and which is required
to obtain a correct polarizability. ©2000 American Institute of Physics.@S0021-9606~00!31143-6#
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I. INTRODUCTION

The recent success of time-dependent density functio
perturbation theory~TDDFPT! in calculations of molecular
excitation energies1–7 is based on its efficient treatment o
electron correlation. The effects of electron correlation in
stationary ground state are embodied in the single lo
Kohn–Sham~KS! exchange-correlation~xc! potentialnxc(r )
which, together with the external potentialnext(r ) and the
Hartree potential of the electrostatic electron repuls
nH(r ), determines the KS orbitalsc i

$2 1
2 ¹21next~r !1nH~r !1nxc~r !%c i~r !5e ic i~r !, ~1.1!

and the electron densityr(r ) of a many-electron system

r~r !5(
i 51

N

uc i~r !u2. ~1.2!
8470021-9606/2000/113(19)/8478/12/$17.00
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Excitation energies as well as polarizabilities are obtained
TDDFPT from the linear response of the densitydr(r ,v) to
the external electric field of frequencyv

dr~r ,v!5E dr 8xs~r ,r 8,v!H dnext~r 8,v!

1E dr 9
dr~r 9,v!

ur 82r 9u
1dnxc~r 8,v!J , ~1.3!

wherexs is the response function of the noninteracting K
system and the change of the xc potential is expres
through the xc kernel functionf xc(r ,r 8,v),

dnxc~r 8,v!5E dr 9dr~r 9,v! f xc~r 8,r 9,v!. ~1.4!

This function is defined in TDDFPT as the Fourier transfo
of the second functional derivativef xc

st(r ,r 8,t,t8) of the
quantum mechanical action xc functionalAxc@r# with re-
8 © 2000 American Institute of Physics
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spect to the time-dependent densitiesr(r ,t) and r(r 8,t8),8

for more refined definition see Ref. 9, for an alternative d
nition see Ref. 10 and Eq.~3.18!:

f xc
st~r ,r 8,t,t8!5

dAxc@r#

drs~r ,t !drt~r 8,t !
5

dn
xc

s ~@r#;r ,t !

drt~r 8,t !
.

~1.5!

The vertical excitation energiesvk can be obtained in TD-
DFPT from the solution of the following eigenvalu
problem:11

@ «̄212«̄1/2K «̄1/2#Fk5vk
2Fk,

~1.6!
«̄ ics, jdt5~«cs2 «̄ is!dstd i j dcd,

where the matrix indicesi and j correspond to the occupie
KS orbitals, the indicesc andd correspond to the unoccupie
orbitals, ands and t are the spin indices~real orbitals are
considered, we use indicesc andd instead of the more com
mon indicesa and b as these are reserved for the atom
orbitals, which will be introduced below!. The first term in
the l.h.s. of Eq.~1.6!, the orbital energy difference, repre
sents the zero order of TDDFPT. The second term repres
the correction, which is calculated with the coupling mat
Kics, jdt

12

Kics, jdt5E drE dr 8c is~r !ccs~r !F 1

ur2r 8u

1 f xc
st~r ,r 8,v!Gc j t~r 8!cdt~r 8!, ~1.7!

where the frequency dependence arises from the frequ
dependent xc kernelf xc(r ,r 8,v).

To our knowledge, in all molecular TDDFPT calcula
tions the adiabatic approximation is used, which reducesf xc

to the time-~frequency-!independent second derivative of th
ground state xc energy functionalExc@r# or, equivalently, to
the first derivative of the xc potentialnxc of Eq. ~1.1!

f xc
st~r ,r 8!'

dExc@r#

drs~r !drt~r 8!
5

dnxc
s ~r !

drt~r 8!
. ~1.8!

This seems to be a rather restrictive approximation for c
culation of excitation energies, since with it all the excit
tions should be calculated from Eqs.~1.6!, ~1.7! with the
same operatorsur2r 8u21 and f xc(r ,r 8). In practice, how-
ever, already the zero order TDDFPT yields a decent e
mate of excitations and, usually, reasonably good lowest
citation energies are obtained in the adiabatic local den
approximation~ALDA ! with the LDA xc potentialnxc

s(LDA)

and the ALDA xc kernel

f xc
st~ALDA !~r ,r 8!5d~r2r 8!

dnxc
s~LDA !

drt
U

rt5rt~SCF!

. ~1.9!

As was found in Ref. 13 for atomic systems~and small mo-
lecular systems!, further significant improvement of the re
sults can be achieved, when an essentially accuratenxc con-
structed from theab initio densityr is combined with the
f xc

st(ALDA) of Eq. ~1.9!. To improve the quality of approxi-
mate nxc, specialized asymptotic corrections have be
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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grafted onto the LDA potential14 and the xc potential of the
generalized gradient approximation~GGA!,15 while in Ref.
16 an approximate orbital-dependentnxc employing a statis-
tical average of different model orbital potentials~SAOP!17

has been developed. Combined withf xc
st(ALDA) , these model

potentials have produced considerable improvement of
calculated excitation energies for some small molecules.14–16

Thus the conclusion has been drawn that, at least for sm
molecules at their equilibrium geometry, the frequency d
pendence of the xc kernel is not important and reliable ex
tation energies can be obtained with a combination of
simple frequency-independent ALDA kernel Eq.~1.9! and a
properly modeled potentialnxc .

This conclusion promises a bright future for TDDFP
applications to molecular excitation energies and rela
properties, such as~hyper!polarizabilities, as it is reasonabl
to expect further improvements in the modeling of the
potential in the near future. Indeed, TDDFPT has not o
been successfully applied to the excitation energies of sm
molecules, but also~and perhaps more important! to such
diverse systems as~higher! fullerenes,18,19~metal-containing!
porphyrin-based systems,20–22 transition metal
complexes.23,24 In all of these cases the TDDFPT results b
long to the highest level results available. We believe that
ALDA is a minor source of errors in those applications, as
is for the small molecules.

However, there are cases where TDDFPT calculati
are not so accurate. It has been shown in Refs. 25–27
LDA/ALDA calculations strongly overestimate the~hyper!
polarizabilities of both symmetric and asymmetric~termi-
nated with strong donor and acceptor groups! conjugated
molecular chains. This problem is related to an increas
underestimation of excitation energies in such systems28,29

and has been analyzed in detail in Refs. 30, 31. It has b
shown that the LDA xc potential of a molecular chain in
finite electric field misses a linear term, which countera
the applied electric field. Such a term is present in the ex
xc potential and in the Krieger–Li–Iafrate~KLI !32 exchange-
only potential. In a TDDFPT calculation the counteracti
term should be present indnxc and the lack of it indicates a
deficiency off xc , cf. Eq. ~1.4!.

Another important case where the use of the popu
ALDA xc kernel Eq.~1.9! drastically fails is the dissociating
H2 molecule. It is already known30,31 that LDA/ALDA cal-
culations strongly overestimate the polarizability in fini
field calculations on this system due to the lack of the term
dnxc , which counteractsdnex. Analysis of this problem in
terms of the conditional probability amplitudes performed
Ref. 31 reveals that the field-counteracting term ofdnxc rep-
resents the effect of the nondynamical~left–right! Coulomb
correlation. When using the linear response approach of
~1.3! to calculate the polarizability, it is clear from Eq.~1.4!
that this term has to be generated with the correlation co
ponent off xc having proper magnitude and spatial form.

In the present paper we will focus on the problems w
the TDDFPT calculation of the excitation energies and
cited state potential energy curves of the dissociating2
molecule. We will address specifically the error for the fi
excited singlet state, which is particularly large and which
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
related to the strong overestimation of the polarizabi
mentioned above. We will include in our discussion the tr
let state, which has been considered before33,34 ~see for a
discussion of the analogous TDHF case Ref. 35!. The prob-
lems with the excitation energies are of great importa
because of possible applications of TDDFPT in photoche
istry, where the excited state energies are needed for var
separations between the products of the photochemical r
tion. The potential energy surfaces of molecular exci
states can be calculated by collecting for a certain exc
state k the corresponding vertical excitationsvk(R)
5Ek(R)2E0(R) calculated with TDDFPT at various geom
etries$R%. In this way, one can produce the differential p
tential energy surface of the statek with respect to the
ground state. Then, adding the total ground state ene
E0(R) calculated within the standard density function
theory ~DFT!, one can obtain the total potential energy s
faceEk(R) of this state, provided the ground state poten
curve is of good quality. Potential energy curves obtain
with this technique have been reported recently.14,36

In this paper TDDFPT is applied to calculation of th
differential potential energy curves of the lowest excited s
glet and triplet states ofSu symmetry of the H2 molecule.
Comparison of the exact37,38 and ALDA potential energy
curves in Sec. II shows that at largerR~H–H! ALDA fails to
reproduce even qualitatively the shape of the potential cu
for the 3Su

1 and1Su
1 states. In this case the zero order T

DFPT, the differenceDe21 between the energies of the low
est unoccupied~LUMO! c2 , and highest occupied~HOMO!
c1 Kohn–Sham orbitals of H2 give a poor estimate of the
lowest singlet–singlet excitation, vanishing withR~H–H!. In
Sec. III the electron response and excitations in dissocia
H2 are analyzed within the minimal two-orbital model,
which only 1s atomic orbitals~AOs! of H atoms are taken
into account. An analysis of the rigorous TDDFT eigenva
equations shows, that for the lowest singlet–singlet exc
tion vs1 the correct matrix elementK12,12

xc of f xc between
HOMOc1 and LUMOc2 is positive and diverges with in
creasing bond length proportionally to the inverse HOM
LUMO gap (D«21)

21. In Sec. IV this feature is taken int
account by means of an asymptotic correction to the ma
elementK12,12

xc~ALDA !. The corresponding asymptotically co
rected ALDA ~ALDA-AC ! provides a substantial improve
ment over the standard ALDA. In particular, the ALDA-A
curve for the lowest singlet excitation qualitatively repr
duces the main features of the exact curve. In Sec. V
extended model with the Heitler–London wave functio
built from 1s,2s,2ps AOs is applied to obtain a direct est
mate of the interacting response functionx, the noninteract-
ing xs , and the xc kernelf xc(r ,r 8,v). The response function
x of the extended model affords a realistic polarizability
dissociating H2, which properly approaches the polarizab
ities of two isolated H atoms. The derived expression for
response functionx is also used in Sec. V to show the orig
of the field-counteracting term in the xc potential, which
required in order to reproduce correctly within TDDFT th
polarizability of dissociating H2. This establishes the conne
tion between the current problem of excitation energies w
TDDFT in the adiabatic local density approximation and t
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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failure of DFT response theory for~hyper!polarizabilities of
linear chains.30,31 The behavior of f xc(r ,r 8,v) is much
harder to derive in the more realistic extended orbital mo
than in the minimal model, but an adiabatic approximati
~v-independentf xc) should still be possible with such a sp
tial structure off xc that theK12,12 matrix element diverges
but not the otherK-matrix elements. In Sec. VI the implica
tions of these results for TDDFPT are discussed and the c
clusions are drawn.

II. COMPARISON OF THE ALDA AND EXACT
POTENTIAL CURVES

Figure 1 compares the exact excitation energ
@E(3Su

1)2E(1Sg
1)# and @E(a1Su

1)2E(1Sg
1)# for the low-

est 3Su
1 and 1Su

1 states of H2 with the lowest triplet and
singlet ALDA excitation energiesv t1 ,vs1 . The exact curves
have been produced from the benchmark data of Refs.
37, while the energiesv t1 and vs1 are obtained from
Eqs. ~1.6! with the LDA xc potentialnxc

s~LDA !(r ) and the
ALDA xc kernel Eq. ~1.9!. The ALDA calculations have
been performed in the triple-zeta basis set of the Slater-t
orbitals ~STO! augmented with two polarization function
and ones, p, and d diffuse function per each H atom. Al
though this is a reliable basis set, we have made no atte
of obtaining results very close to the basis set limit.

The exact excitation energies@E(3Su
1)2E(1Sg

1)# and
@E(1Su

1)2E(1Sg
1)# differ very much in their dependenc

on the interatomic distanceR~H–H!: the triplet excitation
energy decreases monotonically with increasingR~H–H! and
it vanishes in the limitR~H–H!→`. Contrary to this, the
singlet excitation energy increases beyond the equilibri
distance for the stable1Su

1 state and it approaches 10.2 e
for R~H–H!→`. This indicates a different nature of th
states3Su

1 and1Su
1 . The former state, as well as the groun

FIG. 1. Comparison of the exact and ALDA differential potential curv
for H2.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
state1Sg
1 , is of covalent type, i.e., they both represent t

two electrons of H2 located instantaneously on the 1sAOs of
different H atoms. Whether these electrons are of the s
spin ~as in the3Su

1 state!, or of opposite spin~as in the1Sg
1

state! makes less difference with increasingR~H–H!. Be-
cause of this, the differential potential energy cur
E(3Su

1)2E(1Sg
1) gradually approaches zero at larg

R~H–H! ~see Fig. 1!. Contrary to this, the1Su
1 state is rep-

resented by a combination of the ionic state, which even
ally dissociates to H1 and H2 and the ‘‘promoted’’ states
which dissociate to one normal H atom and one excited a
H* ~in H* the electron is promoted to the 2s or 2ps AO).
At distancesR~H–H!,3.7 Å the ionic component prevails
while at largerR~H–H!, due to the avoided crossing of th
potential curves, the ‘‘promoted’’ states bring a domina
contribution. Due to this, the corresponding exact curve
proaches the value of 10.2 eV, which is just the atomic
ergy of 1s→2s or 2ps promotion.

We proceed with the comparison of the exact and ALD
potential curves. For shorterR~H–H! around 1 Å the ALDA
triplet v t1 and singletvs1 excitation energies are rather clo
to the exact ones. However, for largerR~H–H! the ALDA
curves have a very different form compared to the ex
ones. In particular, the ALDA curve for the triplet excitatio
suffers from the triplet instability problem.38 It reaches the
zero value at the triplet instability point atR~H–H!
51.75 Å, beyond which the solution of the TDDFPT eige
value problem Eq.~1.6! yields an unphysical negative valu
of v2 for this state. And, in a complete disagreement w
the exact theory ALDA predicts a small lowest singlet ex
tation energy for the dissociating H2, since the calculated
vs1 value gradually approaches zero at largerR~H–H!. Fur-
thermore, the corresponding ALDA solution of the eige
value problem Eq.~1.6! does not exhibit the characterist
features of the avoided crossing of potential curves, wh
was mentioned above for the exact curves. As follows fr
the analysis of the calculated weights of the single-part
transitions, ALDA describes the lowest singlet excitation
a nearly pure transition from the HOMOc1(r )

c1~r !51sg~r !5
1

A212S1

@a1~r !1b1~r !#, ~2.1!

to the LUMO c2(r )

c2~r !51su~r !5
1

A222S1

@a1~r !2b1~r !#. ~2.2!

Both orbitals consist almost purely of 1s AOs a1(r ) and
b1(r ) located on atoms HA and HB , respectively, so that the
ALDA solution exhibits no admixture of 2s,2p AOs, the lat-
ter being the characteristic feature of the avoided crossin
potential curves.

In order to gain some insight into this failure of ALDA
Fig. 2 compares the exact potential curves with the HOM
LUMO gapD«21 which, according to Eq.~1.6!, is the ALDA
zero order estimate for both singletvs1 and tripletv t1 exci-
tation energies. TheD«21 curve resembles the exact excit
tion energy for the triplet excitation,D«21 also vanishes with
R~H–H!, although more slowly than the differenc
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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@E(3Su
1) –E(1Sg

1)#, so that @E(3Su
1) –E(1Sg

1)#/D«21!1
at largeR~H–H!. ThusD«21 can be considered as an acce
able zero order estimate of the exact triplet excitation ene
@E(3Su

1) –E(1Sg
1)#, i.e., the correction to the zero orde

from the coupling matrix Eq.~1.7!, which is needed in orde
to reproduce the exact triplet curve, should be relativ
small. Contrary to this, the zero order ALDA provides a ve
poor estimate for the lowest singlet excitation, i.e. the ana
gous correction toD«21 to reproduce the exact@E(1Su

1)
2E(1Sg

1)# curve should be positive and large forR~H–H!
.2 Å ~see Fig. 2!. Clearly, taken together in Eq.~1.7! with
the Coulomb term, the simple ALDA approximation E
~1.9! for f xc cannot provide such a correction. This caus
the abovementioned failure of ALDA for the lowest singl
excitation, which is illustrated in Fig. 1. In the next sectio
the cause of the ALDA failure as well as the features
correct xc kernel should possess to remedy this failure
be analyzed.

III. A MINIMAL TWO-ORBITAL 1 s -MODEL

A minimal two-orbital model of dissociating H2 consid-
ers only 1s AOs a1(r ) and b1(r ) located on atoms HA and
HB , respectively. With these orbitals, a qualitative descr
tion of the electronic structure of the ground1Sg

1 and the
excited3Su

1 ,1Su
1 ,1Sg

1 can be given with the correspondin
Heitler–London~HL! wave functions, which become mor
accurate for largerR~H–H!

C0
HL~1Sg

1!5
1

2~11S1
2!1/2@a1~r1!b1~r2!1b1~r1!a1~r2!#

3@a~1!b~2!2b~1!a~2!#, ~3.1!

FIG. 2. Comparison of the exact differential potential curves with the
HOMO-LUMO energy difference for H2.
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 This a
C1
HL~3Su

1!5
1

21/2~12S1
2!1/2@a1~r1!b1~r2!2b1~r1!a1~r2!#

3H @a~1!b~2!1b~1!a~2!#/21/2, Ms50
a~1!a~2!, Ms51
b~1!b~2!, Ms521

,

~3.2!

C2
HL~1Su

1!5
1

2~12S1
2!1/2@a1~r1!a1~r2!2b1~r1!b1~r2!#

3@a~1!b~2!2b~1!a~2!#, ~3.3!

C3
HL~1Sg

1!5H ~11S1
2!1/2

2~11S1
2!

@a1~r1!a1~r2!1b1~r1!b1~r2!#

2
S1

~11S1
2!1/2~12S1

2!
@a1~r1!b1~r2!

1b1~r1!a1~r2!#J @a~1!b~2!2b~1!a~2!#.

~3.4!

In Eqs.~3.1!–~3.4! a andb are the spin functions andS1 is
the overlap integral betweena1(r ) andb1(r ). The function
C3

HL(1Sg
1) is properly orthogonalized toC0

HL(1Su
1). It is

well known that the covalent wave functionC0
HL(1Su

1) be-
comes a better description of the ground state at long b
distances, while closer to the equilibrium bond length
ionic wave function@the first term ofC3

HL(1Sg
1)] mixes into

the ground state. In the context of this paper it is importan
note, from Eqs.~3.2!–~3.3!, the covalent nature of the ex
cited stateC1

HL(3Su
1) and the ionic nature of the stat

C2
HL(1Su

1). Indeed, the spatial part of the wave function E
~3.2! represents a covalent situation with the two electrons
H2 located on the 1s AOs of different H atoms, while that o
the wave function Eq.~3.3! @and indeed the first term of Eq
~3.4!# represents an ionic picture with both electrons inst
taneously located on the same H atom.

Within the KS theory, we are dealing with an indepe
dent particle picture with—usually—a single determinan
wave function. The KS determinant need not be a good
proximation to the true ground state wave function. In dis
ciating H2 the KS ground state is represented with the de
minant Cs5uc1

~↑!(1)c1
~↓!(2)u, wherec1 is the HOMO Eq.

~2.1!. This holds even at very long bond distances, where
KS determinant becomes an equal mixture of the cova
and ionic Heitler–London functions Eqs.~3.1! and ~3.4!,
whereas the true ground state wave function is the cova
Heitler–London wave function. As a matter of fact, the K
d
e

o

.
f

-

-
l
p-
-
r-

e
nt

nt

orbital c1 differs at the bond midpoint from the simple com
bination of the 1s atomic orbitals Eq.~2.1!. This reflects the
fact that in the exact wave function the doubly excited co
figurationc2

2 mixes strongly into the Hartree–Fock config
rationc1

2, modifying the density at the bond midpoint whe
c2 has a node. We refer to Ref. 39 for an analysis of
behavior of the KS orbital of dissociating H2 around the
bond midpoint; for the present paper this subtle point is
important.

We proceed with the analysis of the rigorous eigenva
equations~1.6! for excitation energies of H2. Within the
spin-restricted TDDFPT, the only legitimate approach for t
closed-shell H2 molecule, triplet and singlet excitation ene
gies are obtained separately from the solution of the follo
ing eigenvalue equations

V ic, jd
S Fk5vk

2Fk , ~3.5!

V ic, jd
T Fk5vk

2Fk , ~3.6!

V ic, jd
S 5d i j dcd~«c2« i !

212A~«c2« i !@2Kic, jd
Coul

1Kic, jd
xc ~v!#A~«d2« j !, ~3.7!

Kic, jd
xc ~v!5Kic, jd

xc↑↑ ~v!1Kic, jd
xc~↑↓!~v!, ~3.8!

V ic, jd
T 5d i j dcd~«c2« i !

212A~«c2« i !@Kic, jd
xc~↑↑!~v!

2Kic, jd
xc~↑↓!~v!#A~«d2« j !. ~3.9!

In Eqs.~3.7!–~3.9! the coupling matrix is split into the Cou
lomb part

Kic, jd
Coul 5E drE dr 8c i~r !cc~r !

1

ur2r 8u
c j~r 8!cd~r 8!,

~3.10!

and the xc parts

Kic, jd
xc~↑↑ !~v!5E drE dr 8c i~r !cc~r ! f xc

~↑↑ !

3~r ,r 8,v!c j~r 8!cd~r 8!, ~3.11!

Kic, jd
xc~↑↓ !~v!5E drE dr 8c i~r !cc~r ! f xc

~↑↓ !

3~r ,r 8,v!c j~r 8!cd~r 8!, ~3.12!

In the present minimal two-orbital model the rigorous mat
Eqs. ~3.7!, ~3.9! reduce to the straightforward formulas fo
the excitation energiesvs1 andv t1
to  IP:
vs15AD«21@D«2114K12,12
Coul 12~K12,12

xc~↑↑ !~v5vs1!1K12,12
xc~↑↓ !~v5vs1!!#, ~3.13!

v t15AD«21@D«2112~K12,12
xc~↑↑ !~v5v t1!2K12,12

xc~↑↓ !~v5v t1!!#, ~3.14!
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 This a
where the matrix elementsK12,12 are calculated with the or
bitals c1 and c2 . First, we consider the expression E
~3.13! for the lowest singlet excitationvs1 . For larger
R~H–H! the orbital energy differenceD«21 approaches zero
and the Coulomb integralK12,12

Coul remains finite~it reduces to
twice a local atomic contribution!, so that, after multiplica-
tion by D«21, we can neglect the first two terms under t
square root of Eq.~3.13!,

vs15A2D«21~K12,12
xc~↑↑ !~v5vs1!1K12,12

xc~↑↓ !~v5vs1!!.

~3.15!
However, as was indicated in the previous section, the e
singlet excitation energyv(1Sg

1→1Su
1) remains finite~and

large! at largeR~H–H!. From this and Eq.~3.15! follows
that the sum of the matrix elements (K12,12

xc~↑↑!(v5vs1)
1K12,12

xc~↑↓!(v5vs1)) should be positive and it should diverg
as (D«21)

21 with increasingR~H–H!:

K12,12
xc~↑↑ !~v5vs1!1K12,12

xc~↑↓ !~v5vs1!

;
1

D«21
, at large R~H–H!. ~3.16!

Contrary to this, the exact triplet excitation energyv(1Sg
1

→3Su
1) approaches zero at largeR~H–H! with v(1Sg

1

→3Su
1)!D«12. From this and Eq.~3.14! follows that the

difference @K12,12
xc~↑↑!(v5v t1)-K12,12

xc~↑↓!(v5v t1)# should be
negative and it should approach2D«21/2 from above

@K12,12
xc~↑↑ !~v5v t1!2K12,12

xc~↑↓ !~v5v t1!#

→2D«21/210, at large R~H– H!. ~3.17!

Since the exact xc functionsK12,12
xc~↑↑! and K12,12

xc~↑↓! are not
known, we can analyze various variants satisfying E
~3.16!, ~3.17!. One option is a strong frequency dependen
of the functionK12,12

xc~↑↓!(v). It can diverge as (D«21)
21 at the

frequency v5vs1 , while it remains finite and close to
K12,12

xc~↑↑!(v5v t1) at v5v t1 . With a finite K12,12
xc~↑↑!(v) at all

frequencies, this can satisfy Eqs.~3.16!, ~3.17!. Another op-
tion is that both K12,12

xc~↑↑! and K12,12
xc~↑↓! are approximately

frequency-independent and diverge as (D«21)
21. Then, their

sum @K12,12
xc~↑↑!1K12,12

xc~↑↓!# produces the required divergence,
Eq. ~3.16!, while their difference@K12,12

xc~↑↑!2K12,12
xc~↑↓!# in Eq.

~3.17! could vanish as2D«21/2. One can get further insigh
into the form of the xc kernelf xc(v) using its expression in
terms of the difference between the inversexs

21 of the KS
noninteracting response function and the inversex21 of the
interacting response function8

f xc~r ,r 8,v!5xx
21~r ,r 8,v!2x21~r ,r 8,v!2

1

ur2r 8u
.

~3.18!

The expression Eq.~3.18! is an alternative definition to Eq
~1.5! of f xc . In the present minimal model the noninteracti
response functionxs , which enters Eqs.~1.3! and ~3.18!,
consists of just one term

xs~r ,r 8,v!5
4D«21

v22D«21
2 c1~r !c2~r !c2~r 8!c1~r 8!.

~3.19!
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From Eq.~3.19! follows that the KS response functionxs(v)
of dissociating H2 diverges as2(D«21)

21 at small frequen-
cies uvu,D«21. In the static limit v→0 this divergence
leads according to Eq.~1.3! to a much too large uncouple
polarizability @neglecting the induced Hartree and xc pote
tials in Eq. ~1.3!#. As a matter of fact, special behavior o
dvxc must prevent such unphysical large polarizability. It c
indeed be shown that in dissociating H2 dnxc will exhibit a
step behavior in going from the high-field to the low-field
atom, which counteracts the applied field. It has been no
in Ref. 30 that this behavior is analogous to the counterac
field that has to be produced bydnxc in calculations on linear
chains in a polarizing field.40 Of course, the far too low sin-
glet excitation energy, related toD«21 going to 0, is related
to the overestimation of the LDA and GGA polarizabilit
and the counteracting potential problem. The ionic situati
in state1Su

1 , corresponding to a highly polarized system
should not be so easily accessible, i.e., should be at m
higher energy. We return to this problem in Sec. V.

At larger frequenciesuvu.D«21 the functionxs(v) van-
ishes asD«21. From the established behavior ofxs(v) fol-
lows that its inversexs

21(v) vanishes at small frequencie
uvu,D«21 andxs

21(v) diverges atuvu.D«21.
The interacting response functionx can be calculated

straightforwardly with the ground and excited state Heitle
London wave functions Eqs.~3.1!, ~3.3!, ~3.4! and the cor-
responding energies from the following expression for
density–density response function

x~r ,r 8,v!5(
j

2@Ej2E0#

v22@Ej2E0#2 ^C0
HLur̂~r !uC j

HL&

3^C j
HLur̂~r 8!uC0

HL&, ~3.20!

wherer̂(r )5S i 51
N d(r i2r ). Only singlet states contribute t

the sum Eq.~3.20! and in the minimal model these are th
statesC2

HL of Eq. ~3.3! andC3
HL of Eq. ~3.4!. Inserting Eqs.

~3.3! and ~3.4! in Eq. ~3.20!, and performing the required
integrations, we obtain the following explicit expression f
the interacting response function

x~r ,r 8,v!'
2~E22E0!

@v22~E22E0!2#

S1
2

~12S1
2!2 @a1

2~r !2b1
2~r !#

3@a1
2~r 8!2b1

2~r 8!#1
2~E32E0!

@v22~E32E0!2#

3
@2S1a1

2~r !2S1b1
2~r !12a1~r !b1~r !#

~11S1
2!

3
@2S1a1

2~r 8!2S1b1
2~r 8!12a1~r 8!b1~r 8!#

~11S1
2!

.

~3.21!
Note that both terms in Eq.~3.21! are proportional to the
squareS1

2 of the atomic orbital overlap@for the second term
we can consider the productsa(r )b(r ) anda(r 8)b(r 8) in the
numerator proportional toS1#. Thus for all but the resonanc
frequenciesx(r ,r 8,v) of Eq. ~3.21! vanishes asS1

2 with the
bond lengthR~H–H!; this is true, in particular, for the stati
response functionx(r ,r 8,0). From this it follows that the
inverse response functionx21(r ,r 8,v) diverges asS1

22.
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With the established behavior ofxs
21(v) and x21(v),

one can estimate the behavior of the xc kernelf xc(v) from
the relation Eq.~3.18!. In particular, at small frequencie
uvu,D«21 the functionf xc(v) diverges, since the interactin
function x21(v) diverges, while the noninteractingxs

21(v)
vanishes at these frequencies. At frequenciesuvu.D«21 both
xs

21(v) and x21(v) diverge. Still, the corresponding re
sponse functions Eqs.~3.19! and ~3.21! are not identical to
each other, so that one can assume that the divergenci
xs

21(v) andx21(v) would not cancel each other and, as
result, thef xc(v) will also diverge at these frequencies. Th
from this analysis it follows, that in the minimal model th
xc kernel f xc(v) diverges withR~H–H!. This result is con-
sistent with the divergence Eq.~3.16! of the corresponding
matrix elementK12,12

xc 5(K12,12
xc~↑↑!1K12,12

xc~↑↓!), which has been
found from the analysis of the eigenvalue problem. In
next section a model asymptotic correction to the ALDA
kernel will be proposed, which recovers this divergence.

In the end of this section we would like to point out th
limitations of the minimal model. To illustrate these limita
tions, we insert the interacting response function Eq.~3.21!
of the minimal model in the expression for the static dens
responsedr(r ,0) to the external fielddnext(r )

dr~r ,0!5E dr 8x~r ,r 8,0!dnext~r 8!. ~3.22!

We assume a fielddnext(r )5Ez, wherez is the molecular
axis, so that HA is the down-field atom and HB is the up-field
one. In this case the second term of Eq.~3.21! has zero
contribution to Eq.~3.22! due to the symmetry anddr is
defined with the following expression

dr~r ,0!5
2

2~E22E0!

S1
2

~12S1
2!2 @a1

2~r !2b1
2~r !#

3~dn̄A12dn̄B1!, ~3.23!

where dn̄A1 and dn̄B1 are the one-center field integra
dn̄A15*dra1

2(r )dnext(r ), dn̄B15*drb1
2(r )dnext(r ) with

dn̄A1,dn̄B1 , dn̄A12dn̄B1'2ERAB . Since only the ionic
state Eq.~3.3! contributes to Eq.~3.23!, dr of Eq. ~3.23!
represents interatomic charge transfer from the up-field a
HB to the down-fieldHA , which in the minimal orbital
model vanishes withR~H–H! proportionally to S1

2. Evi-
dently, the minimal orbital model does not recover the tr
limit for dissociating H2, which would be a nonzero~though
small! dr, representing interaatomic polarization of noninte
acting H atoms. The proper description can be achieved o
with an extended orbital model which, besides 1s AOs, em-
ploys also 2s,2p AOs. The extended model will be consid
ered in Sec. V.

IV. AN ASYMPTOTIC CORRECTION FOR THE ALDA
MATRIX ELEMENTS

From Eqs.~3.13!–~3.17! one can attempt to derive th
asymptotic expressions for the matrix elementsK12,12

xc~↑↑! and
K12,12

xc~↑↓! . The additional useful information is that the matr
elementK12,12

xc~↑↑! for electrons with the same spin can be fu
ther subdivided in exchange and correlation parts,K12,12

xc~↑↑!
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

87.114.57.89 On: Fri, 09
of

e

y

m

e

-
ly

5K12,12
x(↑↑)1K12,12

c(↑↑) and the exchange part in the case of t
two-electron closed-shell H2 is just minus the Coulomb inte
gral

K12,12
x~↑↑ !52K12,12

Coul , ~4.1!

which provides the exclusion of the electron self-interactio
Based on Eqs.~3.13!–~3.17! and ~4.1!, we propose the fol-
lowing asymptotic expression for both matrix elemen
K12,12

xc~↑↑! andK12,12
xc~↑↓! :

K12,12
xc~↑↑ !~asymp!5K12,12

xc~↑↓ !~asymp!5
~K12,12

Coul !2

D«21
2K12,12

Coul . ~4.2!

Inserting Eq.~4.2! in ~3.13!, one can see that the finite inte
gralsK12,12

Coul in the Coulomb, exchange, and correlation pa
cancel each other. Thus, neglecting a smallD«21

2 term, we
obtain for the singlet excitationvs1

vs1;2K12,12
Coul , ~4.3!

which is a fair asymptotic estimate for the energy of exci
tion from the covalent configuration to the ionic configur
tion. On the other hand, the componentsK12,12

xc~↑↑!~asymp! and
K12,12

xc~↑↓!~asymp! cancel each other in the expression Eq.~3.14!
for the triplet excitationv t1 , so that we obtain the prope
zero asymptotics forv t1 .

The expression Eq.~4.2! incorporates the asymptotic d
vergence of the xc matrix elements, which has been es
lished with the analysis of the eigenvalue problem. It can
used to correct the ALDA matrix elementsK12,12

xc~↑↑!~ALDA ! and
K12,12

xc~↑↓!~ALDA ! calculated with the ALDA xc kernel Eq.~1.8!.
Since ALDA yields a reasonable estimate of the excitat
energiesvs1 andv t1 for shorterR~H–H! where the HOMO-
LUMO gap D«21 is relatively large, but fails at large
R~H–H! whereD«21 is small, one can useD«21 as an argu-
ment for exponential interpolation betweenK12,12

xc~ALDA ! and
K12,12

xc~asymp! in order to produce corrected elementsK̃12,12
xc :

K̃12,12
xc~↑↑ !5@12exp~2k@D«21#

2!#K12,12
xc~↑↑ !~ALDA !

1exp~2k@D«21#
2!K12,12

xc~↑↑ !~asymp! , ~4.4!

K̃12,12
xc~↑↓ !5@12exp~2k@D«21#

2!#K12,12
xc~↑↓ !~ALDA !

1exp~2k@D«21#
2!K12,12

xc~↑↓ !~asymp! . ~4.5!

At the equilibrium geometry, the dominant terms of Eq
~4.4! and ~4.5! will be the ALDA ones, while for larger
R~H–H! the decrease ofD«21 will lead to larger contribu-
tions from K12,12

xc~↑↑!~asymp! and K12,12
xc~↑↓!~asymp! , thus providing a

proper behavior of the corrected matrix elements.
We proceed with calculations for the dissociating H2

with the asymptotically corrected ALDA~ALDA-AC ! of
Eqs.~4.4!, ~4.5!; see Fig. 3. The important point is that in th
eigenvalue Eqs.~3.5!–~3.9! the corrections are added only t
the diagonal matrix elementsK12,12

xc between the HOMOc1

and LUMOc2 . They are not added to other diagonal or o
diagonal elements; in particular, they are not added to
coupling elementsK1c,1c

xc betweenc1 and unoccupied orbit-
als cc , which consist of 2s and 2p AOs ~the calculations
displayed in Fig. 3 have been carried out with the extend
orbital model!. Thus we use the elementsK̃12,12

xc~↑↑! and K̃12,12
xc~↑↓!

of Eqs. ~4.4!, ~4.5! for the coupling betweenc1 and c2 ,
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 This a
while for other couplings the elementsKic,Jd
xc~ALDA ! of the stan-

dard ALDA are retained. No explicit frequency dependen
of the matrix elements is introduced and we remain, f
mally, in the domain of the adiabatic approximation. In th
context, the use of different expressions for the matrix e
ments of different orbitals simply means that we are trying
reproduce properly the action of a spatially nonlocal xc k
nel f xc(r ,r 8) on those orbitals. It will be argued in the ne
section that the use of different expressions for the ma
elements of different orbitals simulates a rather complex s
tial behavior of the xc kernelf xc(r ,r 8,v) with diverging be-
havior only in the atomic regions.

Figure 3 compares the exact differential potential cur
with those calculated with the ALDA and ALDA-AC with
the parameterk5100. The functions Eqs.~4.4!, ~4.5! radi-
cally improve the performance of TDDFPT for the sing
excitation. Unlike the purely repulsive ALDA curve~see Fig.
1!, the ALDA-AC curve exhibits a minimum, although it i
somewhat displaced from that of the exact curve. T
ALDA-AC curve does not depart very far from the exact o
and the calculated excitation energy does not vanish w
R~H–H! as was the case for the standard ALDA. T
ALDA-AC potential energy curve does not go asympto
cally to an ionic H1 – H2 situation, but in agreement with th
exact curve it exhibits the effect of the avoided crossing
larger distance of the ionicc1→c2

1Su
1 excited state@C2

HL ,
Eq. ~3.3!# by a 1Su

1 state representing a H–H* system i.e.,
one H atom is excited. The excitation will be to 2s with
admixture of a 1s→2ps excited state. So in the TDDFT
calculation the1Su

1 excitation energy asymptotically n
longer corresponds to a pure transition from the HOMOc1 of
Eq. ~2.1! to the LUMOc2 of Eq. ~2.2!. Starting from
R~H–H!'2.50 Å, as indicated by the analysis of the calc
lated weights of the single-particle transitions, an apprecia
contribution comes from the transition from the HOMO
the antibonding orbitalc3

c3~r !52su~r !5
1

A222S
@ahyb~r !2bhyb~r !#, ~4.6!

whereahyb(r ) and bhyb(r ) are hybrid orbitals consisting o
2s,2ps AOs of atoms HA and HB , respectively. At

FIG. 3. Comparison of the exact and ALDA-AC and ALDA differenti
potential curves for H2.
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R~H–H!53.0 Å the transitionsc1→c2 and c1→c3 bring
almost equal contributions; at largerR~H–H! the contribu-
tion of the former transition gradually vanishes, and f
R~H–H!>4.0 Å the lowest singlet transition becomes an
most purec1→c3 transition. As a result, the singlet excita
tion energy calculated by ALDA-AC approaches the val
D«3158.6 eV, which is just the LDA difference between th
energies of the orbitalsc1 andc3 . In fact, some oscillation
of the ALDA-AC singlet curve around the exact one appe
to occur just because of the difference of the correspond
asymptotics, 10.2 eV for the exact curve, corresponding
the exact 1s→2s excitation, and 8.6 eV for the TDDFT
curve, corresponding to the LDA1s-2s orbital energy differ-
ence. The asymptotic error of ALDA-AC is an artifact of th
ground state LDA calculations with the xc potentialnxc

~LDA ! .
The exact KS potential of dissociated H2 will have to pro-
duce the exact H atom density around each H nucleus,
the occupied orbitalc1 must in that region be identical to th
H 1s atomic orbital and the KS potential must be equal
the bare nuclear potential of the H atom. The unoccup
KS 2s orbital must also have the exact 2s orbital energy and
a TDDFT calculation based on an exact KS potential sho
provide an exact valueD«31510.2 eV, which is the atomic
energy of 1s→2s or 2p promotion. Thus further improve
ment of the TDDFPT results can be achieved by the repla
ment of nxc

~LDA ! with a more refined potential, which woul
incorporate correctly the effects of exchange and non
namical correlation in dissociating H2 so as to produce the
bare nuclear field around each H atom. The correspond
refinement still presents a problem for DFT and, to the b
of our knowledge, none of the existing model potentials c
guarantee the proper dissociation limit. It is interesting
observe that singly excited configurationc1c351sg2su ,
although capable of yielding in the TDDFT calculation a
exact excitation energy, does not correspond to a cor
asymptotic wave function. Completely analogous to the s
ation for the ground state, where the determina
u1sga1sgbu is an equal mixture of ionic and covalent wav
functions, the configuration 1sg2su leads to an equal mix-
ture of ionic configurations, describing negative H2 ions
with an electron in 1s and a promoted electron in 2s, and
‘‘covalent’’ configurations with a 1s electron on one H and a
promoted electron in 2s on the other H. To get a correc
wave function without ionic character one needs configu
tion mixing with thedoubly excitedconfiguration 1su2sg to
remove the ionic terms. We have here a case where the
lution vectorF of the eigenvalue problem Eq.~3.5! or ~3.6!,
which has only coefficients referring to singly excited co
figurations, does not at all represent the composition of
excited state wave function. This is related with the fact t
the ground state KS determinant in this case is not a g
approximation of the ground state wave function, for whi
admixture of the doubly excited configuration (1su)2 is
needed.

The function Eqs.~4.4!, ~4.5! also definitely improves
the performance of TDDFPT for the triplet excitation~see
Fig. 3!. The ALDA-AC curve goes closer to the exact one
a larger interval than the ALDA curve. Due to the admixtu
of the LDA functional in Eqs.~4.4!, ~4.5! the ALDA-AC
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 This a
curve also suffers from the triplet instability, although t
corresponding instability point atR~H–H!53.6 Å is about
twice as far out as the ALDA instability point at 1.75 Å
Further refinement of the simple model Eq.~4.4!, ~4.5! will,
hopefully, remove the triplet instability altogether.

V. RESPONSE FUNCTION x AND
FIELD-COUNTERACTING TERM OF THE xc
POTENTIAL IN THE EXTENDED 1 s ,2s ,2p MODEL

Our discussion of the behavior off xc and the asymptotic
behavior of theK12,12 matrix elements has employed th
minimal orbital model for H2. The conclusions should not b
dependent on the use of this limited model, and in this s
tion we shall consider an extension of the minimal tw
orbital model of Sec. III. In this 1s,2s,2p model the set Eqs
~3.1!–~3.4! of the Heitler–London wave functions of th
minimal model is extended with additional HL function
which describe 1s→2s,2p electron promotions. We will de
rive the response functionx(r ,r 8,v) within this extended
model, and the KS response functionxs(r ,r 8,v). As ex-
pected, the polarizability derived withx(r ,r 8,v) will now
correctly reproduce the intra-atomic polarizations of the d
sociating H atoms. We will also derive from the respon
functions the established occurrence of a counterac
field40 in the KS potential for stretched H2 in a external
field,30,41 or in dnxc in linear response calculations. In pa
ticular, however, this section will serve to study th
asymptotic behavior off xc beyond the rather limited minima
orbital model.

Only 1S states are considered, since these are impor
for our further analysis. They are represented with the
lowing functions:

C4
HL~1Su

1!5
1

23/2~12S1S21S12
2 !1/2@a1~r1!b2~r2!

2b1~r1!a2~r2!1a1~r2!b2~r1!

2b1~r2!a2~r1!#@a~1!b~2!2b~1!a~2!#,

~5.1!
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C5
HL~1Su

1!5
1

23/2~12S1S31S13
2 !1/2 @a1~r1!b3~r2!

2b1~r1!a3~r2!1a1~r2!b3~r1!

2b1~r2!a3~r1!#@a~1!b~2!2b~1!a~2!#,

~5.2!

C6
HL~1Sg

1!5
1

23/2~11S1S21S12
2 !1/2@a1~r1!b2~r2!

1b1~r1!a2~r2!1a1~r2!b2~r1!

1b1~r2!a2~r1!#@a~1!b~2!2b~1!a~2!#,

~5.3!

C7
HL~1Sg

1!5
1

23/2~11S1S31S13
2 !1/2@a1~r1!b3~r2!

1b1~r1!a3~r2!1a1~r2!b3~r1!

1b1~r2!a3~r1!#@a~1!b~2!2b~1!a~2!#,

~5.4!

where a2(r ),b2(r ) are 2s AOs and a3(r ),b3(r )
are 2ps AOs located on atoms HA and HB , respectively,S2

is the overlap integral betweena2(r ) and b2(r ),S3 is
that betweena3(r ) andb3(r ),S12 is the overlap integral be
tweena1(r ) and b2(r ), and S13 is that betweena1(r ) and
b3(r ).

The interacting response functionx calculated in this
model has terms arising from the functions Eqs.~5.1!–~5.4!
in addition to those of Eq.~3.21!
x~r ,r 8,v!5(
j 52

7
2@Ej2E0#

v22@Ej2E0#2 ^C0
HLur̂~r !uC j

HL&^C j
HLur̂~r 8!uC0

HL&

5
2~E22E0!

@v22~E22E0!2#

S1
2

~12S1
2!2 @a1

2~r !2b1
2~r !#@a1

2~r 8!2b1
2~r 8!#1

2~E32E0!

@v22~E32E0!2#

3
@2S1a1

2~r !2S1b1
2~r !12a1~r !b1~r !#

~11S1
2!

@2S1a1
2~r 8!2S1b1

2~r 8!12a1~r 8!b1~r 8!#

~11S1
2!

1(
i 52

3
~Ei 122E0!

@v22~Ei 122E0!2#

1

~11S1
2!1/2~12S1Si1S1i

2 !

3[a1~r !ai~r !2b1~r !bi~r !1S1b1~r !ai~r !2S1a1~r !bi~r !] @a1~r 8!ai~r 8!2b1~r 8!bi~r 8!
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1S1b1~r 8!ai~r 8!2S1a1~r 8!bi~r 8!] 1(
i 52

3
~Ei 142E0!

@v22~Ei 142E0!2#

1

~11S1
2!1/2~11S1Si1S1i

2 !

3@a1~r !ai~r !1b1~r !bi~r !1S1b1~r !ai~r !1S1a1~r !bi~r !12S1ia1~r !b1~r !#

3@a1~r 8!ai~r 8!1b1~r 8!bi~r 8!1S1b1~r 8!ai~r 8!1S1a1~r 8!bi~r 8!12S1ia1~r 8!b1~r 8!#. ~5.5!
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Unlike the function Eq.~3.21! of the minimal model, the
response function Eq.~5. 5! of the extended model contain
in the numerators of the last two sums the one-center te
a1(r )ai(r ) and b1(r )bi(r ), which represents 1s→2s,2p
promotions, and do not vanish withR~H–H!. Then, neglect-
ing all the terms with overlap integrals in Eq.~5.5!, one can
obtain the following asymptotic expression ofx~v! for all
frequencies except those in the neighborhood of the re
nance frequencies:

x~r ,r 8,v!'(
i 52

3
~Ei 122E0!

@v22~Ei 122E0!2#
@a1~r !ai~r !

2b1~r !bi~r !#@a1~r 8!ai~r 8!2b1~r 8!bi~r 8!#

1(
i 52

3
~Ei 142E0!

@v22~Ei 142E0!2#

3@a1~r !ai~r !1b1~r !bi~r !#@a1~r 8!ai~r 8!

1b1~r 8!bi~r 8!#. ~5.6!

Sox~v! does not any more go to zero likeS1
2, but as one can

see from Eq.~5.6! that the functionx~v! will have nonzero
values in larger andr 8 regions forR~H–H!→` ~in particu-
lar, also in the static limitv→0). From the finiteness o
x(r ,r 8,v) of Eq. ~5.6! it follows that we can no longer con
clude that the inverse response functionx21(r ,r 8,v) has to
diverge.

The noninteracting response functionxs can be written
in the extended model as follows:

xs~r ,r 8,v!5
4D«21

v22D«21
2 c1~r !c2~r !c2~r 8!c1~r 8!

1 (
c53

6
4D«c1

v22D«c1
2 c1~r !cc~r !cc~r 8!c1~r 8!,

~5.7!

wherec32c6 are the bonding and antibonding KS orbita
built from 2s,2ps AOs andD«c1 are the corresponding en
ergy differencesD«c15«c2«1 . Just as the function Eq
~3.19! of the minimal model,xs(v) of Eq. ~5.7! diverges as
2(D«21)

21 at small frequenciesuvu,D«21. However, un-
like Eq. ~3.19!, xs(v) of Eq. ~5.7! is finite at larger frequen-
cies uvu.D«21, since its first term vanishes, while oth
terms are finite due to the finiteness of the energy differen
D«c1 . From this follows, that the inverse response funct
xs

21(r ,r 8,v) vanishes atuvu,D«21 and it remains finite at
uvu.D«21.

We now first consider the static density respon
dr(r ,0) to an external fielddnex(r )5Ez as obtained from
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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the interacting response functionx(r ,r 8,v). In fact, the in-
traatomic polarization terms, which are lacking in the expr
sion Eq. ~3.23! of the minimal model, are properly intro
duced by thex(r ,r 8,v) of the extended model. To see thi
one can insert the expression Eq.~5.6! into the formula Eq.
~3.22!. The second sum of Eq.~5.6! has zero contribution to
dr due to the symmetry, which yields the followin
asymptotic expression fordr(r ,0)

dr~r ,0!5
@dn̄B22dn̄A2#

~E42E0!
@a1~r !a2~r !2b1~r !b2~r !#

1
@dn̄B32dn̄A3#

~E52E0!
@a1~r !a3~r !2b1~r !b3~r !#,

~5.8!

wheredn̄Ai anddn̄Bi are the one-center field integralsdn̄Ai

5*dra1(r )dnext(r )ai(r ), dn̄Bi5*drb1(r )dnext(r )bi(r ).
Unlike the vanishing density response Eq.~3.23! of the mini-
mal model,dr(r ,0) of Eq. ~5.8! remains finite atR~H–H!
→`. It represents the correct intraatomic polarization
noninteracting H atoms. Indeed, while the orbital produ
b1

2(r ) and a1
2(r ) in Eq. ~3.23! are both positive and, take

together, produce interatomic charge transfer, each of
productsa1(r )ai(r ) andb1(r )bi(r ) in Eq. ~5.8! changes sign
inside the corresponding atom and they produce intraato
polarization. In particular, the first term of Eq.~5.8! repre-
sents ‘‘in–out’’ polarization from 1s to 2s AOs, while the
second term represents ‘‘left–right’’ polarization from 1s to
2ps AOs and the signs of the productsa1(r )a3(r ) and
b1(r )b3(r ) provide the proper polarization of the densi
along the field.

With the response Eq.~5.8!, the change of the xc poten
tial can be expressed as the following integral with the
kernel:

dnxc~r !5E dr 8dr~r 8! f xc~r ,r 8!

5
@dn̄B22dn̄A2#

~E42E0!
E dr 8@a1~r 8!a2~r 8!

2b1~r 8!b2~r 8!# f xc~r ,r 8!

1
@dn̄B32dn̄A3#

~E52E0!
E dr 8@a1~r 8!a3~r 8!

2b1~r 8!b3~r 8!# f xc~r ,r 8!. ~5.9!

The potentialdnxc(r ) is a part of the KS response expressi
Eq. ~1.3! in the special case ofv50
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 This a
dr~r !5E dr 8xs~r ,r 8!

3H dnext~r 8!1E dr 9
dr~r 9!

ur 82r 9u
1dnxc~r 8!J .

~5.10!

Note, thatdr(r ) in the l.h.s. of Eq.~5.10! is, of course, the
well-defined and finite function Eq.~5.8!. However, as fol-
lows from Eq. ~5.7! that the static KS response functio
xs(r ,r 8) diverges as (D«21)

21 with R~H–H!. From this it
follows that the potential changes within the brackets of E
~5.10! should cancel each other:

dnxc~r 8!'2dnext~r 8!2E dr 9
dr~r 9!

ur 82r 9u
. ~5.11!

Thus with Eq.~5.11! TDDFPT requires generation of a field
counteracting termdnxc in the xc potential, which compen
sates the combined effect of the external field and the
duced Hartree potential in order to produce withxs(r ,r 8) a
finite density response Eq.~5.8!. This compensation mean
that the potential changednxc(r ) should be positive on the
low-field atomHA and it should be negative on the high-fie
atom HB . This is 2dnext. Sincedr only represents polar
ization of atomic density, its potential is basically zero~no
monopole term! and indeed

dnxc~r !'2dnext~r !. ~5.12!

Thus a field-counteracting term emerges in the xc poten
which completely compensates the external field in the
sociation limit. Note that such a term is lacking in LDA an
GGAs, which is related to the established failure of t
ALDA for the excitation energies.

Finally we address the question what one can concl
about f xc and its matrix elementsKic, jd

xc in the extended
model. We have observed that the divergence ofx21(v) at
all frequencies and the divergence ofxs

21(v) at v@D«21

found in the minimal model will not apply strictly in the
extended model. Indeed, while the first two terms of E
~5.5! vanish with R~H–H!, the additional terms contain in
the numerators the one-center orbital productsa1(r )ai(r )
andb1(r )bi(r ), which represent 1s→2s,2p promotions, and
do not vanish withR~H–H!. Note that these two groups o
terms are located in different regions. Containing the orb
productsa1

2(r ) andb1
2(r ), the vanishing terms are localize

in atomic regions, while the productsa1(r )ai(r ) and
b1(r )bi(r ) with the diffuse orbitalsai(r ) andbi(r ) bring the
nonvanishing terms to the outer regions of the atomic per
ery. Thus one can come to the conclusion, that the inter
ing response function Eq.~5.5! of the extended model be
comes very small only in the atomic regions, while
remains finite at the atomic periphery. From this picture
x(r ,r 8,v) one can expect that the corresponding inverse
sponse functionx21(r ,r 8,v) diverges in the atomic regions
while it remains finite at the atomic periphery.

For the noninteracting response functionxs , Eq. ~5.7!,
we have a picture similar to that for the interacting functi
Eq. ~5.5!: the first term of Eq.~5.7! is localized in the atomic
regions, while other terms are localized in the outer regio
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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Then, the first term diverges as2(D«21)
21 at small frequen-

cies uvu,D«21 and it vanishes asD«21 at larger frequencies
uvu.D«21, while other terms of Eq.~5.7! remain finite.
Thus at uvu.D«21 the noninteracting response functio
xs(r ,r 8,v) vanishes in the atomic regions and it is finite
the outer regions. One can expect, that the correspon
inverse functionxs

21(r ,r 8,v) diverges in the atomic regions
and is finite at the atomic periphery.

From these results and the relation Eq.~3.18! one can
conclude that the extended model leads to a complex sp
structure of the xc kernelf xc(r ,r 8,v) with diverging behav-
ior only in certain regions.f xc(r ,r 8,v) diverges in the
atomic regions, where x21(r ,r 8,v) diverges, while
xs

21(r ,r 8,v) vanishes atuvu,D«21 and diverges atuvu
.D«21. On the other hand,f xc(r ,r 8,v) remains finite at the
atomic periphery, where bothx(r ,r 8,v) and xs

21(r ,r 8,v)
are finite. This conclusion of the extended model generali
that of the minimal model in Sec. III. The established co
plex spatial behavior off xc could be, in principle, reproduce
in some analytical form, although the corresponding expr
sion for f xc(r ,r 8) might be rather involved. For TDDFPT
applications, however, only matrix elementsKic, jd

xc of
f xc(r ,r 8) are required, and the present corrections Eqs.~4.4!
and~4.5! simulate the effect of the complex spatial structu
of f xc(r ,r 8) on Kic, jd

xc . Indeed, the introduced divergence
the matrix elementsK12s,12t

xc corresponds to these integra
involving spatial integrations with the 1s functions a1

2(r )
and b1

2(r ) as ‘‘weighting’’ functions. These integration
therefore samplef xc in the atomic region where it has diverg
ing behavior. On the other hand, the finiteness of the ma
elementsK13s,13t

xc corresponds to the finiteness off xc(r ,r 8) at
the atomic periphery, where the productsa1(r )ai(r ) and
b1(r )bi(r ) have significant values.

VI. CONCLUSIONS

In this paper time-dependent density functional pertur
tion theory~TDDFPT! has been applied to calculation of th
differential potential curves of the lowest excited3Su

1 and
1Su

1 states of H2. It has been found that the standa
TDDFPT method ALDA fails to reproduce the correct for
of both potential curves. The ALDA curve for the3Su

1 state
displays the triplet instability of the ALDA solution, while
the ALDA curve for the1Su

1 state, instead of having th
correct positive asymptotics, approaches the zero asymp
ics at largerR~H–H!.

The main conclusion of this paper is that ALDA fai
due to a breakdown of its simple spatially local approxim
tion for the xc kernelf xc(r ,r 8,v) in the case of dissociating
H2. The combined analysis of the eigenvalue problem for
excitation energies and the direct estimate of the xc ke
has indicated a complex structure of the functi
f xc(r ,r 8,v), which is revealed in a different behavior of th
corresponding matrix elementsK1c,1c

xc with the bond distance
R~H–H!. In particular, the matrix elementK12,12

xc for the or-
bital c2 , which represents the ionic configuration, has be
found to diverge withR~H–H!, while the matrix elements
for the orbitalscc , which represent an electron promoted
2s and 2p AOs, are to be finite. The complex structure
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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f xc(r ,r 8,v) that could lead to this behavior of the matr
elements has been estimated from the extended Heit
London model with 1s,2s,2p AOs, which showed possible
divergence off xc(r ,r 8,v) in atomic regions, while it will
remain finite in the atomic periphery. This spatial behav
of f xc could hopefully be modeled within the adiabatic a
proximation with a proper functionf xc(r ,r 8).

In this paper the effect of spatial nonlocality off xc(r ,r 8)
has been modeled by using different expressions for the
responding matrix elements of different orbitals. Spec
cally, the asymptotically corrected ALDA~ALDA-AC ! ex-
pressions Eqs.~4.4!, ~4.5! have been used for the matr
elementsK12,12

xc(st) , while for other matrix elements the stan
dard ALDA expressions have been retained. This appro
provides substantial improvement over the standard ALD
In particular, the ALDA-AC curve for the lowest singlet ex
citation reproduces qualitative features of the exact curve
displays a minimum and approaches a relatively large p
tive energy at largeR~H–H!. The corresponding TDDFT
solution exhibits the effect of the avoided crossing of t
potential curves. ALDA-AC also produces a substantial i
provement for the calculated lowest triplet excitation. F
ther improvement of the TDDFT results can be achieved
the improvement of the ground state KS solution and refi
ment of the asymptotic correction Eqs.~4.4!, ~4.5!.

The asymptotic expression for the static density respo
to an external field has been obtained with the calcula
interacting response functionx. In the dissociation limit it
represents the correct picture of the intra-atomic polariza
of noninteracting H atoms. The change of the xc poten
has been evaluated and the origin of the field-counterac
term in nxc has been established within TDDFPT.

The present results can be of importance for tim
dependent density functional theory of photochemical re
tions, where the dissociation of the H–H bond can serve
prototype of photodissociation of a single covalent bond.
in H2, the TDDFT zero order energyD« of certain triplet and
ionic singlet excitations, which correspond to the breaking
the bond, will vanish with the bond length. In this situatio
we anticipate the same failure of ALDA as for the prese
case of the dissociating H2 and we hope that the asymptot
corrections of the type Eqs.~4.4!, ~4.5! will bring a similar
substantial improvement of the results.
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