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A formal procedure to construct the contributions to the frequency-dependent density-density (potential-
density) response function in a series expansion with respect to the coupling constant of the electrons is
presented. The required input quantities are obtained from static perturbation theory along the adiabatic
connection. The contributions to the response function up to a given order are shown to determine the
corresponding contributions in a coupling constant expansion of the frequency-dependent exchange-correlation
kernel, the key quantity in time-dependent density-functional theory (TDDFT) in the linear response regime.
Both the frequency-dependent response function as well as the exchange-correlation kernel thus are accessible
in an order by order fashion. By exploiting the relations between the expansions of the response function and
the exchange-correlation kernel, various methods are proposed to calculate the Kohn-Sham correlation energy
via the adiabatic-connection fluctuation-dissipation (ACFD) theorem, including a hierarchy of ACFD methods
towards the exact Kohn-Sham correlation energy. For a recently introduced ACFD method relying on a truncated
power series approximation of the correlation kernel, a formal justification for the underlying ansatz is provided.
The presented formal approach to construct the exchange-correlation kernel in an order by order fashion not only
represents a basis for new ACFD methods for the Kohn-Sham correlation energy but additionally is of interest
to devise new TDDFT methods in the linear response regime.
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I. INTRODUCTION

A longstanding goal of electronic structure theory is the
development of methods that have a competitive ratio between
accuracy and computational effort and, perhaps even more
challenging, are universally applicable. Universal applicabil-
ity here shall refer to various aspects. That is, an electronic
structure method ideally should be applicable to finite, i.e.,
atomic and molecular, as well as infinite, i.e., periodic, sys-
tems, to metals as well as insulators and semiconductors, to
electronic systems of single reference as well as multirefer-
ence character. The label multireference character comprises
very different electronic structures and situations. Important
cases are the left-right or static correlation occurring upon
breaking of chemical bonds. The simplest example is the
dissociation of the hydrogen molecule which results in a two-
determinant wave function corresponding to an antiferromag-
netic coupling of the two electrons with the spin polarization
on each nucleus fluctuating and being zero on average as
required for a singlet state. Left-right correlation can occur
in small molecular systems and, in larger molecules, often is
restricted to a few electrons in a specific part, e.g., a bond, of
the molecule. The other extreme is Wigner crystallization of
the homogeneous electron gas an infinite system in which at
low density all electrons of the system are strongly correlated.
Correlation of electrons with different angular momentum,
e.g., in the beryllium atom, again occurs locally for a few
electrons and is not restricted to free atoms but frequently
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occurs at specific sites in solids, typically in materials con-
taining transition metals.

The holy grail in electronic structure theory is a method
that is both efficient and applicable in all of the above
situations with predictive power. By predictive power it is
meant that the method by itself detects and treats a possible
multireference character. That is, a system-dependent specifi-
cation of active spaces or other parameters to treat correlation
should not be necessary. The adiabatic-connection fluctuation-
dissipation (ACFD) theorem [1,2] for the Kohn-Sham (KS)
correlation energy provides a formal basis to develop elec-
tronic structure methods approaching the above sketched
goals of general applicability, predictive power, accuracy,
and efficiency for the ground states of electronic systems.
ACFD methods [3–67] are density-functional methods falling
in the class of DFT (density-functional theory) methods with
orbital-dependent functionals [68]. This means the exchange
and correlation energy is not given by an explicit functional
of the electron density and its gradients but by expressions in
terms of KS orbitals and eigenvalues. KS orbitals and eigen-
values implicitly are functionals of the ground-state electron
density. Therefore orbital-dependent exchange and correlation
functionals also are implicit functionals of the electron density
and the realm of DFT is not left.

The KS exchange energy is known exactly in terms of
the KS orbitals and therefore is calculated exactly in ACFD
methods. All other parts of the ground-state energy except
the correlation contribution are routinely treated exactly in
KS methods. Thus the treatment of the correlation energy
remains to be considered. Firstly, it shall be noted that a
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combination of an exact calculation of the exchange energy
with a treatment of the correlation via one of the numerous
conventional density functionals [69–71] within the local den-
sity approximation or the generalized gradient approximation
does not work because the latter functionals rely on error
cancellations between exchange and correlation.

The ACFD theorem provides an exact expression for the
KS correlation energy in terms of dynamic, i.e., frequency-
dependent, density-density (potential-density) response func-
tions. In more detail, the quantities entering the ACFD the-
orem are the dynamic response function of the KS system
and the dynamic response functions of corresponding inter-
acting systems with the electron-electron interaction scaled
by a coupling constant between zero and one. The response
function for the case of full coupling, i.e., a coupling constant
of one, is the response function of the physical electron
system. The KS response function is known exactly in terms
of the KS orbitals and eigenvalues. The interacting response
functions, on the other hand, are not known exactly and
typically are obtained approximately via time-dependent DFT
(TDDFT) in the linear response regime [72–74]. TDDFT,
in principle, yields the required response functions exactly
but the exchange-correlation kernel, the frequency-dependent
functional derivative of the exchange-correlation potential,
which would be required to that end, is not known ex-
actly and needs to be approximated. Thus the quantity to
approximate in ACFD methods is the exchange-correlation
kernel.

ACFD methods have been developed and investigated for
about 20 years [3–67]. The vast majority of ACFD methods
employ the direct random phase approximation (dRPA) which
means the exchange-correlation kernel is simply neglected
and only the remaining frequency-independent Hartree kernel,
which, of course, is known, is taken into account. With respect
to reaction energies dRPA methods can compete with standard
DFT methods using hybrid functionals but in addition can take
into account dispersion interactions. On the other hand, dRPA
methods exhibit the serious fundamental shortcoming that
they are not free of unphysical self-interaction. This shows up,
amongst others, in the fact that the dRPA correlation energy
for one electron systems like the hydrogen atom is nonzero.
As a result of the unphysical self-interactions, dRPA total
energies are much too low and dRPA atomization energies are
very poor.

A step beyond the dRPA is to take into account the ex-
act frequency-dependent exchange kernel in addition to the
Hartree kernel. The exchange kernel itself is not known ex-
plicitly neither in terms of the electron density nor in terms of
KS orbitals and eigenvalues. The exchange kernel, however, is
accessible via an integral equation containing KS orbitals and
eigenvalues [75–77]. ACFD methods using the Hartree plus
the exact exchange kernel are rigorously free of unphysical
self-interactions and yield more accurate energetic data than
dRPA methods [46,55]. However, in certain cases, related
to singlet-singlet instabilities of the exact-exchange-only en-
ergy unphysical singularities can occur [61]. Although these
singularities are integrable in the integration over complex
frequencies that is carried out in ACFD methods this is clearly
unsatisfying. Indeed, the appearance of these instabilities goes

along with interacting response functions which are no longer
negative semidefinite as required.

The only approximation in ACFD methods based on the
Hartree plus the exact exchange kernel is the neglect of
the correlation kernel. In Ref. [63], an approximation of the
correlation kernel in terms of a power series of the Hartree
plus exchange kernel was introduced. In the first approach,
this power series was truncated after the forth-order term and
weights of the second- to forth-order terms of the power series
were treated as parameters which were optimized by minimiz-
ing errors of a set of reaction energies. This truncated power
series approximation (PSA) leads to highly accurate reaction
energies and energies of transition states. Reaction energies,
e.g., were approaching the quality of CCSD(T) (coupled
cluster singles doubles and perturbative triples) methods and
energies of transition states were clearly more accurate than
those from CCSD (coupled cluster singles doubles) methods.
The computational effort of the ACFD method based on the
truncated PSA is significantly lower than that of CCSD or
CCSD(T) method. The methods exhibits an N5 scaling with
N characterizing the system size compared to an N6 or N7

scaling behavior of canonical CCSD or CCSD(T) methods.
Even more important, the ACFD approach employing the
truncated PSA for the correlation kernel was shown to be
applicable to multireference systems. For example, a highly
accurate dissociation curve for the nitrogen molecules was ob-
tained, which was superior to that from a multireference CISD
(configuration interaction with singles and doubles) calcula-
tion, despite the fact that the reference KS state for all bond
distances was a single non-spin-polarized Slater determinant
[63]. While a treatment of multireference systems obviously
is not possible in single-reference wave-function methods, it
is a promise of the KS formalism that all systems independent
of their electronic nature can be described on the basis of a
single Slater determinant, the KS determinant, provided the
ground state is nondegenerate as in the case of dissociating
nitrogen. The ACFD method based on the truncated PSA was
the first KS method to live up to this promise. The success of
the PSA demonstrated that ACFD methods have the potential
to become a new family of electronic structure methods that
reach the above sketched goals of accuracy, general applica-
bility, predictive power, and computational efficiency.

In Ref. [63], the PSA was introduced in an ad hoc fashion
without further justification. Here expansions of the interact-
ing response function as well as the exchange-correlation ker-
nel with respect to the coupling constant, i.e., the strength of
the electron-electron interaction, are introduced and analyzed
in detail and the relations between the expansions for the
response function and the kernel are uncovered. As part of
this analysis integral equations for the exchange kernel and,
in an order by order fashion, for the correlation kernel are pre-
sented. For the exchange kernel, this represents a rederivation
of its known integral equation [75–77] in a different manner
which sheds light on the meaning of the quantities occurring
in this integral equation. The relation of expansions for the
response function and the exchange-correlation kernel is then
shown to provide a formal basis for the ansatz of a PSA for
the correlation kernel. In a next step, various possible variants
of employing truncated as well as infinite, renormalized PSAs
in future ACFD methods are presented.
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The expansions of exchange-correlation kernels con-
sidered here are different from those in conventional
many-body perturbation theory because the kernels are
functional derivatives of local multiplicative KS exchange-
correlation potentials with respect to the electron density and
thus depend on only two spatial coordinates, i.e., are two-point
quantities in the language of many-body perturbation theory.
Expansions within many-body perturbation theory, like, for
instance, that of Ref. [53], typically are based on kernels from
nonlocal potentials, e.g., the nonlocal exchange potential, and
typically are four-point quantities.

Finally, a hierarchy of ACFD methods is introduced that
represents as sequence of methods which go beyond the PSA
based on the Hartree plus the exchange kernel or equivalently
the first order term of the response function but which addi-
tionally take into account exact contributions to the correlation
kernel up to some order in the coupling constant. The pre-
sented hierarchy of ACFD methods systematically becomes
exact in higher and higher orders of the coupling constant
and, in this way, systematically approaches the Kohn-Sham
correlation energy.

The paper is organized as follows. In the proceeding sec-
tion, the ACFD theorem is discussed. In Sec. III the adiabatic
connection along the coupling constant in the static case
and a corresponding perturbation theory with respect to the
coupling constant for ground and excited electronic states
and their energies [78–80] is briefly reviewed. The first and
higher-order contributions to wave functions and energies
are prerequisites to expand the frequency-dependent response
function with respect to the coupling constant. Furthermore,
the optimized effective potential method [68,81–86] is briefly
reconsidered in Sec. III because it yields KS exchange and
correlation potentials that are needed later on. In Sec. IV,
expansions of the frequency-dependent response function and
the exchange-correlation kernel with respect to the coupling
constant are introduced and the relations between the ex-
pansions for response function and kernel are uncovered.
Moreover, equations for the exchange kernel and for each
order of the correlation kernel are derived and discussed.
In Sec. V A, various methods that are based on the first
order contribution to the response function or equivalently on
the sum of Hartree and exchange kernel are presented and
discussed including truncated as well as infinite, renormalized
PSAs. In Sec. V B, a hierarchy of ACFD methods approaching
the KS correlation energy is introduced. Finally, the last
Section draws some conclusions, in particular concerning the
scope of ACFD methods and possible further applications of
the derived expansions of the frequency-dependent response
function and the exchange-correlation kernel.

II. THE ADIABATIC-CONNECTION
FLUCTUATION-DISSIPATION THEOREM

The adiabatic-connection fluctuation-dissipation theorem
[1,2]

Ec = −1

2π

∫ 1

0
dα

∫
drdr′ 1

|r − r′|

×
∫ ∞

0
dω [χ (α, iω, r, r′) − χs(iω, r, r′)] (1)

provides an exact expression for the KS correlation energy Ec

in terms of the frequency- and coupling-constant-dependent
response function χ (α, iω, r, r′) and the KS response func-
tion χs(iω, r, r′). Here α denotes the coupling-constant, i.e.,
a scaling of the electron-electron interaction, and iω an
imaginary frequency. For a coupling constant of α = 0, the
interacting response function χ turns into the KS response
function χs, that is

χs(iω, r, r′) = χ (α = 0, iω, r, r′). (2)

For a simple elementary derivation of the ACFD theorem see
Ref. [40].

The KS response function χs is given by

χs(iω, r, r′) =
∑

i

∑
a

φ
†
i (r)φa(r)φ†

a (r′)φi(r′)
εi − εa + iω

+
∑

i

∑
a

φ†
a (r)φi(r)φ†

i (r′)φa(r′)
εi − εa − iω

(3)

in terms of the occupied and unoccupied KS orbitals φi and φa,
respectively, and their eigenvalues εi and εa. Throughout this
work, indices i, j, and k, refer to occupied orbitals, indices a,
b, and c, to unoccupied ones, and indices s and t to orbitals that
are occupied as well as unoccupied. Summations always run
over all orbitals corresponding to the index, i.e., summation
over i, j, or k run over all occupied and summations over
a, b, or c run over all unoccupied orbitals unless indicated
otherwise. Unless noted otherwise, the most general case of
orbitals φs that are complex-valued two-dimensional spinors
is considered.

The orbitals are eigenfunctions of the KS equation[ − 1
2∇2 + vext (r) + vH (r) + vx(r) + vACFD

c (r)
]
φs = εsφs,

(4)

which contains the external potential vext, typically given by
the electrostatic potentials of the nuclei, the Hartree potential
vH , the local multiplicative KS exchange potential vx, and
the correlation potential vACFD

c which, in practice, is approx-
imated in ACFD methods. In a self-consistent approximate
ACFD method, the potential vACFD

c is obtained as functional
derivative of the ACFD expression EACFD

c for the correlation
energy with respect to the electron density. Because ACFD
correlation energies are obtained from KS orbitals and eigen-
values and not directly from the electron density and its gradi-
ents this derivative has to be taken via the optimized effective
potential (OEP) method, see Sec. III C. The same holds true
for the exact exchange potential, the functional derivative
of the exchange energy, which is exactly known only in
terms of the KS orbitals. In practice, often non-self-consistent
ACFD methods are carried out. In the simplest case, orbitals
and eigenvalues are obtained by a conventional KS calcu-
lation relying, e.g., on semilocal exchange-correlation func-
tionals. Alternatively, an exact-exchange-only KS calculation
[68,81–86] is used for this purpose, which means to take into
account the exact local KS exchange potential via the OEP
method but to completely neglect the correlation potential
in the calculation of the KS orbitals. Finally, the potential
vACFD

c can be obtained via the OEP method from an ACFD
correlation energy expression at a more approximate level
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than the one used in the evaluation of the ground-state energy
E0. The latter is given in ACFD methods by

E0 = 〈�0|T̂ + V̂ee + v̂ext|�0〉 + EACFD
c (5)

with �0 denoting the KS determinant constructed by the
occupied KS orbitals φi. By T̂ the kinetic energy operator
is denoted, by V̂ee the operator of the electron-electron in-
teraction, and v̂ext is the operator generated by the external
potential vext.

In practice, the response functions are typically represented
in an auxiliary basis set [46] often called resolution-of-the-
identity basis set. For notational simplicity, here the auxiliary
basis set is assumed to be orthonormal although in practice
nonorthonormal basis sets may be employed. The ACFD
theorem (1) then reads as

Ec = −1

2π

∫ 1

0
dα

∫ ∞

0
dω Tr{[X(α, iω) − Xs(iω)]FH } (6)

with X and Xs being the matrices representing the response
functions χ and χs, respectively, and with the matrix FH rep-
resenting the Coulomb interaction 1/|r − r′|. The integration
over the space variables r and r′ in the ACFD theorem (1)
turns into taking the trace between the response matrices and
the matrix FH in the basis set representation (6) of the ACFD
theorem.

III. STATIC PERTURBATION THEORY WITH RESPECT
TO THE COUPLING CONSTANT

In this section, the adiabatic connection [1,87,88], pertur-
bation theory with respect to the coupling constant [78–80],
and the OEP method [68,81–86] are briefly reviewed because
quantities from the perturbation theory are needed later on and
in order to introduce concepts to be used later in the time- or
frequency-dependent case.

A. Adiabatic connection and expansions with
respect to coupling constant

The many-electron Schrödinger equation along the adia-
batic connection for coupling constants 0 � α � 1 is given by

[T̂ + αV̂ee + v̂(α)]	n(α) = En(α)	n(α). (7)

The potential v(α, r) generating the operator v̂(α) is a local
multiplicative potential that is uniquely determined up to an
additive constant through the Hohenberg-Kohn theorem by
the condition that the ground-state electron density ρ0(α, r)
for all values of the coupling constant equals the physical
ground-state electron density ρ0(r), i.e., that

ρ0(α, r) = 〈	0(α)|ρ̂(r)|	0(α)〉
= ρ0(α = 0, r)

= ρ0(r). (8)

The expansion

v(α, r) = v(0)(r) + αv(1)(r) + α2v(2)(r) + . . . (9)

of v(α, r) with respect to the coupling constant, in zeroth
order, contains the effective KS potential vs, that is

v(0)(r) = v(α = 0, r) = vs(r). (10)

The first-order contribution equals the negative of the sum of
the Hartree potential vx and the exchange potential vx,

v(1)(r) = −vH (r) − vx(r), (11)

while the sum of all higher order constitute according to

∞∑
n=2

αnv(n)(r) = −vc(α, r) (12)

the negative of the correlation potential vc. Equation (11) in
conjunction with the expression

vH (r) =
∫

dr′ ρ0(r′)
|r − r′| (13)

for the Hartree potential represents a definition of the KS
exchange potential. Later on in Sec. III C, an integral equation,
the OEP equation, for the KS exchange potential is discussed.
For a coupling constant of one v(α, r) turns into the external
potential of the real physical electron system at full physical
electron-electron interaction, i.e.,

v(α = 1, r) = vext (r). (14)

Next expansions

En(α) = E (0)
n + αE (1)

n + α2E (2)
n + . . . (15)

and

	n(α) = 	 (0)
n + α	 (1)

n + α2	 (2)
n + . . . (16)

of the energy eigenvalues En(α) and the eigenstates 	n(α) are
considered. The zeroth-order eigenstates

	 (0)
n = 	n(α = 0) = �n (17)

are the KS eigenstates, the eigenstates of the many-electron
KS equation

[T̂ + v̂s]�n = E (0)
n �n, (18)

i.e., Eq. (7) for α = 0. The many-electron KS equation (18)
decouples into one-electron KS equations[− 1

2∇2 + vs(r)
]
φs = εsφs (19)

for the KS eigenvalues εs and the KS orbitals orbitals φs,
from which the KS determinants �n are constructed. Here
electronic systems with a nondegenerate ground state are
considered. In this case, the KS wave functions can be chosen
as single determinants. The energy eigenvalue E (0)

0 of the
KS ground state �0 equals the sum of the occupied KS
eigenvalues εi

E (0)
0 = 〈�0|T̂ + v̂s|�0〉 =

∑
i

εi. (20)

Next excited KS determinants �n with n �= 0 are speci-
fied in more detail as singly, doubly, and triply excited KS
determinants �a

i , �ab
i j , and �abc

i jk , respectively. Higher excited
KS determinant can specified analogously, however, are not
needed here. The KS energy eigenvalue E (0)

n of a singly
excited KS determinant �a

i is denoted Ea
i and given by

Ea
i = 〈

�a
i

∣∣T̂ + v̂s

∣∣�a
i

〉 = E (0)
0 + εa − εi. (21)
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The energy eigenvalues Eab
i j and Eabc

i jk of higher excited KS
determinants are given by analogous expressions. In the fol-
lowing, excited KS determinant will be either denoted by �n

or more specifically by �a
i , �ab

i j , and �abc
i jk depending on what

is more suitable. Similarly, for the energy eigenvalues, both
notations will be used.

The described perturbation theory along the adiabatic
connection has some peculiarities. (i) For a given physical
system, the Hamiltonian operator of the unperturbed system,
i.e., the KS Hamiltonian operator, is not known because the
KS potential vs corresponding to a given external potential
is not known. Thus perturbation theory along the adiabatic
connection can not be directly used for practical calculations
but is rather a tool used to develop formalism. To that end, it is
assumed that the KS potential vs was known. Indeed, any local
multiplicative potential can be considered as KS potential vs

for a system of noninteracting electrons. The potential of the
corresponding interacting electron system then, however, is
initially unknown, see point (iii) below. (ii) The perturbation is
not linear in the coupling constant α but contains higher-order
contributions v(n) with n > 1. (iii) Parts of the perturbation,
the potentials v(n) with n > 0 are not known a priory but need
to be constructed within the perturbation theory exploiting
condition (8) that the ground-state density is independent of
the coupling constant. For details see Refs. [78–80]. The
potential vext of the fully interacting physical electron system
and the potential vs of the KS model system differ by the
potentials v(n) with n > 0 which are part of the perturbation.
In practice, vext is known and the potentials v(n) are needed to
obtain vs. In the development of formalism, it is the other way
around, vs is assumed to be known and for vext the potentials
v(n) are needed.

B. First-order wave functions and energies

Next first-order wave functions and energies within pertur-
bation theory along the adiabatic connection are considered.
Those are needed later on for expansions of the response
function and the exchange-correlation kernel. The contribu-
tion 	

(1)
0 of first order to the ground state 	0(α) is given by

	
(1)
0 =

∑
n

n �=0

�n
〈�n|V̂ee + v̂(1)|�0〉

E0
0 − E0

n

=
∑

i

∑
a

�a
i

〈
�a

i

∣∣V̂ee + v̂(1)|�0〉
εi − εa

+
∑
i< j

∑
a<b

�ab
i j

〈
�ab

i j

∣∣V̂ee|�0〉
εi + ε j − εa − εb

=
∑

i

∑
a

�a
i

〈φa|v̂NL
x − v̂x|φi〉
εi − εa

+
∑
i< j

∑
a<b

�ab
i j

〈φaφb||φiφ j〉
εi + ε j − εa − εb

(22)

with vNL
x denoting a nonlocal exchange operator of the form

of the Hartree-Fock exchange operator but constructed
from the occupied KS orbitals and with vx denoting
the local multiplicative KS exchange operator defined
by Eq. (11) in conjunction with (13). By 〈φaφb||φiφ j〉
the difference

∫
drdr′φ†

a (r)φi(r)φ†
b (r′)φ j (r′)/|r − r′| −∫

drdr′φ†
a (r)φ j (r)φ†

b (r′)φi(r′)/|r − r′| of two electron
integrals is denoted.

The first-order contribution E (1)
0 to the ground-state energy

E0(α) is given by

E (1)
0 = 〈�0|V̂ee + v̂(1)|�0〉

= 〈�0|V̂ee − v̂H − v̂x|�0〉
= 1

2

∑
i j

〈φiφ j ||φiφ j〉 −
∑

j

〈φ j |v̂H + v̂x|φ j〉. (23)

The sum of the zeroth and first-order energies yields

E (0)
0 + E (1)

0 = 〈�0|T̂ + V̂ee + v̂(0) + v̂(1)|�0〉
= 〈�0|T̂ + V̂ee + v̂s − v̂H − v̂x|�0〉
= 〈�0|T̂ + V̂ee + v̂ext|�0〉 + 〈�0|v̂c(α = 1)|�0〉.

(24)

Note that this sum is not equal to the expectation value of the
ground-state KS determinant with the Hamiltonian operator of
the physical electron system. The reason is that from the per-
spective of perturbation theory along the coupling constant,
the external potential of the physical electron system contains
terms of orders in the coupling constant that are higher
than one, i.e., the terms summing up to the KS correlation
potential.

Next the contribution 	 (1)
n of first order to the excited state

	n(α) is considered. Here we concentrate on states 	n(α) that
in zeroth order are single excited KS determinants �a

i and
denote the corresponding contribution of first order by �a

i
(1).

First-order perturbation theory yields

�a
i

(1) = �0
〈�0|V̂ee + v̂(1)

∣∣�a
i

〉
Ea

i − E (0)
0

+
∑
b�=a

�b
i

〈
�b

i

∣∣V̂ee + v̂(1)
∣∣�a

i

〉
Ea

i − Eb
i

+
∑
j �=i

�a
j

〈
�a

j

∣∣V̂ee + v̂(1)
∣∣�a

i

〉
Ea

i − Ea
j

+
∑
j �=i

∑
b�=a

�b
j

〈
�b

j

∣∣V̂ee

∣∣�a
i

〉
Ea

i − Eb
j

+
∑
j �=i

∑
b�=a

�ab
i j

〈
�ab

i j

∣∣V̂ee + v̂(1)
∣∣�a

i

〉
Ea

i − Eab
i j

+
∑
j �=i

∑
b�=a

∑
c �=a
c>b

�bc
i j

〈
�bc

i j

∣∣V̂ee

∣∣�a
i

〉
Ea

i − Ebc
i j

+
∑
j �=i

∑
k �=i
k> j

∑
b�=a

�ab
jk

〈
�ab

jk

∣∣V̂ee

∣∣�a
i

〉
Ea

i − Eab
jk

+
∑
j �=i

∑
k �=i
k> j

∑
b�=a

∑
c �=a
c>b

�abc
i jk

〈
�abc

i jk

∣∣V̂ee

∣∣�a
i

〉
Ea

i − Eabc
i jk

. (25)
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Evaluation of the matrix elements and reduction of the energy denominators to KS eigenvalue differences leads to

�a
i

(1) = �0
〈φi|v̂NL

x − v̂x|φa〉
εa − εi

+
∑
b�=a

�b
i

[〈φb|v̂NL
x − v̂x|φa〉 − 〈φbφi||φaφi〉

]
εa − εb

−
∑
j �=i

�a
j

[〈φi|v̂NL
x − v̂x|φ j〉 + 〈φiφa||φ jφa〉

]
ε j − εi

+
∑
j �=i

∑
b�=a

�b
j

〈φbφi||φ jφa〉
ε j + εa − εb − εi

+
∑
j �=i

∑
b�=a

�ab
i j

1

ε j − εb

[〈φb|v̂NL
x − v̂x|φ j〉 − 〈φbφi||φ jφi〉 + 〈φbφa||φ jφa〉

]

+
∑
j �=i

∑
b�=a

∑
c �=a
c>b

�bc
i j

〈φbφc||φaφ j〉
ε j + εa − εb − εc

−
∑
j �=i

∑
k �=i
k> j

∑
b�=a

�ab
jk

〈φiφb||φ jφk〉
ε j + εk − εi − εb

+
∑
j �=i

∑
k �=i
k> j

∑
b�=a

∑
c �=a
c>b

�abc
i jk

〈φbφc||φ jφk〉
ε j + εk − εb − εc

. (26)

Finally the contribution E (1)
n of first order to the energy

En(α) is considered. Again only contributions E (1)
n are con-

sidered that correspond to zeroth-order states being singly
excited KS determinants. In analogy to the first-order terms of
the wave functions, such first-order energy terms are denoted
by Ea

i
(1) and are given by

Ea
i

(1) = 〈
�a

i

∣∣V̂ee + v̂(1)
∣∣�a

i

〉
= 〈

�a
i

∣∣V̂ee − v̂H − v̂x

∣∣�a
i

〉
= E (1)

0 + 〈φa|v̂NL
x − v̂x|φa〉 − 〈φi|v̂NL

x − v̂x|φi〉
−〈φaφi||φaφi〉. (27)

The first-order terms given above in Eqs. (22), (23), (26),
and (27) are all the terms that are needed for the first-order
contributions to the frequency-dependent response function
and the exchange kernel discussed below.

The second-order contribution E (2)
0 to the ground-state

energy is the KS analog to the second-order Møller-Plesset
perturbation theory, which is based on the Hartree-Fock in-
stead of KS orbitals and eigenvalues. The second-order con-
tribution E (2)

0 is typically not used directly but as part of more
sophisticated correlation functionals [89–91].

C. Optimized effective potential method

In Sec. III A, it was discussed that the potentials v(n) of
Eq. (9) for n > 0 need to be constructed within perturbation
theory along the adiabatic connection. This is done via the
optimized effective potential (OEP) method. The OEP equa-
tions can be derived in various ways [68,78,79,81,82]. Here
condition (8) is used which requires the ground-state electron
density to be independent of the coupling constant [68,78,79].
Expanding the ground-state density ρ0(α, r) according to

ρ0(α, r) = ρ
(0)
0 (r) + αρ

(1)
0 (r) + α2ρ

(2)
0 (r) + . . . (28)

with respect to the coupling constant α together with condition
(8) yields

ρ
(0)
0 (r) = ρ0(r) (29)

and

ρ
(n)
0 (r) = 0 for n > 0. (30)

Equation (30) for each order n > 0 constitutes a condition that
represents an equation determining the potential v(n). In first
order, the OEP equation

0 = 〈
	

(0)
0

∣∣ρ̂(r)
∣∣	 (1)

0

〉 + 〈
	

(1)
0

∣∣ρ̂(r)
∣∣	 (0)

0

〉
=

∑
i

∑
a

〈�0|ρ̂(r)
∣∣�a

i

〉 〈φa|v̂NL
x − v̂x|φi〉
εi − εa

+
∑

i

∑
a

〈φi|v̂NL
x − v̂x|φa〉
εi − εa

〈
�a

i

∣∣ρ̂(r)|�0〉

=
∑

i

∑
a

φ
†
i (r)φa(r)

〈φa|v̂NL
x − v̂x|φi〉
εi − εa

+ c.c. (31)

for the exchange potential vx is obtained with Eq. (22). Be-
cause the Hartree potential is given by Eq. (13) in terms of the
ground-state density ρ0, Eq. (31) for vx determines by Eq. (11)
the first-order contribution v(1)(r) to the potential v(α, r) of
Eqs. (7) and (9).

The OEP equation (31) for vx can be rearranged in the form∫
dr′χ0(r, r′)vx(r′) = t (r) (32)

with the static response function

χ0(r, r′) =
∑

i

∑
a

φ
†
i (r) φa(r) φ†

a (r′) φi(r′)
εi − εa

+ c.c. (33)

of the KS system and the right-hand side

t (r) =
∑

i

∑
a

φ
†
i (r)φa(r)

〈φa|v̂NL
x |φi〉

εi − εa
+ c.c. (34)

OEP equations for the higher-order potentials v(n) that are
part of the correlation potential can be obtained analogously
and have the same form as Eq. (32), however, with a different
right-hand side. The OEP equation for the first-order potential
v(n) is special only in so far as the Hartree potential drops out
of the OEP equation (31) and thus does not occur in Eq. (32)
that represents the form of the OEP equation used in prac-
tice. As usual in perturbation theory the expressions for the
right-hand sides of the OEP equations become increasingly
complicated with higher orders n.
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IV. EXPANSIONS OF THE FREQUENCY-DEPENDENT
RESPONSE FUNCTION AND THE

EXCHANGE-CORRELATION KERNEL WITH
RESPECT TO THE COUPLING CONSTANT

A. Direct expansion of the frequency-dependent
response function

The frequency-dependent density-density (potential-
density) response function yields the first-order change δρ

of the ground-state electron density due to a perturbing
frequency-dependent local multiplicative potential
δv(α, ν, r), which corresponds to the time-dependent
perturbing potential

δv(α, t, r) = δv(α, ν, r)e−iνt + δv∗(α, ν, r)eiν∗t (35)

with the frequency ν = ω + iη containing an imaginary part
that guarantees that the perturbation vanishes at very early
times t → −∞. In the ACFD theorem, Eqs. (1) and (6),
purely imaginary frequencies are considered and denoted iω
instead of iη.

The frequency-dependent response function χ (α, ν, r, r′)
is given by the sum-over-states expression

χ (α, ν, r, r′)

=
∑

n

〈	0(α)|ρ̂(r)|	n(α)〉〈	n(α)|ρ̂(r′)|	0(α)〉
E0(α) − En(α) + ν

+
∑

n

〈	n(α)|ρ̂(r)|	0(α)〉〈	0(α)|ρ̂(r′)|	n(α)〉
E0(α) − En(α) − ν

(36)

for each value of the coupling constant α in terms of the
eigenstates 	n(α) and eigenvalues En(α) of the Schrödinger
equation (7). Equation (36) corresponds to the case that at
very early times, i.e., times t → −∞, the electronic system is
in the ground state 	0(α) of the coupling-strength-dependent
Schrödinger equation (7). This implies that the electron den-
sity of the system at very early times equals ρ0 independently
of α because the ground states 	0(α) by construction of the
static adiabatic connection all have the same electron density.

The eigenstates 	n(α) of the many-electron Schrödinger
equation (7) along the adiabatic connection can be chosen
as real-valued because the local multiplicative potential v(α)
has to be real-valued in order to get an Hamiltonian operator
that is Hermitian. From the sum-over-states expression (36)
then follows that the response matrix X(α) has to be negative
semidefinite for purely imaginary frequencies ν = iω, i.e.,
X(α) cannot have positive eigenvalues.

Next the expansion

χ (α, ν, r, r′) =
∞∑

n=0

αnχ (n)(ν, r, r′) (37)

of the response function with respect to α is considered. The
zeroth-order contribution χ (0)(ν, r, r′) equals the frequency-
dependent KS response function χs(ν, r, r′) given in Eq. (3)
for ν = iω, i.e.,

χ (0)(ν, r, r′) = χs(ν, r, r′). (38)
In order to obtain the first-order contribution χ (1)(ν, r, r′)
to the response function χ (α, ν, r, r′), the expansions of the
eigenvalues En(α) and eigenstates 	n(α) with respect to the
coupling constant, Eqs. (15) and (16), are substituted into
the sum-over-states expression (36). Collecting the first-order
terms results in

χ (1)(ν, r, r′) =
[∑

n

〈
	

(0)
0

∣∣ρ̂(r)
∣∣	 (0)

n

〉 〈
	 (0)

n

∣∣ρ̂(r′)
∣∣	 (1)

0

〉
E (0)

0 − E (0)
n + ν

+
∑

n

〈
	

(0)
0

∣∣ρ̂(r)
∣∣	 (0)

n

〉 〈
	 (1)

n

∣∣ρ̂(r′)
∣∣	 (0)

0

〉
E (0)

0 − E (0)
n + ν

+
∑

n

〈
	

(0)
0

∣∣ρ̂(r)
∣∣	 (1)

n

〉 〈
	 (0)

n

∣∣ρ̂(r′)
∣∣	 (0)

0

〉
E (0)

0 − E (0)
n + ν

+
∑

n

〈	 (1)
0 |ρ̂(r)|	 (0)

n 〉 〈	 (0)
n |ρ̂(r′)|	 (0)

0 〉
E (0)

0 − E (0)
n + ν

−
∑

n

〈
	

(0)
0

∣∣ρ̂(r)
∣∣	 (0)

n

〉 〈
	 (0)

n

∣∣ρ̂(r′)
∣∣	 (0)

0

〉
(
E (0)

0 − E (0)
n + ν

)2

(
E (1)

0 − E (1)
n

)] + c.c.(−ν). (39)

By c.c.(−ν) a term is designated that is obtained by firstly
replacing the frequency ν by −ν and by subsequently taking
the complex conjugate of the term in the square brackets on
the right-hand side of Eq. (39).

If 	
(0)
0 , E (0)

0 , 	 (0)
n , and E (0)

n are expressed by Eqs. (22),
(23), (26), and (27), respectively, in Eq. (39), then the
first-order contribution χ (1)(ν, r, r′) to the response func-
tion χ (α, ν, r, r′) is obtained in terms of KS orbitals and
their eigenvalues and the local KS exchange potential vx,
which is accessible by the OEP equation (32) from the KS
orbitals and eigenvalues. In Appendix, the resulting, some-
what lengthy expression is listed. The detailed form of it,
does not need to be discussed here. The crucial point is

that χ (1)(ν, r, r′) can be constructed explicitly from prod-
ucts φ†

s (r)φt (r) of KS orbitals, KS eigenvalue differences
εs − εt , and matrix elements of the type 〈φs|v̂NL

x − v̂x|φt 〉
and 〈φiφa||φ jφb〉 or 〈φiφ j ||φaφb〉. Moreover, matrix represen-
tations X(1)(ν) of χ (1)(ν, r, r′) in an auxiliary (resolution-
of-the-identity) basis set, can be constructed. The step de-
termining the computational effort for doing this is the
calculation of matrix elements of the type 〈φiφa||φ jφb〉 or
〈φiφ j ||φaφb〉, which are also needed in Møller-Plesset per-
turbation theory of second order (MP2). Thus the com-
putational effort for constructing matrices X(1)(ν) scales
with N5 with the system size N like canonical MP2
methods.
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B. Expansion of the exchange-correlation kernel

The response function χ (α, ν, r, r′), for each value of
the coupling constant α, gives the first order change of the
electron density ρ0 due to an arbitrary frequency-dependent
(and thus time-dependent) local multiplicative perturbation
δv(α, ν, r′) of the static potential v(α, r′) in the Schrödinger
equation (7) describing the electronic system at very early
times before the perturbation is switched on. Up to now, it
is only required that the static potentials v(α, r′) for different
values of the coupling constant α yield the same ground-state
electron density ρ0 for all values of α, which defines the adia-
batic connection between α = 0 and α = 1, i.e., between the
KS model system and the real physical electron system. The
frequency-dependent perturbations δv(α, ν, r′) for different
values of α were unrelated, so far.

Now it shall be required that the first-order change of the
electron density due to the perturbation δv(α, ν, r′) for all val-
ues of α is identical, that is the first-order change δρ(ν, r) shall
be frequency but not α dependent. According to the Runge-
Gross theorem [92–94], the time-dependent analogon of the
Hohenberg-Kohn theorem, the density response δρ(ν, r) to-
gether with the initial state 	0(α), the ground state of the
Schrödinger equation (7), completely defines δv(α, ν, r′) up
to an irrelevant time-dependent constant. [For finite systems
the requirement that δv(α, ν, r′) vanishes infinitely far from
the system removes the ambiguity due to this time-dependent
additive constant.] If a perturbation δv(α = 0, ν, r′) is chosen
for α = 0, i.e., for the KS case, then this determines δρ(ν, r)
which subsequently determines δv(α, ν, r′) for all values of
α. Next the response of the electron density δρ is expanded
with respect to the coupling constant according to

δρ(α, ν, r) = δρ (0)(ν, r) + αδρ (1)(ν, r)

+α2δρ (2)(ν, r) + . . . (40)

Because the response δρ is independent of the coupling
constant α all terms in this expansion except the one of zeroth
order have to vanish, i.e.,

δρ (0)(ν, r) = δρ(ν, r) (41)

and

δρ (n)(ν, r) = 0 for n > 0. (42)

Equations (40), (41), and (42) represent the frequency-
dependent analog of Eqs. (28), (29), and (30) of static per-
turbation theory with respect to the coupling constant.

At this point, we switch to the representation in an auxiliary
(resolution-of-the-identity) basis set. That is the response
function χ (α, ν, r, r′) turns into a response matrix X(α, ν),
the perturbing potentials δv(α, ν, r′) into vectors δv(α, ν) and
the first-order density response δρ(ν, r) into the vector δρ(ν).
The response matrix X(α, ν) relates δρ(ν) and δv(α, ν) by the
equation

δρ(ν) = X(α, ν)δv(α, ν), (43)

which is a first-order response equation with a coupling-
constant-dependent response matrix and perturbation but a
response of the density that is independent of the coupling
constant α

Next the first-order response equation (43) is expanded
with respect to the coupling constant α. The expansion of
X(α, ν) is given by Eq. (37) and the perturbation δv(α, ν) is
expanded according to

δv(α, ν) =
∞∑

n=0

αnδv(n)(ν) (44)

with the zeroth-order term giving the perturbation δvs(ν) of
the KS potential, i.e.,

δv(0)(ν) = δv(α = 0, ν) = δvs(ν). (45)

The first-order contribution δv(n)(ν) represents the negative of
the perturbation δvHx(ν) of the sum of the Hartree and the
exchange potential, i.e.,

δv(1)(ν) = −δvHx (ν) (46)

while all higher-order terms represent the negative of the
perturbation δvc(α, ν) of the correlation potential, that is

∞∑
n=2

αn δv(n)(ν) = −δvc(α, ν). (47)

Note that here linear response with respect to a frequency-
dependent perturbation δv(α, ν) of the potential, i.e., per-
turbation theory of first order with respect to δv(α, ν), is
combined with perturbation theory with respect to the cou-
pling constant α to arbitrary orders. In Ref. [95], higher-order,
nonlinear response with respect to δv(α, ν) is combined with
perturbation theory along the adiabatic connection.

The zeroth order of the response equation (43) reads as

δρ(ν) = Xs(ν)δvs(ν) (48)

and determines the response δρ(ν) of the electron density. The
first order is given by

0 = X(1)(ν)δvs(ν) + Xs(ν)δv(1)(ν). (49)

The left-hand side of Eq. (49) equals zero because the
response of the electron density is independent of α, see
Eq. (43). Rearrangement of Eq. (49) and use of Eq. (48) leads
to

δv(1)(ν) = −X−1
s (ν)X(1)(ν)δvs(ν)

= −X−1
s (ν)X(1)(ν)X−1

s (ν)δρ(ν). (50)

With the definition

F(1)(ν) = X−1
s (ν)X(1)(ν)X−1

s (ν). (51)

Equation (50) turns into

δv(1)(ν) = −F(1)(ν)δρ(ν), (52)

which identifies −F(1)(ν) as a functional derivative relating
δv(1)(ν) and δρ(ν). Because δv(1)(ν) is the negative of the per-
turbation δvHx(ν) of the Hartree plus the exchange potential,
see Eq. (46), F(1)(ν) is the frequency-dependent functional
derivative of the exchange-correlation potential. That is

F(1)(ν) = FHx(ν). (53)

Equation (51) for the Hartree plus the exchange kernel was
derived earlier in a somewhat different way in Refs. [75–77].
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The quantity X(1)(ν) was denoted H(ν) and was not recog-
nized as the contribution to the response matrix of first order
in the coupling constant α. The insight that F(1)(ν) depends
by Eq. (51) on the first-order contribution X(1)(ν) of the
response matrix will be exploited later on. A further crucial
point is that the higher orders of the response equation (43)
lead to expressions for the higher-order contributions F(n)(ν)
to the correlation kernel by exploiting for each order that the
response of the electron density does not contain contributions
of orders of α higher than zero because it is independent of
the coupling constant α, see Eq. (42). This means there is
a certain analogy to the adiabatic connection of the ground-
state case. In the latter case, the ground-state electron density
is independent of the coupling constant α, which leads in
each order of α to an OEP equation for the potential v(n)

of this order. Here the fact that the linear response of the
electron density is independent of the coupling constant α, see
Eqs. (42) and (43), leads in each order of α to equations for
contributions F(n)(ν) to the Hartree, exchange and correlation
kernel.

For each order n � 1, the kernel contribution F(n)(ν) deter-
mines the perturbation δvn(ν) of the corresponding order by

δv(n)(ν) = −F(n)(ν)δρ(ν). (54)

Equations for the second- and third-order contributions
F(2)(ν) and F(3)(ν) are given later on in Eqs. (68) and (69).
They contain contribution X(n)(ν) up to second or third
order, respectively. The latter are accessible from perturbation
theory expansions of the eigenstates 	n(α) and their energies
En(α). The same holds true for orders of the kernel higher
than 3. This means that explicit expressions for the F(n)(ν)
in terms of KS orbitals and their eigenvalues can be obtained
order by order. As usual in perturbation theory higher-order
terms will become exceedingly complicated. Such higher
orders will not considered in detail here. What will be studied
here, are the relations between expansions of the sum of
the Hartree, the exchange, and the correlation kernel and
expansions of the response function which will lead to a
hierarchy of ACFD methods based on these relations.

Combining the contributions F(n)(ν) of all orders yields the
complete coupling-constant-dependent kernel

F(α, ν) =
∞∑

n=1

αnF(n)(ν). (55)

Inserting Eqs. (54) into to Eq. (44) together with Eqs. (45)
and (55) gives

δv(α, ν) = δvs(ν) − F(α, ν) δρ(ν) (56)

or

δvs(ν) = δv(α, ν) + F(α, ν) δρ(ν). (57)

Substituting Eq. (57) for δvs(ν) in the response equation (48)
after some rearrangement leads to

δρ(ν) = [1 − Xs(ν)F(α, ν)]−1Xs(ν) δv(α, ν). (58)

Equation (58) yields the linear response of the electron density
due to a perturbation δv(α, ν), which, by definition, is the
action of the response function X(α, ν). Thus it follows

X(α, ν) = [1 − Xs(ν)F(α, ν)]−1Xs(ν) (59)

which is the basic equation of TDDFT in the linear response
regime. Of course, Eq. (59) was derived in different ways
earlier [72–74]. Here, Eq. (59) was obtained via the series
expansion of δv(α, ν) from the members X(n)(ν) of the se-
ries expansion of the response matrix X(α, ν) by using the
independence of the linear response δρ from the coupling
strength α resulting in Eq. (42) for each order n. This made
it possible to define contributions F(n)(ν) and via Eq. (55)
the complete kernel F(α, ν). Note in passing, that the kernel
and its contributions were not defined as but turned out to be
functional derivatives. That the kernel represents a functional
derivative follows from equations like (52) and (54) which are
part of the above derivation of equations for the various orders
F(n)(ν) of F(α, ν).

The close relation between the series expansions of the
response matrix X(α, ν) and the kernel F(α, ν) with respect
to α can not only be uncovered as discussed above. Indeed,
the relations between the contributions X(n)(ν) and F(n)(ν),
see Eq. (51) for the relation between X(1)(ν) and X(1)(ν),
can alternatively be obtained by inserting the series expansion
for X(α, ν) into the TDDFT equation (59). Before doing so,
the notation shall be simplified for the rest of the paper by
suppressing the frequency variable ν. For a start, the square
root L of the negative of the KS response matrix Xs is
constructed from the spectral representation

−Xs = VσV† (60)

of −Xs according to

L = Vσ1/2V† (61)

and leading to

−Xs = LL. (62)

Because the KS response matrix Xs, like generally the re-
sponse matrix X(α) for all values of α, is negative semidefinite
the square root of −Xs is well defined.

With the matrix L, the TDDFT equation (59) for the
response matrix X(α) can be expressed as

X(α) = −L[1 + LF(α)L]−1L, (63)

which can be rearranged into

LF(α)L = −1 − [L−1X(α)L−1]−1. (64)

Inserting the expansion of X(α) with respect to the cou-
pling constant, see Eq. (37), into Eq. (64) yields

LF(α)L

= −1 + [1 − (αL−1X(1) L−1 + α2L−1 X(2) L−1 . . . )]−1.

(65)

The inverse of the square brackets in Eq. (65) represents
a resummed geometric series in a variable given by the
series in the round brackets. Exploiting this Eq. (65) can be
rewritten as

LF(α)L =
∞∑

n=1

(αL−1X(1)L−1 + α2L−1X(2)L−1 . . . )n.

(66)
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For the time being, it is assumed that all series in the coupling
constant α converge. Later on in Sec. V, the question of
convergence is considered. Next expansion (55) of F(α) with
respect to the coupling constant is inserted into Eq. (66) and
the sum on the right-hand side is sorted according to orders
in α. This yields for each order in α an equation for the
corresponding contribution F(n) to the kernel. In first order,
Eq. (51) results, which turns into

F(1) = L−2X(1)L−2 (67)

if the KS response matrix Xs is replaced by −L2. The equa-
tions for second and third order read as

F(2) = L−2X(1)L−2X(1)L−2 + L−2X(2)L−2 (68)

and

F(3) = L−2X(1)L−2X(1)L−2X(1)L−2 + L−2X(1)L−2X(2)L−2

+ L−2X(2)L−2X(1)L−2 + L−2X(3)L−2. (69)

C. Expansion of the frequency-dependent response function
using the expansion of the exchange-correlation kernel

In the preceding Sec. IV B, the equations for the contribu-
tions F(n) to the kernel F(α) were derived, see Eqs. (67), (68),
(69). The equations give the F(n) in terms of the contributions
X(n) to the response function X(α). Because the X(n) can
be obtained in terms of KS orbitals and eigenvalues, see
Sec. IV A, these equations actually make the contributions
F(n) accessible. Now the opposite is considered, the contri-
butions X(n) are expressed in terms of the F(n).

Rearrangement of Eqs. (67), (68), and (69) leads to
equations

X(1) = L2F(1)L2, (70)

X(2) = −L2F(1)L2F(1)L2 + L2F(2)L2, (71)

and

X(3) = L2F(1)L2F(1)L2F(1)L2 − L2F(1)L2F(2)L2

− L2F(2)L2F(1)L2 + L2F(3)L2 (72)

for the contributions X(n) in terms of the kernel contributions
F(n) and the square root L of the negative of the KS response
functions. Because the kernel contributions F(n) are not acces-
sible except through the contributions X(n) these equation do
not give access to the X(n). However, they give some formal
insight that will be used later on.

Equations (70), (71), and (72) can alternatively be derived
directly from the basic TDDFT equations (59) or (63) that can
be rearranged into

L−1X(α)L−1 = −[1 + LF(α)L]−1

= −1 −
∞∑

n=1

(−)n[LF(α)L]n

= −1 −
∞∑

n=1

(−)n(αLF(1)L + α2LF(2)L . . . )n.

(73)

In the step to the second right-hand side of Eq. (73) it is used
that the first right-hand side represents a geometric series in
−LF(α)L. Inserting expansion (55) for F(α) results in the
final right-hand side of Eq. (73). Via reordering of the final
sum in Eq. (73) equations for the X(n) in each order n � 0 are
obtained. The equations for the orders one to three are given
above by Eqs. (70)–(72).

D. Expansions of finite order in either the frequency-dependent
response function or the exchange-correlation kernel

1. Expansions starting from the zeroth- and first-order term of the
frequency-dependent response function

So far, infinite series expansions in the coupling constant
α were considered. Now the expansion of the response matrix
X(α), see Eq. (37), is truncated after the first-order term, i.e.,

X(α) ≈ X(0) + αX(1)

= Xs + αX(1). (74)

Such a truncation of the expansion of response matrix X(α)
implies a change in the series expansion of the kernel F(α).
If all terms X(n) with n > 1 are omitted in the equation for
the contributions F(n), Eqs. (67), (68), (69), and corresponding
equations for orders higher than 3, then these equations reduce
to

F(n) ≈ L−1[L−1X(1)L−1]nL−1 (75)

and the complete kernel F(α) is given by the series

F(α) ≈ L−1

[ ∞∑
n=1

αn(L−1X(1)L−1)n

]
L−1. (76)

With Eq. (70) for X(1) Eq. (75) turns into

F(n) ≈ L−1[LF(1)L]nL−1 (77)

and Eq. (76) into

F(α) ≈ L−1

[ ∞∑
n=1

αn(LF(1)L)n

]
L−1. (78)

This means a truncation of the series expansion of the
response function X(α) after the first-order term implies
that the kernel F(α) is approximated by a geometric series
(without the leading constant) in L−1X(1)L−1 or equivalently
in LF(1)L. Because F(1) equals the sum of the Hartree plus
the exchange kernel, Eq. (53), this means that the correlation
kernel is approximated by a series in LFHxL.

2. Expansions starting from the first-order term of the
exchange-correlation kernel

In the previous Sec. IV D 1, a truncation of the series
expansion of the response matrix X(α) was considered. Here
a truncation

F(α) ≈ αF(1) = FHx (79)

of the coupling constant expansion of the kernel F(α) after
the first order is considered. Inserting Eq. (79) into Eq. (63),
a representation of the basic equation of TDDFT in the linear
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response regime, yields

X(α) ≈ −L[1 + αLF(1)L]−1L

= [1 − αXsF(1)]−1Xs

= [1 − αXsFHx]−1Xs. (80)

If all terms F(n) with n > 1 are omitted in Eqs. (70)–(72)
for the contributions X(n) to the response function X(α) then
these contributions are approximately given by

X(n) ≈ (−)n+1L[LF(1)L]nL (81)

and the complete response matrix by

X(α) ≈ −L

[ ∞∑
n=0

(−)n(αLF(1)L)n

]
L. (82)

Summing up the geometric series in Eq. (82) gives back the
first line of Eq. (80).

With Eq. (67) for F(1) Eq. (79) turns into

F(α) ≈ αL−2X(1)L−2, (83)

Eq. (80) into

X(α) = −L[1 + αL−1X(1)L−1]−1L, (84)

Eq. (81) into

X(n) ≈ (−)n+1L[L−1X(1)L−1]nL, (85)

and Eq. (82) into

X(α) ≈ −L

[ ∞∑
n=0

(−)n(αL−1X(1)L−1)n

]
L. (86)

Equation (84) is the basis of the EXXRPA or ACFD[Hx]
method of Ref. [46], see later on Sec. V A 2.

A truncation of the kernel F(α) after the linear term,
i.e., the neglect of the correlation contribution to the kernel,
implies that the response function is approximated by a geo-
metric series in LF(1)L. Because LF(1)L equals L−1X(1)L−1

this means that the response matrix is approximated by a geo-
metric series in its linear term which is exactly known in terms
of KS orbitals and eigenvalues, see Sec. IV A and Appendix.
Thus there exist two very different approximations for the
response matrix X(α) that are both based on the first-order
term X(1): (i) the straightforward first-order expansion (74)
and (ii) the geometric series (86) or, in summed up form, (84).

3. Expansions starting from terms of the frequency-dependent
response function up to second or higher order

If the coupling constant expansion of the response function
X(α) is truncated after the second-order term, i.e., is approxi-
mated by

X(α) ≈ X(0) + αX(1) + α2 X(2), (87)

then this implies an expansion

F(α) ≈ L−1

[ ∞∑
n=1

(αL−1X(1)L−1 + α2L−1X(2)L−1)n

]
L−1

(88)

for the kernel F(α). With Eqs. (70) and (71) the above
expansion turns into

F(α) ≈ L−1

[ ∞∑
n=1

(αLF(1)L−α2LF(1)LF(1)L + α2LF(2)L)n

]
L−1.

(89)

A truncation of the coupling constant expansion of the re-
sponse function X(α) after the second-order term thus implies
an expansion of the kernel F(α) containing the terms X(1) and
X(2) of X(α). The contributions in each order are given by
Eqs. (67), (68), (69), and corresponding equations for higher
orders by neglecting all terms X(n) with n > 2. Moreover, with
Eq. (89) a coupling constant expansion of F(α) containing
only the leading terms F(1) and F(2) is implied from a trun-
cation of the expansion of X(α) after second order.

Similarly, truncations of the coupling constant expansion
of the response matrix X(α) after a higher-order nmax imply
corresponding expansions of the kernel F(α) in terms X(n) up
to the order nmax or in terms F(n) up to the order nmax.

4. Expansions starting from terms of the exchange-correlation
kernel up to second or higher order

Now expansion (55) of the kernel F(α) is truncated after
the second-order term giving

F(α) ≈ αF(1) + α2F(2). (90)

Substitution of Eq. (90) into Eq. (73) yields

X(α) ≈ −L[1 + L(αF(1) + α2F(2) )L]−1L

= −L

[
1 +

∞∑
n=1

(−)n(αLF(1)L + α2LF(2)L)n

]
L.

(91)

With Eqs. (62), (67), and (68) the above equation for X(α)
turns into

X(α) ≈ Xs − L
∞∑

n=1

(−)n(αL−1X(1)L−1

+α2L−1X(1)L−2X(1)L−1 + α2L−1X(2)L−1)nL

= −L[1 + (αL−1X(1)L−1 + α2L−1X(1)L−2X(1)L−1

+α2L−1X(2)L−1)]−1L. (92)

This means a truncation of the coupling constant expansion
of the kernel F(α) after the second-order term implies the
expansion (92) of the response matrix X(α) in terms of X(1)

and X(2), which is very different from the straightforward
second order expansion (87), similarly as the geometric series
(86) or, in summed up form, (84) is very different from the
first-order expansion (74).

Again a generalization of Eqs. (90)–(92) to orders higher
than two is straightforward.
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V. ACFD METHODS FOR THE KOHN-SHAM
CORRELATION ENERGY BASED ON

THE ADIABATIC-CONNECTION
FLUCTUATION-DISSIPATION THEOREM

In this section, various ACFD methods are considered. This
includes existing methods like the ACFD method of Ref. [46]
that treats the Hartree and exchange kernel exactly and ne-
glects the correlation kernel or the ACFD method of Ref. [63]
that additionally takes into account the correlations kernel via
the PSA but also new ACFD approaches proposed here. The
existing methods are related to the expansions of the response
matrix and the kernel derived in the previous section and in
case of the PSA a formal justification is provided. In Sec. V A,
methods based on the KS response matrix and the first-order
contribution X(1) of the response matrix are discussed and
proposed. These methods all have a formal N5 scaling with the
system size N and, if not already implemented, can be easily
implemented starting from existing ACFD implementations
that use X(1).

In Sec. V B, methods based on contributions X(n) with n >

1 are briefly sketched. By considering terms X(n) of higher
orders a hierarchy of methods is obtained that approaches
the full KS correlation energy. The X(n) are accessible in
any order by perturbation theory in terms of KS orbitals
and their eigenvalues, however, like in other hierarchies of
methods approaching the full correlation energy, e.g., the
coupled cluster hierarchy, the resulting expressions are get-
ting increasingly complicated and the scaling of the methods
becomes increasingly unfavourable.

A. ACFD methods based on the first-order term of the
frequency-dependent response function

All ACFD methods that are based on the first-order term
X(1) of the response matrix X(α) approximate X(α) by ex-
pressions containing X(1). These expressions and the related
series expansions are quite different. Starting point are two
ACFD methods: (i) a method relying on the direct expan-
sion of X(α) up to first order, Eq. (74), and (ii) a method
approximating X(α) by a geometric series in X(1), Eq. (84),
which results if the correlation kernel is neglected but the
Hartree and exchange kernel are treated exactly. Method (i)
is presented in the following Sec. V A 1 and has not yet been
implemented. Method (ii) has already been introduced earlier,
was denoted EXXRPA (exact-exchange RPA) in Ref. [46] and
ACFD[Hx] in Ref. [63], and is discussed in Sec. V A 2. In
certain cases, methods (i) and (ii) both can yield unphysical
response matrices X(α) that are no longer negative semidefi-
nite. Interestingly, each unphysical positive eigenvalue of the
response matrix in one of the methods corresponds to a physi-
cally reasonable negative eigenvalue in the other method. This
suggests to combine the two methods, leading to an approach
presented in Sec. V A 3. The occurrence of unphysical re-
sponse matrices turns out to be related to the convergence
radius of the involved coupling constant expansions, a point
discussed further below.

In method (i), the response matrix X(α) is approximated
according to Eq. (74) by its zeroth and first-order terms,
X(0) = Xs and X(1), respectively, which implies to approxi-
mate the kernel F(α) by a geometric series in terms of X(1),

Eq. (75). In method (ii), on the other hand, X(α) turns out
to be approximated by a geometric series in X(1), Eq. (86),
and the kernel F(α) is approximated by its leading compo-
nent F(1) = L−2X(1)L−2, Eq. (67), which is tantamount to
neglecting the correlation kernel and taking into account the
Hartree plus the exchange kernel exactly. By renormalizing
the coefficients in the geometric series for F(α) in method
(i) or for X(α) in method (ii) the two methods can be
combined in one, because the renormalized coefficients of
F(α) determine the renormalized coefficients of X(α) and
vice versa. The resulting approximation introduced in detail
in Sec. V A 4 is called the power series approximation (PSA).
By a suitable choice of the renormalized coefficients physical
response matrices X(α) can be obtained that are always cor-
rectly negative definite and that do not suffer from unphysical
singularities in the response matrix that are encountered in
certain cases in methods (i) and (ii). If the renormalized series
for F(α) is truncated then the PSA of Ref. [63] is obtained,
which is discussed in Sec. V A 5.

In all the ACFD methods considered in this section, the
basic quantity X(1) occurs pre- and post-multiplied by the
inverse of the square root L of the KS response function.
That is, the matrix L−1X(1)L−1 or more precisely its spectral
representation

L−1X(1)L−1 = UτU† (93)

containing a diagonal matrix τ with the eigenvalues and a
matrix U collecting the eigenvectors is the quantity that is
actually entering the methods of this section. Within all the
methods the KS correlation energy is calculated from the
ACFD theorem in the form

Ec = −1

2π

∫ 1

0
dα

∫ ∞

0
dω Tr{L[L−1X(α)L−1 + 1]LFH },

(94)

which follows with Eq. (62) from the ACFD theorem in
the form given by Eq. (6). The dimensionless quantity
L−1X(α)L−1, i.e., the response matrix X(α) pre- and post-
multiplied by L−1 is approximated by expressions Ug(ατ )U†

that contain functions g(ατ ) of the diagonal matrix τ of the
spectral representation (93) of L−1X(1)L−1. Equation (94) for
the correlation energy then turns into

Ec = −1

2π

∫ 1

0
dα

∫ ∞

0
dω Tr{LUg(ατ )U†LFH }. (95)

If the coupling strength integration in Eq. (95) can be carried
out analytically, the KS correlation energy is given by

Ec = −1

2π

∫ ∞

0
dω Tr{LUG(τ)U†LFH } (96)

with the function G(τ) = ∫ 1
0 dαg(ατ ).

This means all methods discussed in this section require the
same computational steps which include the construction of
the matrix X(1), the computationally most demanding step, the
construction of the KS response matrix and the determination
of the square root L of its negative, and the diagonalization
of L−1X(1)L−1. The methods only differ in the evaluation of
the functions g(ατ) or G(τ) a step requiring only negligible
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computational effort. Moreover, this means that implementa-
tions for the different methods of this section differ only by
one routine, the one evaluating the functions g(ατ) or G(τ).
Thus, if one of the methods has been implemented, then the
others can be obtained with minimal programming effort.

1. ACFD methods using directly the zeroth- and first-order terms
of the frequency-dependent response function

The direct coupling constant expansion (74) of the re-
sponse function X(α) up to first order with Eq. (62) for
X(0) = Xs assumes the form

X(α) ≈ −LL + αX(1)

= L[−1 + αL−1X(1)L−1]L

= LU[−1 + ατ]U†L (97)

with the spectral representation (93) of L−1X(1)L−1. Inserting
the truncated expansion (97) into the ACFD theorem (94)
yields equation

Ec = −1

2π

∫ 1

0
dα

∫ ∞

0
dω Tr{L[αL−1X(1)L−1]LFH }

= −1

2π

∫ 1

0
dα

∫ ∞

0
dω Tr{LUατU†LFH }

= −1

2π

∫ ∞

0
dω Tr

{
LU

1

2
τU†LFH

}
, (98)

which equals Eqs. (95) and (96) for the KS correlation energy
with the functions

g(ατ) = ατ (99)

and

G(τ) = 1
2τ. (100)

Approximation (97) for X(α) only would be negative
semidefinite and thus would not have positive eigenvalues if
ατμμ � 1 held true for all diagonal values τμμ of the diagonal
matrix τ. Usually this is not the case, however, and the
response matrix (97) exhibits unphysical positive eigenvalues.

In Sec. IV D 1, it was shown that a truncation of the
coupling constant expansion of the response matrix X(α)
after the linear term implies to approximate the kernel F(α)
by a geometric series in αL−1X(1)L−1, see Eq. (76). If the
spectral representation (93) for L−1X(1)L−1 is inserted in this
geometric series, then it assumes the form

F(α) ≈ L−1U

[ ∞∑
n=1

αnτn

]
U†L−1. (101)

Inserting the above expansion (101) for F(α) in the basic
equation of TDDFT in the form given by Eq. (63) leads to

X(α) ≈ −LU[1 + ατ + α2τ2 + . . . .]−1U†L

= −LU[[ατ − 1]−1]−1U†L

= LU[−1 + ατ]U†L. (102)

With the last line of Eq. (102) expression (97) was ob-
tained again. This is not surprising because as discussed in
Sec. IV D 1 a truncation of the coupling constant expansion of

X(α) after the linear term X(1) is equivalent to approximating
F(α) by a geometric series in terms of X(1). The crucial point
is that this equivalence holds true only within the convergence
radius of the geometric series F(α). If the diagonal matrix
τ contains elements τμμ with |ατμμ| � 1 this is no longer
the case. For ατμμ � 1, all elements of the series in the first
line of Eq. (102) are positive which means that the geometric
series approaches infinity and the response function X(α)
approaches zero because the inverse of the series appears in
Eq. (102). This suggests to set ατμμ to one and thus X(α) to
zero if its original values is larger, i.e., if originally ατμμ > 1.
In this way it is guaranteed that the response matrix does
not exhibit unphysical positive eigenvalues. For ατμμ � −1,
the series in the first line Eq. (102) no longer converges
but has elements of alternating sign. In this case, it seems
reasonable to use the function [ατ − 1]−1 beyond the range of
convergence of the series, which does not lead to unphysical
positive eigenvalues of the response matrix.

The above described modification of the response matrix
of Eq. (97) is reflected in the evaluation of the correlation
energy via Eq. (95) by a modification of the function g(ατ ).
The function g(ατ) yields a diagonal matrix g with matrix
elements gμμ obtained by evaluating the function g for the
matrix elements τμμ of τ after having multiplied them by α,
i.e., gμμ = g(ατμμ). The modified function g for the argument
ατ (suppressing the superscripts μμ for notational simplicity)
is given by

g(ατ ) = ατ for ατ < 1 (103)

and

g(ατ ) = 1 for ατ � 1. (104)

The modified function g can be integrated analytically
which leads to a modified function G to be used in Eq. (96)
for the KS correlation energy. The function G(τ ) yields a
diagonal matrix G with matrix elements Gμμ obtained by
evaluating the function G for the matrix elements τμμ of τ,
i.e., Gμμ = G(τμμ). The modified function G for the argument
τ (suppressing the superscripts μμ for notational simplicity)
is given by

G(τ ) = 1
2τ for ατ < 1 (105)

and

G(τ ) = 1 − 1

2τ
for ατ � 1, (106)

respectively.

2. ACFD methods approximating the exchange-correlation
kernel by its first-order term

If the kernel F(α) is approximated according to Eq. (79)
by its first-order contribution αF(1) equaling the sum of the
Hartree plus the exchange kernel then the response matrix
X(α) is given by Eq. (84) if F(1) is expressed according to
Eq. (67) by X(1) as shown in Sec. IV D 2. With the spectral
representation (93) of L−1X(1)L−1, Eq. (84) for the response
matrix X(α) reads as

X(α) ≈ −LU[1 + ατ]−1U†L. (107)
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Inserting Eq. (107) into the ACFD equation (94) yields

Ec = −1

2π

∫ 1

0
dα

∫ ∞

0
dω Tr{LU[−(1 + ατ )−1 + 1]U†LFH }

= −1

2π

∫ ∞

0
dω Tr{LU[−τ−1 ln(|1 + τ| + 1)]U†LFH },

(108)

which equals Eqs. (95) and (96) for the KS correlation energy
with the functions

g(ατ ) = −(1 + ατ )−1 + 1 (109)

and

G(τ ) = −τ−1 ln(|1 + τ |) + 1, (110)

respectively.
If elements in the diagonal matrix τ assume values of

−1 then the response function X(α) in Eq. (107) becomes
singular, for elements of τ being smaller than 1 the response
function exhibits unphysical positive eigenvalues. In practice
such cases typically are encountered in electronic structures
that exhibit a singlet-singlet instability in an exact-exchange-
only KS treatment [61] or that are characterized by static cor-
relation. From a technical point of view such singularities can
be handled because they turn out to be integrable singularities
in the frequency integration. To avoid numerical problems in
the frequency integration, a regularization can be employed.
To that end, the function G(τ ) of Eq. (110) is replaced by

G(τ ) = −τ−1 ln(|1 + τ |) + 1

for τ � −1 − ετ and −1 + ετ � τ (111)

and by

G(τ ) = −τ−1 ln(ετ ) + 1

for −1 − ετ < τ < −1 + ετ . (112)

While this enables to treat the singularity at τ values of minus
one from a technical point of view, the formal problem that the
response function X(α) has unphysical positive eigenvalues
for τ values smaller than minus one remains.

3. ACFD method using the first-order term of the
frequency-dependent response function directly and via the

exchange-correlation kernel

In the previous two Secs. V A 1 and V A 2, two ACFD
methods were discussed that both rely on the first-order
contribution X(1) of the response matrix X(α). In one case,
X(1) enters via the direct expansion of X(α) up to first order
in the coupling constant α, in the other case, the leading
contribution F(1) of the kernel F(α) is expressed by X(1).
Within both ACFD methods unphysical response matrices can
emerge for certain eigenvalues of L−1 X(1) L−1. Interestingly,
however, the first method suffers from unphysical response
functions if the eigenvalues of L−1 X(1) L−1 are larger than
one, while the second methods becomes problematic if the
eigenvalues are equal or smaller than minus one. This suggests
to combine both methods. Within both methods, the eigenval-
ues of L−1 X(1) L−1 enter via a function g(ατ) of the diagonal
matrix τ, see spectral representation (93) of L−1 X(1) L−1 and

expression (95) for the ACFD correlation energy in terms of
g(ατ ).

Now the functions g(ατ) of the two methods are simply
combined such that the function g(ατ) of the first method
is employed for τ values smaller or equal than zero and the
function g(ατ ) of the second method applies for τ values
greater than zero. That is the function g is given by

g(ατ ) = ατ for ατ � 0 (113)

and

g(ατ ) = 1 − (1 + ατ )−1 for 0 < ατμμ. (114)

Because because both value and derivative of the two branches
of the function g approach the same value at τ = 0 the
function g is continuous and differentiable everywhere.

The integration over the coupling constant α in expression
(95) for the correlation energy can be carried out analytically
such that the latter is given by Eq. (96) with the function G(τ )
given by

G(τ ) = 1
2τ for τ � 0 (115)

and

G(τ ) = 1 − τ−1 ln(1 + τ ) for 0 < τμμ. (116)

This combined method is free of parameters but nevertheless
does not suffer from unphysical response matrices and can be
implemented with minimal programming effort starting from
an implementation of the EXXRPA or ACFD[Hx] method of
Sec. V A 2 that is described in Ref. [46].

4. ACFD methods with renormalized power series approximation
in the variable L−1X(1)L−1 for frequency-dependent response

function and exchange-correlation kernel

In Secs. IV D 1 and IV D 2, it was shown that a truncation
of the coupling constant expansion of the response matrix
X(α) after the first-order term X(1) implies a geometric series
(without zeroth-order term) for the kernel F(α) in the variable
L−1X(1)L−1, Eqs. (74) to (76), and that a truncation of the
coupling constant expansion of the kernel F(α) after the lead-
ing first-order term F(1) = L−2X(1)L−2 implies a geometric
series for X(α) in the variable L−1X(1)L−1, Eqs. (79) to (86).
The geometric series have a finite convergence radius. More-
over, both series can lead to unphysical response functions.
In one case, if the eigenvalues of L−1X(1)L−1 are larger than
one, in the other case, if they are smaller than minus one.
One way to handle this problem was presented in the previous
Sec. V A 3 by using piecewise the one or the other series.
Another way to relate the two series is to renormalize the
coefficients of all terms of an order higher than one. This leads
for the response function to the series

X(α) ≈−L

[
1−L−1X(1)L−1+

∞∑
n=2

γn (−)n(αL−1X(1)L−1)n

]
L

= −LU

[
1 − ατ +

∞∑
n=2

γn (−)n(ατ)n

]
U†L

= LU[g(ατ) − 1]U†L (117)
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instead of the original series (86) with

g(ατ ) =
(

ατ +
∞∑

n=2

(−)n+1γn αnτ n

)
(118)

and with the renormalized coefficients γn. The leading coef-
ficient γ1 has to equal one, i.e., γ1 = 1, in order to guarantee
that the exact first-order term of the coupling constant expan-
sion of X(α) is retained. The function g(ατ ) is defined such
that g(ατ ) − 1 leads to the series expansion of X(α) because
g(ατ ) then corresponds to the previously defined function g
that can be directly used in Eq. (95) for the KS correlation
energy.

For the kernel the series

F(α) ≈ L−1

[ ∞∑
n=1

βn(αL−1X(1)L−1)n

]
L−1

= L−1U

[ ∞∑
n=1

βn(ατ)n

]
U†L−1

= L−1U f (ατ)U† L−1 (119)

is obtained instead of the original series (76) with

f (ατ ) = ατ +
∞∑

n=2

βn αnτ n (120)

and with the renormalized coefficients βn. Again the leading
coefficient β1 has to equal one, i.e., β1 = 1, in order to guar-
antee that the exact first-order term of the coupling constant
expansion of F(α) is preserved.

If the renormalized expansion (119) for the kernel F(α) is
inserted into the basic equation (63) of TDDFT in the linear
response regime then the response matrix assumes the form

X(α) = −LU[1 + f (ατ)]−1U†L. (121)

Comparison of Eqs. (117) and (121) shows that

g(ατ ) = − 1

1 + f (ατ )
+ 1 (122)

For f (ατ ) = ατ , the EXXRPA or ACFD[Hx] method [46]
described in Sec. V A 2 is recovered. Eq. (122) shows that
the expansions (118) and (120) are not independent of each
other but that one determines the other. Expansions (118)
in conjunction with Eq. (117) represents the PSA for the
response matrix X(α) while expansion (120) in conjunction
with Eq. (119) represents the PSA for the kernel F(α).

The integration

G(τ ) =
∫ 1

0
dαg(ατ ) =

∫ ∞

0
dα

(
− 1

1 + f (ατ )
+ 1

)
(123)

yields a function G(τ ) that can be used in the ACFD theorem
in form of Eq. (96).

ACFD methods that evaluate the KS correlation energy
according to Eq. (95) or (96) require functions g(ατ ), f (ατ ),
or G(τ ). In order to go beyond the simple first-order ap-
proximations discussed in the previous Secs. V A 1–V A 3
an ansatz for one of the three functions is required. On-
going first attempts to represent the function g(ατ ) by a
linear combination of Gaussian type functions have been

highly promising. Optimization of the coefficients of such
linear combinations using as reference the correlation en-
ergy of the homogeneous electron gas and potential energy
curves of simple two-electron systems like the hydrogen
molecule have lead to first preliminary ACFD approaches that
seem to approach the goal of high accuracy and universal
applicability [96].

5. ACFD methods with truncated power series approximation in
the variable L−1X(1)L−1 for the exchange-correlation kernel

If the renormalized expansion (120) for the function f (ατ )
determining via Eq. (119) the kernel F(α) is truncated after
the N th-order term then with Eq. (122) a function g(ατ ) of
the form

g(ατ ) = −
(

1 + ατ +
N∑

n=2

βn αnτ n

)−1

+ 1 (124)

is obtained which can be used to evaluate the KS correlation
energy by Eq. (95). In Ref. [63], an ACFD method based
on such a function g(ατ ) truncated after the forth order was
presented and applied to various molecules and molecular
aggregates. Furthermore, the name PSA was introduced in
Ref. [63] for expansions of the response matrix and the
kernel in terms of the dimensionless quantity L−1X(1)L−1

or the matrix τ of its eigenvalues. In Ref. [63], the PSA
was introduced in an ad hoc fashion. The discussion of the
series expansions of the response matrix X(α) and the kernel
F(α) in this work provides a formal justification of the PSA,
however, without supplying values for the coefficients βn.
The coefficients β2, β3, β4 required in the forth-order PSA
of Ref. [63] were obtained by optimizing a set of reaction
energies. The resulting ACFD approach showed excellent
results for various molecular systems, including transition
states and dimers bound by dispersion interactions. Moreover,
bond dissociation, e.g., dissociation of the nitrogen molecule,
that requires a correct treatment of strong static correlation
could be described highly accurately, despite the fact that the
underlying KS wave function is a single non-spin-polarized
KS determinant. The ability to correctly describe electronic
structures with multireference character on the basis of a
single Slater determinant is a promise of the KS formalism,
to which all previous KS methods cannot live up.

B. Hierarchies of methods towards the exact
Kohn-Sham correlation energy

All ACFD methods in the previous Sec. V A require be-
sides the KS response matrix Xs = X(0) only the first order
contribution X(1) to the response matrix X(α). In this section,
ACFD methods employing in addition higher-order contribu-
tions X(n) are briefly sketched. Explicit formulas for n = 2
are presented, however, a generalization to higher orders is
straightforward. A contribution of order n � 2 can be ex-
plicitly constructed in terms of KS orbitals and eigenvalues,
the KS exchange potential, and contributions v(m) to the
correlation potential with m � n along the lines discussed in
Secs. III and IV. The required potentials are accessible via the
OEP approach, see Sec. III C, which yields the potentials for
given KS orbitals and eigenvalues. Thus, for a given set of KS

235120-15



ANDREAS GÖRLING PHYSICAL REVIEW B 99, 235120 (2019)

orbitals and eigenvalues, the contributions X(n) to the response
matrix, in principle, can be evaluated to any order.

1. ACFD methods based on a direct expansion of the
frequency-dependent response function

Inserting the coupling strength expansion (87) of the re-
sponse matrix X(α) up to second order in the ACFD expres-
sion (94) for the KS correlation energy yields

Ec = −1

2π

∫ 1

0
dα

∫ ∞

0
dω Tr{[αX(1) + α2X(2)]FH }

= −1

2π

∫ ∞

0
dω Tr

{[
1

2
X(1) + 1

3
X(2)

]
FH

}
. (125)

With the spectral representation

L−1[αX(1) + α2X(2)]L−1 = U(α)τ(α)U†(α). (126)

Equation (125) assumes the form

Ec = −1

2π

∫ 1

0
dα

∫ ∞

0
dω Tr{LU(α)τ(α)U†(α)LFH }, (127)

which differs from Eq. (98) by the coupling strength depen-
dence of the matrices U(α) and τ(α). Like in the first-order
case, the eigenvalues collected in the diagonal matrix τ(α)
must be smaller or equal to one to avoid that the corresponding
response matrix X(α) has unphysical positive eigenvalues.
Again this can be enforced by defining a function g[τ(α)]
according to

g[τ (α)] = ατ for τ (α) � 1 (128)

and
g(ατ ) = 1 for τ (α) > 1 (129)

and by evaluating the KS correlation energy by the equation

Ec = −1

2π

∫ 1

0
dα

∫ ∞

0
dω Tr{LU(α)g[τ(α)]U†(α)LFH },

(130)

which differs from Eq. (95) again by the coupling strength
dependence of the matrices U(α) and τ(α).

2. ACFD methods based on expansions of the
exchange-correlation kernel

In the previous section, ACFD methods based on direct
expansions of the response matrix X(α) to higher orders than
one in the coupling constant are considered, in this section,
ACFD methods relying of expansion of the kernel F(α) to
orders higher than one are briefly considered. Taking into
account terms of first- and second-order term in the expansion
of the kernel F(α), see Eq. (90), together with Eqs. (63) and
(94) leads to the KS correlation energy

Ec = −1

2π

∫ 1

0
dα

∫ ∞

0
dω

× Tr{L[−(1 + L[αF(1) + α2F(2)]L)−1 + 1]LFH }.
(131)

Expressing the F(1) and F(2) by the accessible quantities X(1)

and X(2) with the help of Eqs. (67) and (68) suggests the

spectral representation

L[αF(1) + α2F(2)]L

= L−1[αX(1) + α2X(1)L−2X(1) + α2X(2)]L−1

= U(α)τ(α)U†(α) (132)

and equation

Ec = −1

2π

∫ 1

0
dα

∫ ∞

0
dω

× Tr{LU(α)[−(1 + τ(α))−1 + 1]U†(α)LFH } (133)

for the KS correlation energy. Equation (133) equals Eq. (130)
with

g[τ (α)] = −(1 + τ (α))−1 + 1. (134)

In contrast to Eqs. (108) and (109) again the matrices τ and
U and thus the variable τ of the function g depend on the
coupling constant α.

For τ values equal minus one, like in the lower-order case,
the response matrix X(α) becomes singular and for τ values
smaller than minus one it has unphysical positive eigenvalues.
One way to deal with the problem of unphysical response ma-
trices is to combine the methods of this Sec. V B 2 with the one
of the previous Section. V B 1 as it is described in Sec. V A 3
for the methods using only the first-order contribution X(1).
That is to use for the function g[τ (α)] expression (134) for
τ (α) > 0 and expression (128) for τ (α) � 0.

3. ACFD methods with renormalized power series approximations
for frequency-dependent response function

and exchange-correlation kernel using variables of higher
order in the coupling constant

Finally it is possible to generalize the concept of a PSA
described in Secs. V A 4 and V A 5 to cases that use contribu-
tions X(n) of an order n higher than one. The functions g and
f corresponding to those of Eqs. (118) and (120) are given by

g[τ (α)] = −
(

1 + τ (α) +
N∑

n=2

γn[τ (α)]n

)−1

+ 1 (135)

and

f [τ (α)] = τ (α) +
∞∑

n=2

βn[τ (α)]n. (136)

VI. CONCLUDING REMARKS

The approach presented in Sec. IV A to derive contribu-
tions X(n) to the response matrix X(α) in any order in the
coupling constant α not only gives access to the contribu-
tions X(n) in a straightforward way using quantities accessi-
ble in static perturbation theory along the adiabatic connec-
tion. In addition, Sec. IV B shows how the X(n) determine
the contributions F(n) to the frequency-dependent exchange-
correlation kernel F(α) in the corresponding order of the
coupling constant. The presented relations between the cou-
pling constant expansions of the response matrix X(α) and the
kernel F(α) suggest a manifold of mostly new ACFD methods
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including hierarchies of methods towards the exact KS corre-
lation energy.

From the various ACFD methods based on the first-order
contribution X(1) of the response function that are consid-
ered in Sec. V A only the EXXRPA or ACFD[Hx] method
described in Sec. V A 2 and the truncated PSA described
in Sec. V A 5 have been implemented and tested so far
[46,62,63]. Because all the methods based on X(1) differ
only in the employed function g(ατ) all the methods can
easily be implemented once one of the methods is available.
The computational effort of handling of the function g(ατ )
including the integration over the coupling strength α is
completely negligible thus all methods of Sec. V A require
almost the same computational resources determined by the
construction of the first-order contribution X(1) to the response
matrix that scales with N5 with the system size N . The new
ACFD methods presented in Sec. V A thus can be tested quite
easily. A challenge is the optimization of the functions g, f
or G in the renormalized PSA of Sec. V A 4, which, on the
other hand, offers many opportunities. One obvious strategy
is to optimize one of these functions using reference data like
molecular reaction energies or potential energy surfaces of
simple molecules. First attempts in this direction turned out
to be promising [96]. There remain, however, many possible
ways to pursue such a strategy that are largely unexplored. In
addition, it is desirable to investigate whether properties, e.g.,
the asymptotic behavior, of the functions g, f , and G can be
deduced from formal considerations.

ACFD methods taking into account contributions X(n) to
the response matrix of an order higher than one, prior to this
work, have not been proposed. An implementation of such
methods, which are sketched in Sec. V B, clearly requires con-
siderable programming effort and will lead to ACFD methods
with higher computational demands than the methods based
on the first-order contribution X(1). Because the latter ACFD
methods already can compete with high-level wave-function
methods with respect to accuracy and wide applicability it
seems reasonable to firstly explore and exploit the potential of
these first-order methods. If the better ratio of computational
effort to performance seen for first-order ACFD methods
compared to wave-function methods holds true also for the
higher-order ACFD methods suggested in Sec. V B then,
however, it seems worth to explore these methods in practice.

ACFD methods are amenable to Laplace transform tech-
niques [97], which can reduce the scaling of the computational
effort with the system size up to linear scaling. First successful

attempts along these lines have already been made for dRPA
methods [58,98–100]. In a similar way the scaling of the
more advanced ACFD methods considered here should be
improvable.

Here the formal considerations of Secs. III and IV are
used to analyze existing and to suggest new ACFD methods
for the KS correlation energy. To that end, in Sec. IV, re-
sponse matrices and exchange-correlation kernels for complex
valued frequencies are considered. All formulas in Sec. IV,
however, are equally valid for frequencies ν = ω + iη with
a real valued frequency ω and a complex contribution iη
approaching zero. This is the situation usually considered in
TDDFT in the response regime for calculating excitation en-
ergies or response properties like frequency-dependent polar-
izations. Most present TDDFT methods [72–74] rely on crude
frequency-independent approximations for the exchange-
correlation kernel that are obtained as simple functional
derivatives of conventional exchange-correlation potentials,
with respect to the electron density. Typically, functional
derivatives are taken of exchange-correlation potentials from
local or semilocal functionals or from hybrid or meta GGA
functionals. The resulting kernels not only lead to substantial
errors in excitation energies or other quantities but suffer
from basic limitations, they are, e.g., not able to describe
charge transfer processes or excitations that correspond to
double excitations in a one electron picture. Already some
time ago, it has been shown that taking into account the exact
frequency-dependent exchange kernel enables a treatment
of charge transfer excitations [101–103]. By including only
the exact exchange kernel in addition to the Hartree kernel,
however, results similar to time-dependent Hartree-Fock are
obtained, which is not sufficient for practical purposes. How
approximations that have been discussed here, such as the
PSA for the correlation kernel, perform in the calculation
of response properties and excitation energies is an highly
interesting open question to be explored in the future.

An objection raised against both DFT as well as TDDFT
methods is that they were not systematically improvable
towards the correct answer as it is possible by hierarchies
of wave-function methods like the coupled cluster hierar-
chy. Here hierarchies of ACFD methods approaching the
KS correlation energy have been sketched that address this
objection for DFT. With the presented approach to systemat-
ically improving the exchange-correlation kernel additionally
a path towards a systematical improvement of TDDFT in the
response regime is opened up.

APPENDIX: CONTRIBUTION TO THE FREQUENCY-DEPENDENT RESPONSE FUNCTION
OF FIRST ORDER IN THE COUPLING CONSTANT

The contribution χ (1)(ν, r, r′) of first order in the coupling constant α to the response function χ (α, ν, r, r′) is given by

χ (1)(ν, r, r′) = χ
(1)
I (ν, r, r′) + χ

(1)
II (ν, r, r′) + χ

(1)
III (ν, r, r′) + χ

(1)
IV (ν, r, r′) (A1)

with

χ
(1)
I (ν, r, r′) =

∑
i, j

∑
a,b

〈φi|ρ̂(r)|φa〉 〈φaφ j ||φiφb〉 〈φb|ρ̂(r′)|φ j〉
(εi − εa + ν)(ε j − εb + ν)

+
∑
i, j

∑
a,b

〈φa|ρ̂(r)|φi〉 〈φiφb||φaφ j〉 〈φ j |ρ̂(r′)|φb〉
(εi − εa − ν)(ε j − εb − ν)

, (A2)

χ
(1)
II (ν, r, r′) =

∑
i, j

∑
a,b

〈φi|ρ̂(r)|φa〉 〈φaφb||φiφ j〉 〈φ j |ρ̂(r′)|φb〉
(εi − εa + ν)(ε j − εb − ν)

+
∑
i, j

∑
a,b

〈φb|ρ̂(r)|φ j〉 〈φiφ j ||φaφb〉 〈φa|ρ̂(r′)|φi〉
(εi − εa + ν)(ε j − εb − ν)

, (A3)

235120-17



ANDREAS GÖRLING PHYSICAL REVIEW B 99, 235120 (2019)

χ
(1)
III (ν, r, r′) =

∑
i

∑
a,b

〈φi|ρ̂(r)|φa〉 〈φa|v̂NL
x − v̂x|φb〉 〈φb|ρ̂(r′)|φi〉

(εi − εa + ν)(εi − εb + ν)
+

∑
i

∑
a,b

〈φa|ρ̂(r)|φi〉 〈φb|v̂NL
x − v̂x|φa〉 〈φi|ρ̂(r′)|φb〉

(εi − εa − ν)(εi − εb − ν)

−
∑
i, j

∑
a

〈φi|ρ̂(r)|φa〉 〈φ j |v̂NL
x − v̂x|φi〉 〈φa|ρ̂(r′)|φ j〉

(εi − εa + ν)(ε j − εa + ν)
−

∑
i, j

∑
a

〈φa|ρ̂(r)|φi〉 〈φi|v̂NL
x − v̂x|φ j〉 〈φ j |ρ̂(r′)|φa〉

(εi − εa − ν)(ε j − εa − ν)
,

(A4)

and

χ
(1)
IV (ν, r, r′) =

∑
i

∑
a,b

〈φi|ρ̂(r)|φa〉 〈φb|v̂NL
x − v̂x|φi〉 〈φa|ρ̂(r′)|φb〉

(εi − εa + ν)(εi − εb)
+

∑
i

∑
a,b

〈φb|ρ̂(r)|φa〉 〈φi|v̂NL
x − v̂x|φb〉 〈φa|ρ̂(r′)|φi〉

(εi − εa + ν)(εi − εb)

+
∑

i

∑
a,b

〈φa|ρ̂(r)|φi〉 〈φi|v̂NL
x − v̂x|φb〉 〈φb|ρ̂(r′)|φa〉

(εi − εa − ν)(εi − εb)
+

∑
i

∑
a,b

〈φa|ρ̂(r)|φb〉 〈φb|v̂NL
x − v̂x|φi〉 〈φi|ρ̂(r′)|φa〉

(εi − εa − ν)(εi − εb)

−
∑
i, j

∑
a

〈φi|ρ̂(r)|φa〉 〈φa|v̂NL
x − v̂x|φ j〉 〈φ j |ρ̂(r′)|φi〉

(εi − εa + ν)(ε j − εa)
−

∑
i, j

∑
a

〈φi|ρ̂(r)|φ j〉 〈φ j |v̂NL
x − v̂x|φa〉 〈φa|ρ̂(r′)|φi〉

(εi − εa + ν)(ε j − εa)

−
∑
i, j

∑
a

〈φa|ρ̂(r)|φi〉 〈φ j |v̂NL
x − v̂x|φa〉 〈φi|ρ̂(r′)|φ j〉

(εi − εa − ν)(ε j − εa)
−

∑
i, j

∑
a

〈φ j |ρ̂(r)|φi〉 〈φa|v̂NL
x − v̂x|φ j〉 〈φi|ρ̂(r′)|φa〉

(εi − εa − ν)(ε j − εa)
.

(A5)

With the help of the first-order contribution χ (1)(ν, r, r′) of the response function an equation for the sum of the Hartree and
the frequency-dependent exchange kernel can be derived, see Eqs. (51) and (67) of the main text. This equation was derived
earlier in Refs. [75–77]. The contribution χ (1)(ν, r, r′) was designated as function h(1)(ν, r, r′) in Refs. [75–77] because it was
not identified as the contribution to the response matrix of first order in the coupling constant α.
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