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Molecular tests of the random phase approximation to the exchange-correlation energy functional
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The exchange-correlation energy functional within the random phase approximation (RPA) is recast into an
explicitly orbital-dependent form. A method to evaluate the functional in finite basis sets is introduced. The
basis set dependence of the RPA correlation energy is analyzed. Extrapolation using large, correlation-
consistent basis sets is essential for accurate estimates of RPA correlation energies. The potential energy curve
of N, is discussed. The RPA is found to recover most of the strong static correlation at large bond distance.
Atomization energies of main-group molecules are rather uniformly underestimated by the RPA. The method
performs better than generalized-gradient-type approximations (GGA’s) only for some electron-rich systems.
However, the RPA functional is free of error cancellation between exchange and correlation, and behaves
qualitatively correct in the high-density limit, as is demonstrated by the coupling strength decomposition of the
atomization energy of F,. The GGA short-range correlation correction to the RPA by Yan, Perdew, and Kurth
[Phys. Rev. B 61, 16 430 (2000)] does not seem to improve atomization energies consistently.
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I. INTRODUCTION

Kohn-Sham (KS) density functional theory' ™ is one of
the most widely used methods in electronic structure theory.
Due to a well-balanced compromise between accuracy
and computational efficiency, generalized gradient
approximations*™® (GGA’s) to the exchange-correlation en-
ergy functional are very successful in solid-state and particu-
larly in molecular applications. However, further improve-
ment of approximations to the exchange-correlation energy
functional is still an issue. ““Chemical accuracy” in atomiza-
tion energies (1 kcal/mol) has not yet been achieved,”” > en-
ergies and potentials are contaminated with self-interaction,'*
and orbital energy spectra are qualitatively incorrect'>~'7 —to
name some of the most pressing difficulties of GGA-type
functionals. Although these problems have been known for
more than a decade, they are hard to overcome in a practi-
cable and and general manner.

An evident strategy for improvement is to identify the
parts of the exchange-correlation energy for which the GGA
is accurate and to treat the remainder exactly. For this pur-
pose, the coupling strength decomposition of the exchange-
correlation functional,'

1
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has proved a convenient starting point. The integrand W [ p]
is defined as
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where W denotes the operator of the electron-electron Cou-
lomb interaction, and W [p] is the ground state of an N
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electron system with scaled interaction aW, whose ground-
state density is constrained at the density p of the physical
ground state W [p]. For any approximate exchange-
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correlation functional, the coupling strength decomposition
can be computed by means of the scaling relation'®~>!

d
Wa[p]: a(azExc[pl/a]L (3)

where p,(r)=N3p(\r) is a scaled density, with uniform
scaling parameter A . Thus, W, at =0 is determined by the
high-density limit of E,., while the low-density limit corre-
sponds to large « values. By construction, W[ p] is the KS
determinant, and Wy[p]=E,[p] is the exact orbital-
dependent exchange functional.

For molecular densities, the GGA is known to yield a
rather poor description of the high-density (exchange-only)
limit. This is obvious, e.g., from the errors in GGA
exchange-only (x-only) atomization energies that are signifi-
cantly larger than errors in total GGA atomization energies.”
It is not sufficient to replace the GGA exchange part by the
exact functional only, since there is considerable error can-
cellation between GGA exchange and correlation at small
coupling constant values.** The random phase approximation
(RPA) to the exchange-correlation functional'®***° is more
accurate in the high-density limit. It correctly reduces to the
exact exchange functional in the high-density limit, and the
leading correlation contribution recovers the direct part of
the exact high-density limit* of the correlation energy func-
tional. EECPA[ p] is nonperturbative, containing contributions
from all orders in «. It has a well-defined homogeneous limit
and has played an important role in the development of ho-
mogeneous gas theory (for an overview, see Refs. 2 and 26).

Recently, there has been a revival of interest in the
RPA ?’~* Yan, Perdew, and Kurth (YPK) have presented a
GGA correction to RPA correlation ngrA[p] (Ref. 30); it
accounts for short-range correlation effects that are not well
described within the RPA.*' YPK suggest that the GGA may
be more accurate for the correction to the RPA than for the
full exchange-correlation energy. In other words,

B 1)= EXMp)+ ECSTp] (4)
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is supposed to be a very accurate approximation to the exact
exchange-correlation functional. YPK find that ES’(S}rA[p]
gives large corrections to total correlation energies but small
corrections to atomization energies, and conclude that the
RPA itself might come close to chemical accuracy.

Molecular tests of the RPA have been hampered by the
fact that the common expression for EXN{ p] [cf. Eq. (5) in
Sec. II] contains the frequency-dependent RPA density re-
sponse function of the interacting system at coupling
strength a, which depends on the KS orbitals and the density
in a complicated way. Moreover, a nontrivial integration over
frequency is required. In Sec. II, the RPA correlation energy
functional is recast into an explicitly orbital-dependent form
which does not involve frequency integration [Egs. (20) and
(21) in Sec. IT]. The derivation is simple and relies on the
density-matrix-based approach to KS response theory.*>
Implementation in finite basis sets is straightforward, as dis-
cussed in Sec. III. Technical details of the computations are
given in Sec. IV. Due to the correlation cusp, the basis set
dependence of the RPA correlation energy is quite different
from that familiar from GGA calculations; this is investi-
gated in a separate subsection. The first ab initio RPA results
for atomization energies as well as bond properties of the N,
molecule are presented in Sec. V. (The author is aware of
similar work by Fuchs and Gonze being in progress.*’) The
coupling strength dependence of the F, atomization energy
within the GGA and the RPA is analyzed in detail. Conclu-
sions are discussed in Sec. V.

II. THEORY

Following Langreth and Perdew,'®*

integrand W, can be expressed as

the coupling strength

*dw wx.x")—xo(w,x,x")
Wa=W0—J oy [ ar aeXed Xol
2@ [r—r’|

(5)

Xo(w) is the frequency-dependent density response function
of the system with scaled interaction and fixed density, and
Xo(w) is the KS density response function. As usual, x
=(r,o0) denotes a set of space-spin coordinates. Time-
dependent Kohn-Sham (TDKS) theory leads to a Dyson-type
equation for Xal@)

Xo(w,x,x" ) =xo(w,x,x")+ f dx dx xo(w,x,x,)

o
X( ’ +fxca(w,x1,x{)))(a(w,x{,x’).
ey —ry

(©)

fre (@) denotes the frequency-dependent exchange-
correlation kernel at coupling strength . The RPA coupling
strength integrand WRPA is obtained by replacing y,(w) with
its 1}?PA counterpart XRPA(w) in Eq. (). XRPA(a)) is defined
by
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X (@.x.6") = xo(@.x,x )+J dx dx; xo(@.x.x;)

a AP

(w.x],x"); (7)
|r1—r1|

ie., fxc o(®) in Eq. (6) is formally set to zero.

In the following it is shown how the calculation of
can be reduced to finite-dimensional linear algebra in finite
basis sets. The procedure largely follows Ref. 32, to which
the reader is referred for details. XRPA(w) can be considered

as the diagonal of the density-matrix response function
»—«RPA
(w),

RPA
Wa

RPA(w x,x')= M};PA(w)(x,x,x',x’). (8)

RPA( ) is an operator on the Hilbert space L=_L, . .® L

@Lix®L,.., where L. and L;, denote the Hilbert spaces
of occupied and virtual KS molecular orbitals (MO’s) asso-
ciated with the ground-state density p. (Note that the density
determines the KS potential and thus all MO’s, occupied and
virtual.) For vectors in L the notation

X

X,Y)= 9
xn=(, ©
is convenient, i.e., X € Loce®Lyiy,Y € Lyin® Loge . ENN )
has a straightforward matrix equivalent, in contrast to
RPA( ). From the equation of motion for the TDKS density
matrix it follows’? that :§PA(w) is related to the TDKS re-

sponse operator within the RPA AEPA by
= RPA(Z) —

=5 —(AI;PA—Az)fl, zeC. (10)

AR and A are defined on L and can be cast in the well-
known form

P R N 11

@« \B, A, T \o -1/ (1)

Assuming real KS MO’s, A, and B, are symmetric and have
the matrix elements

(Aa_Ba)iajb:(e 6)5 6ab» (]28.)
(Aa+Ba)iajb:(Aa_Ba)iajh+2a<ij|ab>' (lzb)
As usual, indices 7,j, ... label occupied and a,b, ... vir-

tual MO’s; €, ,€, are orbital energies and (ij|ab) is the ma-
trix element of the electron-electron interaction (in Dirac no-
tation). Equations (8) and (10) are generalizations of the
Dyson-type equation (7). The matrix representation of AI;PA
is the key to the basis set formulation of the RPA, since the
matrix elements reduce to a finite number of standard mo-
lecular integrals in finite basis sets.

The integration over frequency in Eq. (5) can be carried
out using the resolvent equation (10). The poles of — EX™ at
positive frequency are the positive eigenvalues (), , of

ARPA and the residues are given by the corresponding eigen-
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projectors | X, o»Y, a){X, «»Yp of - This leads to the RPA ei-

32,35

genvalue problem at coupling strength «,

(AEPA_Qn aA)|Xna’Yn a>:0’ (13)

where the eigenvectors obey (X, o»Y, ol AlXy o Yna)=1.
Requiring that HRPA(Z) be analytic in the upper half of the
complex z plane, one arrives at

*dw
j ﬂ_Im»—«RPA(w):_E |Xna7Yna><Xna’Yna|‘
0 n
(14)

Using that AJ™ is diagonal, and inserting into Egs. (8) and
(5), the RPA coupling strength integrand takes the form

WRPA= W+ = E (ablij)P y iajp - (15)

mj

where

Puiajb:; (Xn g[+ Yn a)ia(Xn 01+ Yn a)jb_ 5ij50b
(16)

The expression for P, can be further simplified by the
introduction of the one-component vectors*°

Zy o= 2(A =B (X, ot Y, ) (17)

From Eq. (13) it follows that these vectors satisfy the sym-
metric eigenvalue equation

(M,—Q2 )Z, ,=0, (18)
with the symmetric operator M, given by
Mo =(Aa=Bo) (A +B)(A, =B (19)

Eliminating (X, ,+Y,.) by Eq. (17), and employing the
spectral representation of M, , P, finally takes the form

Po=(A,—B,) "M "*(A,—B,)"*—1. (20)

Inserting Eq. (15) into the adiabatic connection formula (1),
the integrated RPA exchange-correlation energy follows as

ERPA—E +2J’ daz <ab|l]>Pa,an (21)
iajb

Equations (20) and (21) express the RPA exchange-

correlation energy as an explicit functional of the KS orbit-

als.

One can easily verify that the above expression has the
behavior expected for the RPA to second order in the
electron-electron interaction. Elementary perturbation theory
starting from eigenvalue problem (18) yields

M iop=(e,—€) '
(ablij)
Sp—2a———— 4+ O(a?
0ij0ab a6a+6b—6i—€j 0(a’)
X(eb—ej)_”z. (22)
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Thus, by Egs. (20) and (15),

(ablij)?

WA -
iajb €, €,—€;—

+0(a?). (23)
J

Upon coupling strength integration, the constant term gives
the exchange functional, while the term linear in « produces
the direct part of the exact second-order correlation energy
functional.

There is obviously a close connection between the RPA
exchange-correlation energy and time-dependent density
functional theory (TDDFT). The eigenvalues (), , are exci-
tation energies of a system with scaled electron interaction
within the RPA, and the eigenvectors |X,, ,,Y, ) give the
corresponding density changes.*? The expression for P, , Eq.
(16), may be viewed as a factorization of the correlation hole
into contributions arising from collective excitations. This
was actually the physical motivation behind the RPA as it
was first introduced 50 years ago by Bohm and Pines.?*

In the derivation of Eq. (20) it has been tacitly assumed
that (A,—B,) and (A,+B,) (and hence M ,) are positive
definite. The positivity of (A,—B,) is always given if the
Aufbau principle is obeyed.>” The same is true for (A,
+ B,) in the RPA since the electron Coulomb interaction is
positive as well, and coupling strengths a are always greater
than or equal to zero. Without giving too much details the
possibility should be mentioned here to define the RPA cor-
relation energy in a Hartree-Fock (HF) context as well. The
formalism largely has the same structure as above; merely
(A,—B,) and (A,+B,) are replaced by the corresponding
expressions familiar from time-dependent Hartree-Fock
theory.>> However, instabilities of the HF ground state show-
ing up as negative eigenvalues of (A,—B,) and (A,+B,)
can occur.*® Moreover, although HF-based RPA correlation
energies are exact to second order in the electron-electron
interaction,”® total correlation energies are considerably un-
derestimated, as has been found in explorative calculations
for the present work.

III. IMPLEMENTATION

Evaluation of the RPA correlation energy functional as
given by Egs. (20) and (21) was implemented in the second-
order Mdller-Plesset (MP2) module MPGRAD (Ref. 40) of the
program system TURBOMOLE.*' The electron repulsion inte-
grals (ijlab) are constructed by transformation from the
atomic orbital basis, a step which is routinely performed in
MP2 calculations and has an asymptotic N° scaling of com-
putational cost. The algorithm implemented in MPGRAD is
integral direct; i.e., the integrals are transformed “on the
fly,” making integral prescreening effective.*' Furthermore,
molecular symmetry is fully exploited for finite point groups,
so that only nonredundant integrals need to be calculated.*?

M ;1/2 is obtained in a straightforward manner by diago-
nalization of M, and taking the inverse square root of its
eigenvalues, i.e.,

M, =7 diag(Q; Q5L )7, (24)

la>
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where Z, signifies the matrix of eigenvectors. With an N°®
scaling, this is the most expensive step in RPA calculations
even for smaller molecules with more than 20-30 electrons.
However, the space L can be decomposed into a direct sum
of subspaces transforming according to irreducible represen-
tations of the molecular point group. This is implemented by
Clebsch-Gordan reduction of the representations spanned by
direct products of occupied and virtual MO’s. Since M, is
totally symmetric, the Wigner-Eckart theorem applies, and
all operations need to be done for each irreducible subspace
only. The cost for diagonalization thus reduces by approxi-
mately 1/g>, if g denotes the point group order. For most
molecules treated below, this results in a speedup by a factor
of 100—1000.

The coupling strength integral (21) is evaluated numeri-
cally. As the integrand is smooth and monotonous, this poses
no particular difficulty. A seven-point Gauss-Legendre
quadrature formula was found to produce energies accurate
to at least six digits for several test cases. Correctness of the
implementation was checked by comparison with RPA exci-
tation energies from an independent TDDFT code®® at a
=1 and by numerical and analytical evaluation of
d W];PA/ da|,—,. Computation times for a single-point corre-
lation energy ranged between seconds and a few minutes on
a single CPU of a HP J240 workstation for most molecules
considered below; they were considerably larger (several
hours) due to the N® scaling for benzene and phenyl radical.

IV. COMPUTATIONAL DETAILS

All functionals were evaluated at self-consistent
Perdew-Burke-Ernzerhof® (PBE) GGA ground-state densi-
ties. The PBE parametrization was chosen since it does not
contain empirically adjusted parameters and behaves reason-
ably under uniform scaling. Convergence of the density ma-
trix to at least 10”7 was required, and fine quadrature grids
(grid size 5*) were used. The PBE and x-only calculations
were performed with a modified version of the DSCF
module*'*? of TURBOMOLE. Atomization energies were
evaluated at the experimental structures taken from Ref. 44
for diatomics and from Ref. 10 for polyatomic molecules; for
the H abstraction energy of benzene, structures were opti-
mized using the PBE functional and a triple-zeta valence
basis*® with cc-pVTZ polarization functions (TZVPP). Ex-
cept for this reaction, Dunning’s correlation consistent basis
sets were used throughout.*~*® The calculated atomization
energies were corrected for basis set superposition error*
(BSSE) according to the Boys-Bernardi counterpoise
procedure.”® RPA contributions to atomization energies were
determined from the 45 extrapolated valence electron RPA
correlation energies; the extrapolation method is discussed in
Sec. V. PBE, x-only, and YPK short-range correction ener-
gies were evaluated in the cc-pV5Z basis. The bond distance
and the harmonic frequency of N, were determined by nu-
merical differentiation. For these properties as well as for the
curves in Figs. 2 and 3, all-electron cc-pVQZ (Ref. 51) en-
ergies without BSSE correction were used. Experimental at-
omization energies of diatomics were calculated from spec-
troscopic D, values by subtraction of experimental zero-

PHYSICAL REVIEW B 64 195120

TABLE I. Basis set dependence of the RPA valence electron
correlation energy (hartree). PBE total energies are given for com-
parison.

Basis E(RPA) E(PBE)
cc-pVTZ —0.550 874 —109.446 267
cc-pvVQZ —0.599 531 —109.455091
cc-pV5Z —0.621 644 —109.458 834
cc-pV6Z —0.633447 —109.459 781
34 extr. —0.635037

45 extr. —0.644 845

56 extr. —0.649 660

point energies and anharmonicity corrections as available in
Ref. 44. The experimental atomization energies of poly-
atomic molecules from Ref. 52 are based on thermochemical
data, with calculated zero-point energies subtracted. The cou-
pling strength decomposition of the PBE GGA as well as the
YPK short-range correlation functional were obtained from
scaling relation (3).

V. RESULTS
A. Basis set dependence

The dependence of the RPA correlation energy on the
one-particle basis set is fundamentally different from that
observed in local density approximation (LDA) and GGA
calculations. This is exemplified for the N, molecule in Table
I. Dunning’s correlation consistent polarized valence electron
basis sets cc-pVXZ, X=3(T), 4(Q),5,6, are designed for a
systematic assessment of basis set effects.**~** The number
of polarization functions increases in a “‘correlation consis-
tent” manner>>* with the cardinal number X,ie., 2d 1f for
X=3,3d2f1g for X=4, and so on. The largest basis set
used here, cc-pV6Z, contains up to i (/=6) functions and a
total of 210 primitive Gaussians per atom. While the PBE
energy is converged to 10~ 3 Hartree in this basis, the error in
the RPA correlation energy is still more than then 10 times
larger. The slow convergence with respect to the highest an-
gular momentum quantum number in the atomic basis set
used is not unexpected, since the correlation cusp55 in the
RPA pair density is expanded in a basis of MO products in
the present method [see, e.g., Eq. (16)]. This implies that the
RPA valence correlation energy depends on the cardinal
number X as

ERMX)=ERM () + A/X3 (25)

for sufficiently large X (Refs. 56—58); A is some constant.
Equation (25) can be used to extrapolate the basis set limit
ECRPA(OO), if E?PA is known for two different cardinal num-
bers X,Y. This will be called XY extrapolation in the follow-
ing.

In Fig. 1, the RPA valence electron correlation energy of
N, is plotted as a function of the cardinal number X. In fact,
an asymptotic X ° dependence due to the correlation cusp is
observed. The extrapolated energies converge more rapidly
than the unextrapolated ones (Table I); the error in the 56
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E.RPA (Hartree)

X

FIG. 1. Dependence of the RPA valence correlation energy E.
for N, on the cardinal number X of the basis set (X =3 scale). 56
extr. denotes a two-point extrapolation using X=15 and 6.

extrapolation is estimated to be less than or equal to 5 mhar-
tree. This is still more than ?/pical errors encountered for
post-HF correlation methods.” A possible reason may be
that PBE highest-occupied and lowest-unoccupied molecular
orbital (HOMO-LUMO) gaps are much smaller than HF
gaps, making response properties more sensitive to basis set
changes.

The basis set convergence of RPA and PBE atomization
energies of N, (Table II) is again strikingly different. While
the PBE result is converged to about 1 kcal/mol at the cc-
pVTZ level, the error in the RPA value is more than 12
kcal/mol. In fact, the unextrapolated RPA atomization energy
is still more than 2 kcal/mol off the estimated basis set limit
even in the cc-pV6Z basis. The extrapolated energies con-
verge reasonably, though. The error in the 45 extrapolated
RPA atomization energy is probably below 1 kcal/mol; the
45 extrapolation has therefore been used for the molecules in
Table 1V, below, as well. Experience with other methods®”
and explorative all-electron calculations indicate that errors
due to the frozen-core approximation used in the RPA calcu-
lations are smaller than 1 kcal/mol. It is therefore estimated
that the RPA and RPA+ atomization energies given in Table
IV are accurate to about 1 kcal/mol compared to the all-
electron basis set limit.

B. Properties of N,
In Table III, PBE and RPA+ equilibrium bond lengths

TABLE II. Basis set dependence of calculated N, atomization
energies (kcal/mol).

Basis RPA PBE
cc-pVTZ 210.8 2428
cc-pvVQZ 2175 2435
cc-pV5Z 220.2 243.6
cc-pVoZ 221.5 2438
34 extr. 221.3
45 extr. 222.7
56 extr. 2232
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TABLE III. Calculated bond length r, and harmonic vibrational
frequency w, of N, compared to experiment.

RPA + PBE Expt.?
7. (pm) 110.4 110.2 109.8
o, (cm™ 1) 2323 2349 2359

“Reference 44.

and harmonic vibrational frequencies of N, are compared to
experiment. RPA results for these properties are nearly iden-
tical to RPA+ and are therefore not discussed separately
here. Agreement of the PBE results with experiment is sur-
prisingly good. The RPA + results are slightly worse, but still
close to PBE. Neglect of correlation generally gives too short
bonds and too large frequencies; this is somewhat overcor-
rected by RPA+.

Potential energy curves of N, computed using the PBE,
x-only, and RPA+ functionals are compared in Fig. 2. At
large bond distance, the x-only curve exhibits artifacts well
known from closed-shell HF theory. The PBE curve tends to
a smaller value, indicating that the GGA incorporates part of
the large static correlation in this limit. The RPA+ curve
comes very close to zero. This is a remarkable behavior for a
single-reference method,% since the huge error in the x-only
energy is almost exactly canceled. At intermediate bond dis-
tance, the RPA+ curve has a spurious maximum. It cannot
be decided at present if this is an intrinsic shortcoming of
RPA+ or caused by a worsening of the PBE densities at long
bond distance.

C. Atomization energies

In Table IV, calculated atomization energies of small
main-group molecules are compared to experimental results.
The present sample cannot claim statistical significance. The
molecules in Table IV should rather be considered as indi-
vidual, paradigmatic cases. By comparison with the x-only
results it is evident that the RPA correlation energy recovers
the main part of the correlation contribution to atomization

300

200 |

100 |

AE(R) (keal/mol)

-100 |

-200

-300 1 1 L L L
100 200 300 400 500

R/pm

FIG. 2. Relative spin-restricted potential energy curves of N, .
AE is the atomization energy, and R denotes the N-N distance.
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TABLE 1V. Calculated atomization energies (kcal/mol) com-
pared to experiment. For details of the calculations see Sec. IV.

System PBE x-only RPA  RPA+ Expt. *
H, 105 84 109 110 109
N, 244 111 223 223 228
0, 144 25 113 111 121
F, 53 -43 30 29 38
Ne, ° 011  —0.15 001  —008 0.08°
Si, 81 38 70 70 75
HF 142 96 133 132 141
CO 269 170 244 242 259
Co, 416 234 364 360 389 ¢
C,H, 415 291 381 378 4054
H,0 234 155 223 222 2324
CeHs-H® 115 100 112 112 120+1F

AE, ,, (kcal/mol)

&
=)

-100

-120
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o,

oy

“Reference 44, unless otherwise stated.
bAll-electron results.

“Reference 65.

dReference 52.

°TZVPP basis, no counterpoise.
TReference 61.

energies. However, except for H,, RPA and RPA+ atomiza-
tion energies are too small. Interestingly, this underestima-
tion appears to be nearly independent of the error in the
x-only atomization energies. For N,, for example, the x-only
atomization energy is smaller than half the experimental
value, and the RPA is rather accurate, while it falls short for
HF which is reasonably described in a single-determinant
ansatz. For several “difficult” cases such as N,, O,, F,, or
CO,, the RPA performs better than PBE, which tends to
overestimate  atomization energies of electron-rich
compounds.11 On the other hand, PBE results are clearly
superior for HF, H,O, or C,H,. Ne, is a typical dispersion-
bound van der Waals molecule. In order to obtain meaningful
results (BSSE not significantly larger than binding energies),
all-electron calculations and special core-valence basis sets'
were used. As expected, the neon dimer is not bound in the
x-only approximation; the PBE atomization energy is very
close to the experimental result. Perhaps surprisingly, RPA+
fails, predicting a negative binding energy. As in all other
cases except H, and N,, the YPK short-range correlation
correction has the wrong sign and does not improve the RPA
result.

The hydrogen abstraction from benzene is a chemical re-
action of interest in carbon chemistry and materials science;
accurate theoretical predictions of the reaction energy are not
easily achieved.®! The PBE reaction energy of 115 kcal/mol
is about 5 kcal/mol too small compared to the experimental
value. Again, the RPA result is even smaller. Due to the size
of the molecule, a more economic basis set without extrapo-
lation was used; however, it is estimated that RPA and RPA+
will still remain below the PBE reaction energy in the basis
set limit.

In Fig. 3, the coupling strength decomposition of the cor-
relation contribution to the atomization energy®* of F, ac-

FIG. 3. Coupling strength decomposition of the correlation part
AE, of the F, atomization energy. AE, denotes the x-only atomi-
zation energy.

cording to the adiabatic connection formula (1) is plotted.
The total correlation part of the atomization energy is given
by the positive area under the curves between a=0 and 1.
The plot illustrates well why GGA correlation functionals are
not compatible with exact exchange: The PBE curve is much
too flat for all coupling strength values. The PBE curve
shifted by the difference between the x-only and PBE ex-
change atomization energies AE, gives a better approxima-
tion to the total correlation part of the atomization energy.
However, the shifted PBE curve is qualitatively in wrong in
the small-a (high-density) limit, since it does not tend to
zero. This has been identified as the main reason why GGA’s
overestimate atomization energies of electron-rich molecules
such as F,.2* The RPA+ curve behaves qualitatively cor-
rect over the whole a range. The integral is still too small,
however, as indicated by the underestimation of the total
atomization energy.

VI. CONCLUSIONS

From the results presented above it is clear that neither
RPA nor RPA+ reach chemical accuracy for atomization en-
ergies. The RPA is superior to the GGA only for certain
electron-rich molecules where the GGA itself has substantial
problems. This modest improvement has to be paid by a
dramatic increase of computational cost. Clearly, RPA and
RPA+ cannot (yet) compete with post-HF methods such as
the coupled cluster singles and doubles approximation
(CCSD), which give better results™ at a comparable price.
The present conclusions are somewhat limited by the accu-
racy of the PBE densities used. It is not expected that more
accurate densities will alter the results dramatically, but a
definite answer must be left to future investigations.

On the other hand, the RPA correlation energy seems to
account well for strong static correlations. This is obvious
from the potential energy curves (Fig. 2) and the fact that
errors in RPA atomization energies of molecules such as N, ,

195120-6
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0,, and F, are not significantly larger than for others. On the
whole, the RPA performs still reasonably without error can-
cellation between (exact) exchange and correlation. This in-
dicates that RPA correlation energies are more accurate than
GGA correlation energies. Few other correlation energy
functionals are known® that yield atomization energies of
comparable quality when combined with exact exchange. It
is surprising, though, that the YPK GGA corrections to at-
omization energies are not satisfactory. Further detailed stud-
ies are needed to understand this unexpected result.
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