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The adiabatic approximation in time-dependent density functional theory (TDDFT) yields reliable excita-
tion spectra with great efficiency in many cases, but fundamentally fails for states of double-excitation
character. We discuss how double-excitations are at the root of some of the most challenging problems
for TDDFT today. We then present new results for (i) the calculation of autoionizing resonances in the
helium atom, (ii) understanding the nature of the double excitations appearing in the quadratic response
function, and (iii) retrieving double-excitations through a real-time semiclassical approach to correlation
in a model quantum dot.
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1. Introduction

There is no question that time-dependent density functional
theory (TDDFT) has greatly impacted calculations of excitations
and spectra of a wide range of systems, from atoms and molecules,
to biomolecules and solids [1,2]. Its successes have encouraged
bold and exciting applications to study systems as complex as
photosynthetic processes in biomolecules, coupled electron–ion
dynamics after photoexcitation, molecular transport, e.g. Refs.
[3–6]. The usual approximations used for the exchange–correlation
(xc) potential in TDDFT calculations however perform poorly in a
number of situations particularly relevant for some of these appli-
cations, e.g. states of double-excitation character [7], long-range
charge-transfer excitations [8,9], conical intersections [3,10],
polarizabilities of long-chain polymers [11], optical response in
solids [12,13]. Improved functionals, modeled from first-principles,
have been developed, and are beginning to be used, to treat some
of these. In this paper, we focus on the problem of double-excita-
tions in TDDFT, for which recently much progress has been made.

The term ‘‘double-excitation’’ is a short-hand for ‘‘state of dou-
ble-excitation character’’. In a non-interacting picture, such as
Kohn–Sham (KS), a double-excitation means one in which two
electrons have been promoted out of orbitals occupied in the
ground-state, to two virtual orbitals, forming a ‘‘doubly-excited’’
Elsevier B.V.

t).
Slater determinant. The picture of placing electrons in single-
particle orbitals however does not apply to true interacting states.
Instead one may expand any interacting state as a linear combina-
tion of Slater determinants, say eigen states of some one-body
Hamiltonian, such as the KS Hamiltonian, and then a state of dou-
ble-excitation character is one which has a significant proportion
of a doubly-excited Slater determinant. Clearly, the exact value of
this proportion depends on the level of theory used for the
ground-state reference e.g. it will be different in Hartree–Fock than
in TDDFT.

Given the important role of correlation in states of double-
excitation character, the question of how these appear in a sin-
gle-particle-based theory has both fundamental and practical
interest. We shall begin by reviewing the status of linear-response
TDDFT in this regard: one must go beyond the ubiquitous adiabatic
approximation to capture these. We conclude the introduction by
discussing systems where double-excitations are particularly
important, and we shall see that some of these cases are due to
the peculiarity of the KS single-Slater determinant in the ground-
state (e.g. in certain long-range charge-transfer states). Then in
Section 2 we consider what happens when the double-excitation
lies in the continuum, and test a recently developed kernel approx-
imation to describe the resulting autoionizing resonance in the He
atom. In Section 3, we study whether adiabatic kernels can be
redeemed for double-excitations by going to quadratic response
theory. Section 4 turns to a new approach that was recently pro-
posed for general many-electron dynamics, that uses semiclassical
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dynamics to evaluate electron correlation. Here we test it on a
model system to see whether it captures double-excitations.

1.1. Double excitations in linear-response TDDFT

Excitation spectra can be obtained in two ways from TDDFT. In
one, a weak perturbation is applied to the KS system in its ground-
state, and the dynamics in real-time of, e.g. the dipole moment is
Fourier transformed to reveal peaks at the excitation frequencies
of the system, whose strengths indicate the oscillator strength.
More often, a formulation directly in the frequency-domain is used,
in which two steps are performed: First, the KS orbital energy dif-
ferences between occupied (i) and unoccupied (a) orbitals, xS =
�a � �i are computed. Second, these frequencies are corrected to-
wards the true excitations through solution of a generalized eigen-
value problem [14,15], utilizing the Hartree–exchange–correlation
kernel, fHXC[n0](r,r0,x) = 1/jr � r0j + fXC[n0](r,r0,x), a functional of
the ground-state density n0(r).

Fundamentally, the origin of the linear response formalism is
the Dyson-like equation that links the density–density response
function of the non-interacting KS system, vS, with that of the true
system, v:

vðxÞ ¼ vSðxÞ þ vSðxÞ H f HXCðxÞ H vðxÞ ð1Þ

where we use the short hand w to indicate the integral,
vSðxÞ H f HXCðxÞ ¼

R
d3r1vSðr; r1;xÞfHXCðr1; r0; xÞ thinking of v, vS,

fHXC etc. as infinite-dimensional matrices in r, r0, each element of
which is a function of x. The interacting density–density response
function v½n0�ðr; r0; t � t0Þ ¼ dnðr; tÞ=dvðr0t0Þjn¼n0

measures the re-
sponse in the density n(r, t) to a perturbing external potential
v(r, t). In the frequency domain,

vðr; r0;xÞ ¼
X

I

hW0 j n̂ðrÞ j WIihWI j n̂ðr0Þ j W0i
x�xI þ i0þ

�
� hW0 j n̂ðr0Þ j WIihWI j n̂ðrÞ j W0i

xþxI þ i0þ

�
ð2Þ

where I labels the interacting excited-states, and xI = EI � E0 is their
frequency relative to the ground-state. Similar expressions hold for
the KS system, substituting the interacting wave functions above
with KS single-Slater-determinants.

In almost all calculations, an adiabatic approximation is made
for the exchange–correlation (xc) kernel, i.e. one that is fre-
quency-independent, corresponding to an xc potential that de-
pends instantaneously on the density. But it is known that the
exact kernel is non-local in time, reflecting the xc potential’s
dependence on the history of the density. It is perhaps surprising
that the adiabatic approximation works as well as it does, given
that even weak excitations of a system lead it out of a ground-state
(even if its density is that of a ground-state). One of the reasons for
its success for general excitation spectra is that the KS excitations
themselves are often themselves good zeroth-order approxima-
tions. But this reason cannot apply to double-excitations, since
double-excitations are absent in linear response of the KS system:
to excite two electrons of a non-interacting system two photons
would be required, beyond linear response. Only single-excitations
of the KS system are available for an adiabatic kernel to mix.
Indeed, if we consider the KS linear density response function,
the numerator of Eq. (2) with KS wave functions contains
hU0 j n̂ðrÞ j UIi, which vanishes if the excited determinant UI differs
from the ground-state U0 by more than one orbital. The one-body
operator n̂ðrÞ cannot connect states that differ by more than
one orbital. The true response function, on the other hand, retains
poles at the true excitations which are mixtures of single,
double, and higher-electron-number excitations, as the numerator
hW0 j n̂ðrÞ j WIi remains finite due to the mixed nature of both W0
and WI. Within the adiabatic approximation, v therefore contains
more poles than vS.

Ref. [16] pointed out the need to go beyond the adiabatic
approximation in capturing states of double-excitation character.
Ref. [7] derived a frequency-dependent kernel, motivated by
first-principles, to be applied within the subspace of single KS exci-
tations that mix strongly with the double-excitation of interest. For
the case of one single-excitation, q = i ? a, coupled to one double-
excitation:

2½q j fXCðxÞ j q� ¼ 2½q j f A
XCðxqÞ j q� þ

jHqDj2

x� ðHDD � H00Þ
: ð3Þ

to be applied within a dressed single-pole approximation (‘‘DSPA’’),

x ¼ xq þ 2½q j fHXCðxÞ j q� ð4Þ

The Hamiltonian matrix elements in the dynamical correction (sec-
ond term of Eq. (3)) are those of the true interacting Hamiltonian,
taken between the single (q) and double (D) KS Slater determinants
of interest, as indicated, and H00 is the expectation value of the true
Hamiltonian in the KS ground-state. This can be generalized to
cases where several single-excitations and double-excitations
strongly mix, within a ‘‘dressed Tamm–Dancoff’’ scheme (see, e.g.
[17,18]). The kernel is to be applied as an a posteriori correction to
a usual adiabatic calculation, as indicated by the A superscript in
Eq. (3): first, one scans over the KS orbital energies to see if the
sum of two of their frequencies lies near a single excitation fre-
quency, and then applies this kernel just to that pair.

Essentially the same formula results from derivations with dif-
ferent starting points: in Ref. [19], it emerges as a polarization
propagator correction to adiabatic TDDFT in a superoperator for-
malism, made more rigorous in Ref. [20]. Ref. [21] utilized the
Bethe–Salpeter equation with a dynamically screened Coulomb
interaction, while Ref. [22] extended the original approach of Ref.
[7] by taking account of the coupling of the single-double pair with
the entire KS spectrum via the common energy denominator
approximation (CEDA).

1.2. When are double excitations important?

Even the low-lying spectra of some molecules are interspersed
with states of double-excitation character, but we will argue that
they also lie at the root of several significant challenges approxi-
mate TDDFT faces for spectra and photo-dynamics. Although not
traditionally seen as a double-excitation problem, we will see that
double-excitations haunt the difficulty in describing conical inter-
sections and certain long-range charge-transfer states.

1.2.1. Molecular spectra
First, double-excitations in their own right are prominent in the

low-lying spectra of many conjugated polymers. A famous case is
the class of polyenes (see Ref. [17] for many references). For exam-
ple, in butadiene the HOMO to (LUMO + 1) and (HOMO-1) to LUMO
excitations are near-degenerate with a double-excitation of the
HOMO to LUMO. If one runs an adiabatic calculation and simply as-
signs the energies according to an expected ordering, one obtains
7.02 eV for the vertical excitation from a B3LYP calculation (similar
with other hybrid functionals), in a 6–311G(d,p) basis set, while a
CASPT2 calculation yields 6.27 eV. By using different basis sets, a
more accurate value can appear, but rather fortuitously, since the
state obtained in adiabatic B3LYP has more of a Rydberg character,
rather than double character [23]. In Ref. [17], the dressing Eq. (3),
generalized to a subspace of two KS single excitations instead of
one, was applied, yielding 6.28 eV. Similar successes were com-
puted for hexatriene, and also for 0–0 excitations. This system
was later studied in detail in Ref. [18], analyzing more fully aspects
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such as self-consistent treatment of the kernel, and use of KS ver-
sus Hartree–Fock orbitals in the dressing. Further, in Ref. [24], ex-
cited state geometries were successfully computed in this way.
Most recently, an extensive study of Eq. (3) was performed in
Ref. [25] to low-lying states of 28 organic molecules.
1.2.2. Charge-transfer excitations
It is well known that long-range charge-transfer excitations are

severely underestimated with the usual approximations of TDDFT.
The usual argument to explain this is that the TDDFT correction to
the bare KS orbital energy difference vanishes because the occu-
pied and unoccupied orbitals, one being located on the donor
and the other on the acceptor, have negligible overlap as the
donor–acceptor distance increases [8,9,26]. The TDDFT prediction
then reduces to the bare KS orbital energy difference, �L(accep-
tor) � �H(donor) where the subscripts H and L refer to HOMO and
LUMO, respectively. This typically leads to an underestimation,
because in usual approximations j�Hj underestimates the true ion-
ization energy, while the lowest unoccupied molecular orbital
(LUMO), �L, lacks relaxation contributions to the electron affinity.
The last few years have seen many methods to correct the
underestimation of CT excitations, e.g. Refs. [27–29]; most modify
the ground-state functional to correct the approximate KS HOMO’s
underestimation of I, and mix in some degree of Hartree–Fock, and
most, but not all [28,29] determine this mixing via at least one
empirical parameter.

But the argument above only applies to the case where the
donor and acceptor are closed-shell species; instead, if we are
interested in charge-transfer between open-shell species (e.g. in
something like LiH), the HOMO and LUMO are delocalized over
the whole molecule. This is the case for the exact ground-state
KS potential, as well as for semi-local approximations [30]. The ex-
act KS potential has a peak and a step in the bonding region, that
has exactly the size to realign the atomic HOMO’s of the two frag-
ments [30–32] (see also Fig. 1). As a result the molecular HOMO
and LUMO are delocalized over the whole molecule. The HOMO–
LUMO energy difference goes as the tunnel splitting between the
two fragments, vanishing as the molecule is pulled apart; therefore
every excitation out of the KS HOMO is near-degenerate with a
double-excitation where a second electron goes from the HOMO
to the LUMO (at almost zero KS cost). This KS double-excitation
OR
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Fig. 1. Excitations out of a heteroatomic molecule composed of open-shell
fragments at long-range (e.g. ‘‘stretched’’ LiH). Blue denotes orbitals occupied in
the ground-state; in this model, we show one electron on each ‘‘atom’’ (the inner
electrons play only a secondary role). The top panel shows a model of the possible
excitations of the true system: on the left is a local excitation on one atom, on the
right are shown two lowest charge-transfer excitations. The bottom left panel
shows the corresponding KS potential, displaying a step and a peak, as discussed in
the text. The ground-state KS is the doubly-occupied bonding orbital; any single
excitation out of here is near-degenerate with a double-excitation where the other
electron occupying the bonding orbital transits to the near-degenerate antibonding
LUMO.
is crucial to capture the correct nature of the true excitations as
otherwise we are left with half-electrons on each fragment, phys-
ically impossible in the dissociated limit. This strongly affects the
kernel structure, imposing a severe frequency-dependence for all
excitations, charge-transfer and local, for heteroatomic molecules
composed of open-shell fragments at large separation [33,34].

1.2.3. Coupled electron-nuclear dynamics
The importance of double-excitations for coupled electron-

nuclear dynamics was highlighted in Ref. [10]: even when the ver-
tical excitation does not contain much double-excitation character,
the propensity for curve-crossing requires accurate double-
excitation description for accurate global potential energy surfaces.
The same paper pointed out the difficulties TDDFT has with obtain-
ing conical intersections: in one example there, the TDDFT dramat-
ically exaggerated the shape of the conical intersection, while in
another, its dimensionality was wrong, producing a seam rather
than a point. Although a primary task is to correct the ground-state
surface, the problem of double-excitations is likely very relevant
around the conical intersections due to the near-degeneracy.

1.2.4. Autoionizing resonances
In the next section we discuss the case when the excitation

energy of a double-excitation is larger than the ionization energy
of the system. In this case, an autoionizing resonance results.

2. Autoionizing resonances in the He atom

Photoionization has a rich history in quantum mechanics, with
the photoelectric effect playing a pivotal role in establishing the
dual nature of light, and continues to be a valuable tool in analyz-
ing atoms, molecules, and solids. The photospectra above the ion-
ization threshold are characterized by autoionizing resonances,
whereby bound state excitations interact with those into the con-
tinuum. Many theoretical methods[35–40] have been developed in
order to predict these resonances.

As TDDFT is both accurate and relatively computationally inex-
pensive, it stands as a useful candidate for studying these excita-
tions. For autoionizing resonances where a single excitation
frequency (e.g. core ? Rydberg) lies in the continuum, TDDFT
has been shown to work well [41–47]. However it was noted
[41,43] that resonances arising from bound double excitations
are completely missing in the adiabatic approximation (as we
might expect from Section 1.2).

Ref. [48] derived a frequency-dependent kernel which allows
TDDFT to predict bound-double autoionizing resonances. Below
we review this derivation before testing it on the Helium atom.

2.1. Frequency-dependent kernel for autoionizing double-excitations

Fano’s pioneering work on photoionization [49] considered a
zeroth-order unperturbed system with a bound state Ub degener-
ate with that of a continuum state UE. The unperturbed system dif-
fers from the true system by the coupling term bV cpl, and we define
the matrix element VE ¼ hUEjbV cpljUbi between the two states. The
transition probability, for some transition operator bT (e.g. the di-
pole), between an initial state jii and the mixed state with energy
in the continuum was then found to be

jhWEjbT jiij2
jhUEjbT jiij2 ¼ ðqþ �Þ

2

1þ �2 ð5Þ

where

� ¼ E� Er

C=2
ð6Þ



Table 1
Autoionization widths for Helium as calculated by various functionals.

1S state Method C(eV)

2s2

OEP EXX pure 0.0604
OEP EXX two-configuration 0.0741
LDA-SIC pure 0.0670
LDA-SIC two-configuration 0.0836
MCHF + b-splinea 0.1529
Experimentb 0.138 ± 0.015

2p2

OEP EXX pure 0.0139
OEP EXX two-configuration 0.0003
LDA-SIC pure 0.0170
LDA-SIC two-configuration 0.0004
MCHF + b-splinea 0.0055
Experiment –

a From Ref.[52].
b From Ref.[53].
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and the energy of the resonance is shifted to

Er ¼ Eb þ P
Z

dE0
jVE0 j2

E� E0
ð7Þ

The asymmetry of the lineshape is given by

q ¼ hUbjbT jii þ P R dE0VE0 hUE0 jbT jii=ðE� E0Þ
pVEhUEjbT jii ð8Þ

while the width of the resonance is given by

C ¼ 2pjhUEjbV cpljUbij2 ¼ 2pjVEj2 ð9Þ

In Ref. [48], this formalism is applied to the KS system, where Ub

and UE are now interpreted as KS wavefunctions, and the full Ham-
iltonian is related to the KS Hamiltonian viabV cpl ¼ bV ee � v̂H � v̂XC ð10Þ

By comparing Eq. (5) with the TDDFT linear response equations, a
frequency-dependent kernel, valid in the region near the resonance,
was derived

fHXCðxÞ ¼ v�1
S ðxÞ � vSðxÞ þ

CðC=2þ iðx�xrÞÞ
ðx�xrÞ2 þ C

2

� �2 IvSðxÞ
 !�1

ð11Þ

In Eq. (8), q = 1 is required by the fact that both the KS system and
the true system respect the Thomas–Reiche–Kuhn sum rule and
that the double-excitation does not contribute to the oscillator
strength of the KS system [48]. This kernel can be used to ’dress’
the absorption spectra found via the adiabatic approximation
(AA), rA(x), giving an absorption spectra

rðxÞ ¼ x�xr þ C=2ð Þ2

ðx�xrÞ2 þ C
2

� �2 rAðxÞ ð12Þ

which contains both the AA excitations and the autoionization
resonances.

A few points are worth noting. Fano’s zeroth order picture is as-
sumed to take care of all interactions except for the resonance one.
When we approximate this by the non-interacting KS one, we can
therefore only expect the results to be accurate in the limit of weak
interaction, where the dominant interaction is the resonant cou-
pling of the bound double-excitation with the continuum states.
When the kernel is included on top of an adiabatic one, that in-
cludes also mixing of non-resonance single excitations, it is done
in an a posteriori way, i.e. non-self-consistently, and expressions
for the width are unaltered, do not include any adiabatic correc-
tion. It is also worth noting that the derivation considers an iso-
lated resonance: just one discrete state and one continuum.

2.2. Application: 1s2 ? 2s2 resonance in the He atom

In order to test the accuracy of this prescription, we studied
the 1s2 ? 2s2 autoionization resonance of Helium. This is the
lowest double-excitation in the He atom, and it lies in the contin-
uum: Experimentally this excitation occurs at a frequency of
x = 57.82 eV while the ionization threshold is I = 24.59 eV. In this
case the wave functions are given by

Ubðr; r0Þ ¼ /2SðrÞ/2Sðr0Þ ð13Þ

UEðr; r0Þ ¼
1ffiffiffi
2
p /1SðrÞ/Eðr0Þ þ /1Sðr0Þ/EðrÞð Þ ð14Þ

where /1S(r) and /2S(r) are bound KS orbitals while /E(r) is the
energy-normalized continuum state with energy E. For various xc
functionals, the bound state orbitals were calculated using OCTO-
PUS[50] while the unbound state was found using an RK4 integrator
on the KS potential.
In order to produce a continuum state with the correct asymp-
totic form, the KS potential should decay like �1/r. Two functionals
which meet this condition for Helium are the local density approx-
imation with the Perdew–Zunger [51] self-interaction correction
(LDA-SIC) and the exact exchange functional within the optimized
effective potential method (OEP EXX).

In Table 1, we show the results for the autoionization width
found using Eq. (9). As can be seen the widths for the transition
to the 2s2 state are too low. Closer inspection of the bound-state
electronic structure reveals that there may be significant mixing
between the 2s2 state and the 1S 2p2 state. So we diagonalize the
full Hamiltonian in this two-by-two subspace in order to include
the effect of this configuration interaction mixing. From this diag-
onalization, we take the state dominated by 2s2 wave function
(about 70% in our cases). The autoionization width for this mixed
state (denoted ‘‘two-configuration’’) is also shown in Table 1 where
it indeed improves the pure 2s2 state results, but is still roughly a
factor of 40% too small. The LDA-SIC functional performed better
than exact-exchange, this may be due to correlation being stron-
gest in the core region which contributes most to the integral of
Eq. (9). The width for the 2p2 excitation is too small to be measured
experimentally, however we can compare to other theoretical cal-
culations. After diagonalization, the width does become much
smaller compared to the pure state, as it should, however the value
is an order of magnitude smaller than that of Ref. [52].

In conclusion, we tested the formalism of Ref. [48] to include
double-excitation autoionizing resonances within TDDFT for the
Helium atom. The results, while not outlandish, are disappointing
when compared to simpler wave function methods[54] for this
resonance in Helium. This is probably due to the fact that the KS
system in this case does not make a good zeroth-order picture on
which to build a Fano formalism: i.e. the assumption of weak
interaction, aside from the resonance coupling, discussed in
Section 2.1 does not hold. It would be interesting to compute
the shift in the resonance position (Eq. (7)) within the TDDFT
prescription; this is expected to be large, e.g. comparing the KS
double (x = 40.6 eV in exact TDDFT[55]) to the experimental reso-
nance (x = 57.82 eV). Two approximate functionals were tested,
LDA-SIC and exact exchange, with the results suggesting that
correlation improves the description. Functionals missing the
�1/r tail in their KS potentials can provide continuum states
accurate within a core region [56,57] (although missing the correct
asymptotic behavior) and so may still be used with this method.
However they are unlikely to significantly improve the results for
the reasons discussed above.

Hellgren and von Barth derived the Fano lineshape formula in
terms of linear response quantities, that is exact within the
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adiabatic approximation [47]. It cannot apply to the case of a
bound double-excitation. On the other hand, our expression does
apply but it is a lower-order approximation, only expected to be
accurate in the limit of a narrow isolated resonance in the weak
interaction limit. For molecules and larger systems, TDDFT is often
the only available technique to calculate excitations and this for-
malism is the only available method to treat doubly-excited autoi-
onization resonances within TDDFT. For such larger systems, we
expect this approach might provide useful results.

3. Adiabatic quadratic response: double vision?

Given that to excite two electrons in a non-interacting systems,
two photons are required, one may ask whether adiabatic TDDFT in
nonlinear response, especially quadratic response, yields double-
excitations. In this section, we work directly with the second-order
KS and interacting response functions to investigate this question.
We will first consider the form of the non-interacting quadratic
response function and briefly review TDDFT response theory, be-
fore turning specifically to the question of the double-excitations.

Applying a perturbation to a system dv(r, t) initially in its
ground state n0(r), we may expand the response of the density in
orders of dv(r, t), where n(r, t) = n0(r) + n1(r, t) + n2(r, t) + . . . . We
define corresponding response functions:

vðr; t; r0; t0Þ ¼ dn½v �ðr; tÞ
dvðr0; t0Þ

����
v¼v0

¼ hðt � t0ÞhW0 j ½n̂Hðr; tÞ; n̂Hðr0; t0Þ� j W0i ð15Þ

as the linear-response density–density response function whose
frequency-domain version appeared earlier in Eqs. (1) and (2),
and the second-order response function

vð2Þðr; t; r0; t0; r00; t00Þ ¼ d2n½v�ðr; tÞ
dvðr0; t0Þdvðr00; t00Þ

�����
v¼v0

¼ �1
2
hW0 j ½½n̂Hðr; tÞ; n̂Hðr0; t0Þ�; n̂Hðr00; t00Þ� j W0if

þ permutations of ðr0; t0Þ
$ r00; t00Þð ghðt � t0Þhðt � t00Þ ð16Þ

where n̂H is the density operator in the Heisenberg picture and the
expressions in terms of the commutators follow from time-depen-
dent perturbation theory [58,59].

In the following we often will drop explicit spatial-dependenc-
es, and think of density as a vector. Kernels and response functions
would then be represented as matrices and tensors with the sym-
bol w signaling contraction.

3.1. The non-interacting quadratic response function

First, we ask, what is happening at the level of the non-interact-
ing KS response functions? In the above equations, the functional
derivatives with respect to v are replaced by those with respect
to the corresponding vS and the ground-state in Eqs. (15) and
(16) is then a single Slater determinant. Expanding out the commu-
tator in Eq. (16) and inserting the identity in the form of complete-
ness relations of the Slater-determinant basis, we obtain terms of
the formX

IS

X
JS

h0S j n̂ðrÞ j ISihIS j n̂ðr0Þ j JSihJS j n̂ðr00Þ j 0Si ð17Þ

where the subscript S indicates it’s a KS state. Examining the first
bracket, we see that IS must be either the ground-state or a sin-
gle-excitation, since the one-body density operator can only con-
nect determinants differing by at most one orbital. Likewise, for a
non-zero third bracket, JS can only be the ground-state or a sin-
gle-excitation. Therefore, no double-excitations contribute to
the second-order response function. At second-order, double-
excitations are reached in the dynamics of a non-interacting system
but cannot contribute to the one-body density response. By similar
arguments, the lowest order density-response that double-
excitations can appear is at third-order. That the KS second-order
response function does not contain double-excitations begins to
dash any hope that adiabatic TDDFT will yield accurate excitations.
It will turn out that we do ‘‘see double’’, but the vision is
blurry: they are simply sums of linear-response corrected single-
excitations, quite blind to any nearby double excitation. Before
turning to a closer investigation of this, we briefly review the struc-
ture of TDDFT response theory.
3.2. Non-linear response in TDDFT

The fact that the time-dependent KS system reproduces the true
system’s density response when the corresponding KS perturbing
potential d vS(r, t) is applied to the former, leads to Eq. (1) for the
linear response function, and [58]

vð2Þðr; t; r0; t0; r00; t00Þ ¼
Z

dsd3y

�
Z

ds0d3y0vð2ÞS ðr; t; y; s; y0; s0Þ
dvSðy; sÞ
dvðr0; t0Þ

����
n0

dvSðy0; s0Þ
dvðr00; t00Þ

����
n0

þ
Z

dsd3yvSðr; t; y; sÞ
Z

ds0d3y0

�
Z

ds00d3y00g XC½n0�ðy; s; y0; s0; y00; s00Þ

� vðy0; s0; r0; t0Þvðy00; s00; r00; t00Þ þ
Z

dsd3yvSðr; t; y; sÞ

�
Z

ds0d3y0fHXC½n0�ðy; s; y0; s0Þvð2Þðy0; s0; r0; t0; r00; t00Þ

ð18Þ

for the quadratic response function. Here vð2ÞS denotes the second-
order KS response function, discussed in Section 3.1 and

gXC½n0�ðr; t; r0; t0; r00; t00Þ ¼
d2vXC½n�ðr; tÞ

dnðr0; t0Þdnðr00; t00Þ

�����
n¼n0

ð19Þ

is the dynamical second-order xc kernel. For simplicity we assume
the state is spin-saturated. In the adiabatic approximation,

gA
XCðr; r0; r00Þ ¼

d3E XC ½n�
dnðrÞdnðr0 Þdnðr00 Þ with EXC[n] a ground-state energy func-

tional. Making a Fourier transform with respect to t � t0 and t � t00

we obtain the first and second-order density responses as

n1ðxÞ ¼ vðxÞ H dvðxÞ ¼ vSðxÞ H dvSðxÞ
¼ vSðxÞ H dvðxÞ þ vSðxÞ H f HXCðxÞ H n1ðxÞ ð20Þ

and

n2ðxÞ ¼
1
2

Z
dx0vð2Þðx;x�x0Þ H dvðxÞdvðx�x0Þ

¼ 1
2

Z
dx0vð2ÞS ðx;x�x0Þ H dvSðxÞdvSðx�x0Þ

þ 1
2
vSðxÞ H gXCðx;x�x0Þ H

Z
dx0n1ðx0Þn1ðx

�x0Þ þ vSðxÞ H fHXCðxÞ H n2ðxÞ ð21Þ

respectively.
Ref. [58] pointed out a very interesting structure that the TDDFT

response equations have. At any order i,

niðxÞ ¼ MiðxÞ þ vSðxÞ H f HXCðxÞ H niðxÞ ð22Þ

where Mi depends on lower-order density-response (and response-
functions up to ith order). The last term on the right of Eq. (22)
has the same structure for all orders. If we define the operator
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LðxÞ ¼ 1� vSðxÞ H f HXC ð23Þ

then

LðxÞ H niðxÞ ¼ MiðxÞ ð24Þ

In the next section we work out the effect of this operator in the
adiabatic approximation, by studying linear response. This will be
useful to us when we finally ask about doubles in the quadratic re-
sponse function.

3.3. Adiabatic approximation

Let us find the inverse of the operator appearing on the left-
hand-side of Eq. (24). First, evaluating Eq. (2) with KS determinants
and KS energies, one finds that, for x not equal to a KS transition
frequency or its negative,

vSðxÞ ¼
X

q

AS;q

x2 �x2
q

ð25Þ

where q labels a transition from occupied orbital i to an unoccupied
orbital a and the matrix

AS;qðr; r0Þ ¼ 4xq/iðrÞ/aðrÞ/aðr0Þ/iðr0Þ ð26Þ

where xq = �a � �i and we take the KS orbitals to be real. We note
that there is a factor of 2 in AS,q(r,r0) due to the assumed spin-satu-
ration. Also note that if only forward transitions are kept, this
amounts to what is often called the Tamm–Dancoff approximation:

vSðxÞ ¼
X

q

ATD
S;q

x�xq
ð27Þ

with ATD
S;q ¼ 2/iðrÞ/aðrÞ/aðr0Þ/iðr0Þ.

Returning to Eq. (24), for an adiabatic approximation,
fHXCðxÞ ¼ f A

HXC, we may write

vSðxÞ H f A
HXC ¼

X
q

A S H f A
HXC

� �
q

x2 �x2
q

ð28Þ

where AS H f A
HXC ¼ 4xq/iðrÞ/aðrÞ

R
f A
HXCðr1; r0Þ/iðr1Þ/aðr1Þd3r1.

This means the effect of the operator on the left-hand-side of
Eq. (24), is to zero out poles of the function it is operating on that
lie at KS single excitations, and replace them with linear-response-
corrected ones, within the adiabatic approximation. In particular,

L�1ðxÞ ¼
Y
q00
ðx2 �x2

q00 Þ

�
Y

q

ðx2 �x2
qÞ1�

X
q

ðAS H f A
HXCÞq

Y
q0 – q

ðx2 �x2
q0 Þ

 !�1

ð29Þ
(where Pq indicates a product over q) It is instructive to first con-
sider linear response (i = 1 in Eq. (24)), and zoom in on only one
excitation, with coupling to all others considered insignificant.
Then, from Eqs. (28), (23), (29) and (20)

n1ðxÞ ¼ L�1ðxÞ H vSðxÞ H dvðxÞ

� ðx2 �x2
qÞ1� ðAS H f A

HXCÞq
� 	�1

H AS;q H dvðxÞ ð30Þ

Poles of n1(x) are thus indicated by zeroes of the first term in
brackets: when ðx2 �x2

qÞdðr� r0Þ � ðAS H f A
HXCÞq ¼ 0. Integrating

this over r2 and realizing the second term gives zero unless r0 = r,
we find we have effectively derived the ‘‘small-matrix approxima-
tion’’ [60,61]

x2 ¼ x2
q þ 4xq

Z
/iðrÞ/aðrÞf A

HXCðr; r0Þ/iðr0Þ/aðr0Þd
3rd3r0 ð31Þ
Had we kept only forward terms, and proceeded in a similar man-
ner, the single-pole approximation (Eq. (4) but with a frequency-
independent right-hand-side) would have resulted. The essential
point is that the effect of L�1 is to shift the KS pole towards the lin-
ear-response corrected single excitation.

Now this operator appears at all orders of TDDFT response,
yielding critical corrections to the non-interacting response func-
tions at all orders. We now are ready to investigate the question
of double-excitations in quadratic response in the adiabatic
approx.

3.4. The quadratic density-response in the adiabatic approximation

We have from Eq. (21) and definition (23) that

n2ðxÞ ¼
1
2

L�1ðxÞ H

Z
dx0vð2ÞS ðx�x0;xÞ H dv Sðx�x0Þ

�
H dvSðx0Þ þ L�1ðxÞ H vSðxÞ H gA

XC

H

Z
dx0n1ðx0Þn1ðx�x0Þ

�
ð32Þ

We wish to investigate specifically, the question of how double-
excitations would appear in the poles of n2(x). From Section 3.3,
we know the effect of the operator L�1(x) acting on a function with
a pole at a KS single excitation, is to shift that pole to its linear-
response corrected value, in the adiabatic approximation, (Eqs.
(29) and (30)). Let us denote these values as XI. We shall now study
in detail the second term in Eq. III D, which isY

q000
ðx2 �x2

q000 Þ
Y

q

ðx2 �x2
qÞ1�

X
q

ðAS H f A
HXCÞq

Y
q00–q

ðx2 �x2
q00 Þ

 !�1

H

X
q0

ðAS H gA
XCÞq0

x2 �x2
q0

H

Z
dx0n1ðx0Þn1ðx�x0Þ ð33Þ

So until the last integral over x0, only poles at single KS excita-
tions corrected by linear-response adiabatic TDDFT appear. We
now turn to this last integral to see what it gives. First, we write
it asZ

d3yd3y0
Z

dx0vðr; y;x0Þvðr0; y0;x�x0ÞGðy; y0;x0;x�x0Þ ð34Þ

where G(y,y0,x0,x � x0) = v1(y,x0)v1(y0,x � x0). After applying an
adiabatic kernel in Eq. (1), the linear response function can be writ-
ten as

vAðwÞ ¼
X

I

AI

x�XI þ i0þ
� AI

xþXI þ i0þ

� �
ð35Þ

which contains the same number of poles as vS(x), in contrast to
Eq. (2). Inputting this adiabatic linear-response function into Eq.
(34), we find:Z

dx0
X

I

X
J

AIAJ
1

x0 �XI
� 1

x0 þXI

� �
� 1

x0 �x�XJ
� 1

x0 �xþXJ

� �
Gðx0;x�x0Þ ð36Þ

Doing the integrals, we obtain

¼ 2pi
X

I

X
J

AIAJ
G xþXJ;�XJ
� �

� GðXI;x�XIÞ
x� ðXI �XJÞ

�
þ G XI;x�XIð ÞGðx�XJ;XJÞ

x� ðXI þXJÞ

þ G �XI;xþXIð Þ � GðxþXJ;�XJÞ
xþ ðXI þXJÞ

þ
G x�XJ ;XJ
� �

� Gð�XI;xþXIÞ
xþ ðXI �XJÞ

�
ð37Þ
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This displays poles at sums and differences of the linear-response-
corrected single-excitations. In particular, it contains poles at the
sums, ±(XI + XJ). These poles remain after being multiplied by the
preceding terms in Eq. III D (which, as explained before, may can-
cel/shift a pole at a single KS excitation). Notice that if we made a
Tamm–Dancoff-like approximation for v with respect to x0 then
Eq. (34) would be

�
X

IJ

AIAJ

Z
dx0

1
x0 �XI

� �
1

x0 �x�XJ

� �
Gðx0;x�x0Þ; ð38Þ

yieldingX
IJ

AIAJ
G XI;x�XIð Þ � GðxþXJ;�XJÞ

x� ðXI �XJÞ
ð39Þ

That is, the poles at the sums vanish in this Tamm–Dancoff-like
approximation.

Our findings here are not entirely new: in Ref. [62] very similar
conclusions were reached, but by quite a different method. To our
knowledge, an analysis based directly on the response functions, as
above, has not appeared in the literature before. The formalism in
Ref. [62] was based on the dynamics of a system of weakly coupled
classical harmonic oscillators, in a coordinate system defined by
the transition densities. The linear and non-linear response of this
system was shown to correspond to that of a real electronic
system via adiabatic TDDFT. Closed expressions for the first, sec-
ond, and third optical polarizabilities were found; in particular
the second-order polarizability was shown to contain poles at
sums of linear-response corrected single-excitations, and that if a
Tamm–Dancoff approximation was made, these poles vanish. We
have shown very similar results staying within the usual language
of TDDFT and response theory, directly from analyzing the re-
sponse functions. The relation between the Tamm–Dancoff-like
approximation we make here and that referred to in [62] remains
to be examined in more detail.

So we have shown that the quadratic response in TDDFT within
the adiabatic approximation is unable to describe double excita-
tions. While the second-order response in adiabatic TDDFT does
contain poles at the sum of linear-response corrected KS frequen-
cies, it completely misses the mixing between single and double
KS states needed for an accurate description of double excitations.
Moreover, using the Tamm–Dancoff approximation in linear re-
sponse makes even these poles disappear. These conclusions were
reached by looking at the pole structure of the response equations
directly. Using this approach, we were able to see that the second-
order Kohn–Sham response function does not contain poles at the
sum of the KS frequencies, which prevents TDDFT from introducing
the mixing mentioned above.

4. Double-excitations via semiclassical dynamics of the density-
matrix

Recently, time-dependent density-matrix functional theory
(TDDMFT) has been explored as a possible remedy for many of
the challenges of TDDFT [63,64]. The idea is that including more
information in the basic variable would likely somewhat relieve
the job of xc functionals and lead to simpler functional approxima-
tions working better. The (spin-summed) one-body density-matrix
is

qðr0; r; tÞ ¼ N
X
r1

�
Z

dx2 � � � dxNW�ðr0r1; x2 � � � xN ; tÞWðrr1; x2 � � � xN; tÞ

ð40Þ
(using x = (r,r) as spatial-spin index with
R

dx ¼
P

r
R

d3r), while
the density is only the diagonal element, n(r, t) = q(r,r, t). For exam-
ple, immediately we see that the kinetic energy is exactly given by
the one-body density-matrix as T ¼ �

R
d3r 1

2r
2qðr0r; tÞjr0¼r, while

only approximately known as a functional of the density alone;
and, only the non-interacting part of the kinetic energy is directly
calculated from the KS orbitals (as �

P
i

R
dx/�i ðxÞr2/iðxÞ=2), while

it is unknown how to extract the exact interacting kinetic energy
from the KS system. TDDMFT works directly with the density-
matrix of the interacting system so is not restricted to the single-
Slater-determinant feature of the TDKS system. For this reason,
(TD) DMFT would be especially attractive for strongly-correlated
systems, for example dissociating molecules and it was recently
shown that adiabatic approximations in TDDMFT are able to cap-
ture bond-breaking and charge-transfer excitations in such systems
[64]. However, it was also shown that adiabatic approximations
within TDDMFT still cannot capture double-excitations [64].

Very recently a semiclassical approach to correlation in
TDDMFT has been proposed [65], which was argued to overcome
several failures that adiabatic approximations in either TDDFT or
TDDMFT have. The applications in mind involved real-time
dynamics in non-perturbative fields, for example, electronic
quantum control via attosecond lasers, or ionization processes.
In these applications, memory-dependence, including initial-state
dependence, is typically important [66,67], but lacking in any adi-
abatic approximation. More severely, the issue of time-evolving
occupation numbers becomes starkingly relevant: typically, even
when a system begins in a state which is well-approximated by
a single-Slater determinant, it will evolve to one which funda-
mentally involves more than one Slater determinant (e.g. in quan-
tum control of He from 1s2 ? 1s2p, or in ionization) [67].
Although impossible when evolving with one-body Hamiltonians
such as in TDKS (thus making the job of the exact xc potential
very difficult, as well as observables to extract information from
the KS system), in principle TDDMFT can change occupation num-
bers. However it was recently proven that adiabatic approxima-
tions in TDDMFT cannot [68–70]. The semiclassical correlation
approach of Ref. [65] incorporates memory, including initial-state
dependence, and does lead to time-evolving occupation numbers,
as has been demonstrated on model systems [71]. We now ask,
does it capture double-excitations accurately? We shall use a
model two-electron system to investigate this question, but first
will review the method. Unlike the previous sections in the paper,
this operates in the real-time domain, instead of the frequency-
domain.

4.1. Semiclassical correlation in density-matrix propagation

The equation of motion of q is given by

i _qðr0; r; tÞ ¼ �r
2

2
þ vextðr; tÞ þ r

02

2
� vextðr0; tÞ

 !
qðr0; r; tÞ

þ
Z

dr2feeðr0; r; r2Þq2ðr0; r2; r; r2; tÞ ð41Þ

where fee(r0r,r2) = 1/jr � r2j � 1/jr0 � r2j and q2 is the second-order
reduced density matrix defined by:

q2ðr01; r02; r1; r2; tÞ ¼
X
r1 ;r2

q2ðr01r1; r02r2; r1r1; r2r2; tÞ ð42Þ

and

q2ðx01; x02; x1; x2; tÞ ¼ NðN � 1Þ
2

Z
dx3 � � � dxN

W�ðx01; x02; x3� � �N; tÞWðx1; x2; x3 � � � xN ; tÞ ð43Þ
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Fig. 2. The Fourier transform of the quadrupole moment computed via semiclas-
sical (Frozen Gaussian) dynamics in the Hooke’s quantum dot. We focus on the
region of the spectrum where the excitations shown in the level sketch to the upper
right lie as explained in the text. The table shows the values of the excitations
computed exactly, using adiabatic exact-exchange (AEXX), semiclassical (SC), and
the dressed correction of Eqs. (3) and (4) (DSPA).
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It is convenient to decompose this as

q2ðx01; x02; x1; x2; tÞ ¼ qðx02; x2; tÞqðx01; x1; tÞ � qðx01; x2; tÞqðx02; x1; tÞ
þ q2Cðx01; x02; x1; x2; tÞ ð44Þ

where we identify the first term as the Hartree piece, the second as
exchange, and the last as correlation. If q2C is set to zero, one ob-
tains Hartree–Fock; it is this term that Ref. [65] proposed to treat
semiclassically in order to capture memory-dependence and time-
evolving occupation numbers [65]. We shall shortly see that, in con-
trast to the adiabatic approximations of this term, its semiclassical
treatment also approximately captures double-excitations.

There are various different semiclassical formulations, and the
one we will explore here is known as ‘‘Frozen Gaussian’’ propaga-
tion, proposed originally by Heller [72]. This can be expressed
mathematically as a simplified version of the Heller–Herman–
Kluk–Kay (HHKK) propagator[73,74] where the wave function at
time t:

WtðxÞ ¼
Z

dq0dp0

ð2p�hÞN
hxjqtptiCq;p;teiSt=�hhq0p0jWii ð45Þ

where {qt,pt} are classical phase-space trajectories in 6N-dimen-
sional phase-space, starting from initial points {q0,p0}, and Wiis
the initial state. In Eq. (45), hxjqpi denotes the coherent state:

hxjqpi ¼
Y6N

j¼1

cj

p

� �1=4

e�
cj
2 ðxj�qjÞ2þipjðxj�qjÞ=�h ð46Þ

where cj is a chosen width parameter. St is the classical action and
Cq,p,t is a pre-factor based on the monodromy (stability) matrix. The
pre-factor is time-consuming to compute, and scales cubically with
the number of degrees of freedom, but in the Frozen Gaussian
approximation, is set to unity. Ref. [65] gave an expression for the
second-order density-matrix within a Frozen–Gaussian approxima-
tion, that, furthermore, takes advantage of the fact that there is
some phase-cancellation between W and W⁄ in Eq. (43) so that
the resulting phase-space integral is less oscillatory.

The idea is to extract the correlation term from the semiclassi-
cal dynamics and insert it as a driving term in Eq. (41) [65]. That is,
we compute the semiclassical first-order and second-order re-
duced-density matrices from Frozen Gaussian dynamics, placing
them in Eq. (44) which is inverted to solve for qSC

2C. As the other
terms of Eqs. (44) and (41) are given exactly in terms of the one-
body density-matrix, we use only the semiclassical expression for
q2C when driving Eq. (41).

It is interesting however to first ask how well semiclassical
dynamics alone does. That is, without coupling to the exactly-com-
puted one-body, Hartree and exchange-terms in Eq. (41), how
would the semiclassical calculation alone predict the dynamics?
In particular, do we obtain double-excitations, and if so, how well.

4.2. Double excitations from semiclassical dynamics

We consider the following one-dimensional model of a two-
electron quantum dot:

bH ¼X
i¼1;2

�1
2

d2

dx2
i

þ 1
2

x2
i

 !
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 � x2ð Þ2 þ 1
q ð47Þ

using a soft-Coulomb interaction between the electrons. Starting
from an arbitrary initial state, the interacting dynamics in this Ham-
iltonian can be numerically solved exactly, and we will compare ex-
act results with those computed by Frozen Gaussian dynamics.

First, by considering a non-interacting reference, we can iden-
tify where single and double excitations lie, which, when interac-
tion is turned on, will mix. The level sketch in the upper right of
Fig. 2 shows this: in the ground-state, both electrons occupy the
lowest level, and shown is a single excitation to the second-lowest
excited orbital (left) and a double-excitation to the first excited
orbital (right). The non-interacting energies of these two states
are near-degenerate, and mix strongly to give roughly 50:50 sin-
gle:double mixtures for the true interacting states. Due to qua-
dratic symmetry of the Hamiltonian, these states do not appear
in the dipole response of the system, hence we look at the quadru-
pole moment:

qðtÞ ¼
Z

dxx2nðx; tÞ ð48Þ

We start in an initial state quadratically ’kicked’ from the ground
state [75], that is

Wiðx1; x2Þ ¼ eigðx2
1þx2

2ÞW0ðx1; x2Þ ð49Þ

where gis chosen large enough to sufficiently populate the states
we are interested in without being too large leading to higher-order
response effects. A value of g = 0.01 was used in our calculation. The
Frozen Gaussian integral of Eq. (45) is performed by Monte–Carlo
integration using trajectories whose initial phase-space coordinates
are determined by importance sampling the initial state overlap
with the coherent state, and a width of c = 1 was used. In the exam-
ple discussed below, 120000 trajectories were used, with the quad-
rupole moment not changing significantly if more trajectories are
used. These trajectories are then classically propagated forward in
time using a standard leapfrog algorithm. A total time of
T = 200 au was performed with a time step of Dt = 0.001, although
the wave function is only constructed every 0.1 au as this is suffi-
cient to see the frequencies we are interested in.

In Fig. 2, we show the power spectrum of the Fourier transform
of the quadrupole moment for a Frozen Gaussian calculation with
the parameters given above. Also given in Fig. 2 is a table compar-
ing the exact, adiabatic exact-exchange (AEXX), semiclassical (SC),
and the dressed correction (DSPA) discussed in the introduction. As
stated earlier, an adiabatic approximation cannot increase the
number of poles in the KS response function: AEXX can only shift
the KS single excitation, yielding a solitary peak in between the
two exact frequencies[75]. In contrast to this, the Frozen Gaussian
semiclassical results can be seen to give two peaks in the right re-
gion. Although one peak is lower than in the exact case, this error
may be lessened when q2C is used to drive the density-matrix
propagation, with the one-body terms treated exactly quantum–
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mechanically instead of semiclassically (Section 4.1). The x = 2
peak arises from excitation in the center-of-mass coordinates
where the reduced Hamiltonian is harmonic. Given that the Frozen
Gaussian method is exact for such systems, we would expect this
peak to be very accurate. The DSPA works extremely well in this
case, although in more complicated systems one must search the
KS excitation spectrum in search of nearby doubles, as explained
in the introduction, whereas they will appear naturally in the spec-
trum in the semiclassical approach.

This example demonstrates that semiclassical correlation does
capture double-excitations approximately, unlike any adiabatic ap-
proach in TDDFT or TDDMFT. We stress that this is the result from
semiclassical dynamics alone (within the Frozen Gaussian approx-
imation); in future work we will investigate whether the coupling
to the exact one-body terms of Eq. (41) improve the results for the
excitations.
5. Summary and outlook

TDDFT is in principle an exact theory based on a single-particle
reference: the exact functionals extract from the non-interacting
KS system, the exact excitations and dynamics of an interacting
electronic system. As such, it is both fundamentally and practically
extremely interesting how these functionals must look when
describing states of double-excitation character, particularly in
linear response where no double-excitations occur in a non-
interacting reference. The work of Ref. [7] that shows the form of
the exact xc kernel and models an approximate practical fre-
quency-dependent kernel based on this, has recently drawn some
interest, both from a theoretical and practical point of view. We
have discussed here how double-excitations are at the root of some
of the most difficult problems in TDDFT today: long-range charge-
transfer excitations between open-shell fragments, and conical
intersections.

The paper then described three new results in three different
approaches involving double-excitations. First, we have applied
a recently proposed approach [48] to autoionizing resonances
arising from double-excitations, to compute the width of the
2s2 resonance in the He atom. Although the results are not very
accurate, predicting a 40% too narrow resonance, this approach
is the only available one for this kind of resonance in TDDFT to-
day. For larger systems, where the alternative wave function-
based methods are not feasible, the approach of Ref. [48] might
still be useful, despite the weak-interaction assumption (that is
likely responsible for the error in the He case). Second, we
showed that use of the adiabatic approximation in quadratic re-
sponse theory yields poles at the sums of linear-response-cor-
rected single-excitations. Within a Tamm–Dancoff-like
approximation, even these ‘‘doubles’’ disappear. We argued that
the KS quadratic response function does not have poles at KS
double-excitations, which is behind the reason that we do not
see the truly mixed single and double excitations in the adiabatic
TDDFT quadratic response function. Although similar conclusions
were reached in Ref. [62], our analysis here proceeds in a very dif-
ferent manner: here, we follow more traditional response theory
within DFT, without introducing new formalism. Finally, we
investigated whether and how accurately double-excitations ap-
pear in a recently proposed semiclassical approach to correlation.
This approach was originally proposed for general real-time
dynamics [65], based on propagation of the one-body-density-
matrix. The correlation-component of the second-order density
matrix, that appears in the equation of motion for the first-order
one, is computed via semiclassical dynamics. Here we showed
that running semiclassical dynamics on the whole system does
approximately capture double-excitations. Future work includes
retaining exact dynamics for the one-body terms, leaving
semiclassics just for the correlation component, according to the
original prescription, to see if the accuracy of the states of
double-excitation character are improved.

In conclusion, there are many fascinating things to be learnt and
discovered about states of double-excitation character! We hope
that the findings here, and in the earlier work reviewed in the
introduction, will spur more interesting investigations, with both
practical and fundamental consequences.

We acknowledge support from the National Science Foundation
(CHE-0647913), the Cottrell Scholar Program of Research Corpora-
tion and the NIH-funded MARC program (SG and CC), grant
GM007823-30.
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