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ABSTRACT: It was recently proposed to use variational functionals based on many-
body perturbation theory for the calculation of the total energies of many-electron
systems. The accuracy of such functionals depends on the degree of sophistication of
the underlying perturbation expansions. The energy functionals are variational in the
sense that they can be evaluated at rather crude approximations to their independent
variables, which are the one-electron Green function, or the one-electron Green function
and the dynamically screened electron interaction. The functionals were previously
applied to the electron gas and shown to be extraordinarily accurate already at the level
of the so-called GW approximation (GWA). In the current work we have tested the
functional due to Luttinger and Ward, which is a functional of the Green function.
Using density functional theory (DFT) and Hartree–Fock Green functions as input
variables, we have calculated total energies of diatomic molecules at the level of the
GWA as well as with second-order exchange effects included. We will also discuss
various other variational energy functionals, including DFT orbital functionals based on
many-body perturbation theory. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem 101:
512–519, 2005
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Introduction

T he importance and versatility of density func-
tional theory (DFT) due to recent years’

progress in the development of powerful comput-
ers and more sophisticated energy functionals can

hardly be underestimated. Despite this success,
there remains a number of well-known problems,
most of which can be attributed to the local nature
of approximations such as the local density approx-
imation (LDA) and the generalized gradient ap-
proximation (GGA). Examples of such shortcom-
ings include systematic errors in cohesive energies
and the inability to describe negative ions. In addi-
tion, the mentioned methods give no hint as to how
to calculate band gaps. It is not obvious how to
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overcome these problems, but it seems important to
include nonlocality in the approximations. An ob-
vious formalism for including such nonlocal effects
is many-body perturbation theory (MBPT), where
the central quantity is the one-particle Green func-
tion G(r1�1, r2�2; i�), which is a quantity that is
more complicated than the electron density. Unlike
DFT, MBPT provides a route toward systematic
improvement; our approximations can be refined
by including additional diagrams. While ab initio
methods such as coupled cluster and configuration
interaction expansions are also highly accurate
methods, the large computational effort involved in
these methods make them less interesting for ex-
tended systems.

When applying MBPT, either in total energy
calculations based on the Green function or as a
starting point for constructing orbital-functional
schemes in DFT, the most important question is
what kind of diagrams to include in our approxi-
mations. In other words, which physical processes
must be taken into account in order to obtain accu-
rate total energies? The recent interest in the use of
variational total energy functionals based on MBPT
was triggered by the discovery that self-consistent
calculations within the GW approximation [1] give
surprisingly accurate total energies for the homog-
enous electron gas [2, 3]. The computational obsta-
cle in these calculations is to find the Green function
by solving the Dyson equation to self-consistency.
The appeal of the variational functionals is that they
give a possibility to avoid doing this. One example
of such variational functionals is the Luttinger-
Ward (LW) functional [4], which has the Green
function G as input variable. This functional is sta-
tionary with respect to variations in G, which
means that it can be evaluated at an approximate,
simple Green function and produce results that
differ little from the self-consistent energies. Apply-
ing the LW functional to the homogenous electron
gas, giving the noninteracting Green function as
input, does indeed work well [5, 6]. After these
discoveries, Almbladh, von Barth, and van Leeu-
wen (ABL) developed a functional of the Green
function and the dynamically screened electron in-
teraction W, which would be suitable to use for
solids or large molecules [6, 7]. This functional of
two variables (G and W) was also tested on the
electron gas using a noninteracting Green function
and a plasmon pole approximation to W, obtaining
results in excellent agreement with the self-consis-
tent GW energies [5].

We recently tested the functionals on atoms,
finding results of inferior quality compared with
those obtained for the electron gas. By evaluating
the LW functional at different DFT and Hartree–
Fock (HF) Green functions, we noticed that the
results were insensitive to the choice of input G.
This could indicate that the results were indeed
close to the self-consistent energies. However, the
energies obtained at the GW level were significantly
too low, typically halfway between the exact ener-
gies and the results from random-phase approxi-
mation (RPA) calculations. These results indicate
that it is necessary to include higher-order ex-
change contributions. Although the GW approxi-
mation may give significant errors in the total en-
ergies, this does not imply that the approximation
should be discarded. The error in the total energy
could be due to the core region, and there is still a
possibility of obtaining good binding energies.

Because of the recent interest in variational en-
ergy functionals, we start by describing the LW and
ABL functionals. In doing this, we stress the differ-
ence between the LW functional and other varia-
tional energy functionals. We compare these func-
tionals with the frequently used orbital functionals
based on MBPT [8–10], which we refer to as the
optimized effective potential (OEP) method [11].
The simplest of these orbital functionals is the ex-
change-only OEP functional [12]. From total energy
calculations on the H2 molecule we demonstrate the
difference in the results obtained from the OEP
scheme and the results obtained from the LW func-
tional. The RPA total energy curve as a function of
the nuclear separation was recently calculated by
Aryasetiawan et al. [13] and Fuchs et al. [14], with
rather different results.

Finally we compare results of the LW calculations
at the GW level with those obtained using a self-
energy approximation to second order in the electron
interaction, similar to the second-order Møller–Plesset
approximation (MP2) [15]. Our calculations on H2
and LiH confirm our conclusions from calculations on
atoms, that higher-order exchange effects must be
included in our approximations.

Variational Energy Functionals

The Green function is the solution to the equa-
tion of motion (treating G and ¥ as matrices with (r,
�) as indices)

�i� � t̂ � w � VH � ��G � 1 � ¥ G, (1)
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where t̂ � ��2/2, w(r) is the external potential, and
� is the chemical potential. We use atomic units
throughout this paper. The effects of the electron
interaction are described by the Hartree potential
VH(r) � � d3r�n(r�)v(r � r�) and the self-energy ¥ (r�,
r���; i�). The self-energy must then be approxi-
mated at some level in perturbation theory. Both VH

and ¥ are functionals of G, which means that Eq. (1)
must be solved to self-consistency for the given
functional ¥[G]. We use the finite temperature for-
malism for notational simplicity, letting T 3 0 at
the end of the calculations. The ground-state total
energy E is, at T � 0, related to the grand potential
� according to �(T3 0) � E � �N, where N is the
total number of particles.

The Green function provides us with the ground-
state expectation values of one-particle operators,
as well as the total energy, but these values neces-
sarily depend on the choice of approximation for ¥.
Baym and Kadanoff [16, 17] showed that a conserv-
ing approximation for ¥, that is, an approximation
for which the resulting Green function obeys the
same conservation laws as the underlying Hamil-
tonian, is obtained when ¥ is derived from a func-
tional 	[G] according to

¥ �
�	

�G . (2)

In an earlier paper, Luttinger and Ward [4] con-
structed such a functional by summing over all
irreducible self-energy diagrams closed with an ad-
ditional Green function and multiplied by specific
numerical factors,

	�G� � �
n,k

1
2n Tr�¥k


n� G�. (3)

The index n indicates number of interaction lines
and the index k labels topologically different self-
energy diagrams. The trace Tr indices a summation
over all indices as well as a frequency integration,
Tr � ¥� � d3r � (d�/2�). The simplest examples of
conserving approximations are the Hartree (	 � 0)
and the Hartree–Fock approximation. Other exam-
ples of 	-derivable schemes mentioned in Ref. [16]
are the GW-approximation [1] and the T-matrix
approximation [18]. In the calculations presented
here, we have used the GW approximation as illus-
trated in Figure 1(a) and the second-order approx-
imation shown in Figure 1(b).

The 	 functional was used by Luttinger and
Ward for deriving an expression for the total en-
ergy. This derivation was based on integration over
the interaction strength. A slightly different deriva-
tion that relates the functional to DFT is based on
the Hamiltonian

Ĥ	 � �
i�1

N

t̂i � �
i�1

N

w	
ri� �
	

2 �
i�j

N

v
ri � rj�, (4)

where 	 is between 0 and 1, v is the electron inter-
action and the external potential w	 is such that the
electron density remains constant at all 	. At 	 � 0,
this potential then corresponds to the Kohn–Sham
potential vKS. For a given value of 	, we can define
a corresponding Green function G	 and self-energy
¥	. Using the well-known Hellman–Feynman the-
orem,

d�	

d	
� �dĤ	

d	
� � Tr��dw	

d	
�

1
2 VH �

1
2	

¥	�G	�, (5)

as well as the relation

d		

d	
� �

n,k

1
2n

n
	

Tr�¥k
	
n� G	� � Tr��		

�G	

dG	

d	 �
�

1
2	

Tr�¥	 G	� � Tr�¥	
dG	

d	 �, (6)

FIGURE 1. The two different approximations to 	 and
the corresponding self-energy approximations that we
have used in this paper. (a) The GW approximation that
corresponds to an infinite sum of bubble diagrams. (b)
The approximation where only diagrams to second or-
der are included, labeled “MP2,” because these are the
diagrams evaluated in MP2 calculations.
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we can relate the derivative of 	 to the derivative of
the grand potential. Integrating over the interaction
strength 	, we obtain the LW functional,

��G� � 	 � U0 � Tr�¥ G�

� Tr ln
¥ � vxc � GKS
�1�, (7)

where vxc is the exchange-correlation potential that
produces the density n(r) � ¥� � (d�/2�)G(r�, r�,
i�), GKS is the corresponding noninteracting Green
function, and U0 � (1/2) � VHn is the classical part
of the interaction energy. It is important to realize
the difference between the LW functional and other
variational functionals that are also sometimes re-
ferred to as the LW functional [13, 19]. This differ-
ence is discussed below.

The LW functional is stationary with respect to
G, because

���G�

�G � 0, (8)

when G satisfies the Dyson equation G � GKS 

GKS(¥ � vxc)G. This suggests that evaluating the
functional at some approximate, noninteracting
Green function should result in a total energy close
to the self-consistent result. The primary reason we
are interested in calculating the total energy from
variational expressions such as the LW functional is
that we want to avoid solving Dyson’s equation. If
the self-consistent solution gives accurate total en-
ergies, the LW functional will produce approxima-
tions to these energies with much less computa-
tional effort. There are, however, no obvious rules
for choosing 	 diagrams that produce good total
energies. The energy of course depends not only on
the quality of the approximate G but more funda-
mentally on the approximation scheme for 	. The
accuracy of the total energy obtained from the LW
functional can therefore never exceed the quality of
the chosen 	 functional. Notice that although Eq.
(8) shows that � is stationary at the self-consistent
G, it does not say that it is a minimum.

The LW functional is based on a perturbation
series in terms of the Green function and the bare
Coulomb interaction v, but because of the long
range of the Coulomb interaction, this is not neces-
sarily the best approach for calculations on solids.
Almbladh, von Barth, and van Leeuwen [6, 7] con-
structed a variational energy functional similar to
the LW functional, but where the perturbation ex-
pansion is in terms of the screened interaction W

rather than v. The screened electron interaction is
given by the irreducible polarizability P[G, W] ac-
cording to the contracted Bethe–Salpeter equation

W � v � vPW, (9)

which should also be solved to self-consistency.
Almbladh, von Barth, and van Leeuwen con-
structed a functional 	 of G and W, defined by a
Legendre-like transformation of the 	 functional

��G, W� � 	�G, v�G, W��

�
1
2 Tr�PW � ln
1 � PW��. (10)

This functional has the properties

��

�G � ¥ and
��

�W � �
1
2 P, (11)

which we here present without any further proof.
The � functional can also be constructed diagram-
matically [7], analogous to the construction of the 	
functional in Eq. (3). The summation is now over
skeleton self-energy diagrams (we keep only those
diagrams without any polarization insertions). La-
beling these diagrams ¥̃k

(n), where n denotes the order
in W, the functional is constructed according to

��G, W� � �
n,k

1
2n Tr�¥̃ k


n� G�. (12)

A few of these diagrams are shown in Figure 2. In
this formalism, the GW approximation corresponds
to including only the first-order � diagram. Even

FIGURE 2. Some of the low-order � diagrams. These
diagrams differ from the diagrams contributing to the 	
functional in that the interaction lines represent the
screened interaction W, and the diagrams therefore
have no polarization insertions. There is only one first-
order and one second-order diagram, shown on the
upper line.
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though the expansion (12) involves self-energy di-
agrams different from those involved in the con-
struction of the 	 functional, any �-derivable
scheme (meaning that the self-energy can be ob-
tained as ¥ � ��/�G), is also 	-derivable [7].

Employing the � functional, ABL suggested the
following form for the grand potential,

��G, W� � � � U0 � Tr�¥ G� �
1
2 Tr�PW

� ln
1 � Pv�� � Tr ln
¥ � vxc � GKS
�1�. (13)

This functional is stationary with respect to both G
and W, meaning that

���G, W�

�G � 0 �
���G, W�

�W (14)

if G�1 � GKS
�1 � ¥ 
 vxc and W�1 � v�1 � P.

The form of this functional is not at all unique. It
is possible to add any functionals F[¥ � vxc 

G�1 � GKS

�1] and H[P 
 W�1 � v�1] as long as F �
�F � 0 and H � �H � 0 at the self-consistent G and
W. In this way, we can improve the stationarity of
the energy functional, but the quality of the ener-
gies is ultimately determined by the choice of ap-
proximation to �. Similar arguments apply to the
LW functional. An example of this is the energy
functional used by Klein [20], Baym [17], and others
[21],

�̃�G� � 	 � U0 � Tr�Gvxc�

� Tr�GGKS
�1 � 1� � Tr ln
�G�1�, (15)

which we in the following refer to as the Klein
functional. This functional is also stationary

d�̃�G�

dG � 0 (16)

when G�1 � GKS
�1 � ¥ 
 vxc. The Klein functional

gives the same result as the LW functional if they
are both evaluated on the self-consistent G, but for
other input G they give quite different results. The
Klein functional and the LW functional are thus
different functionals of G, and it is unfortunate that
this is not always pointed out, for example, in Refs.
[13] and [19]. Despite the variational property, Eq.
(16), the Klein functional is clearly less stable than
the LW functional. For instance, at the GW level, the
Klein functional is equal to the RPA energy func-

tional, which has been studied in several papers
recently [13, 19, 22, 23]. Approximating 	 as done
in Figure 1(b), the Klein functional is equal to the
ordinary MP2 energy functional. This functionals is
not stable with respect to the input Green function.

It has, however, been noticed that the RPA ener-
gies calculated using DFT orbitals are insensitive to
the choice of exchange-correlation potential used in
the calculation of the input orbitals. It is thus tempt-
ing to explain this as a consequence of the station-
arity of the Klein functional, but this conclusion is
dubious. As shown by Casida [8], the Klein func-
tional is transformed into a density functional by
restricting the input Green function to only DFT
Green functions. It is then easy to show that this
functional is also stationary

��̃�GKS�

�vKS
� 0 (17)

when the Kohn–Sham potential is the solution to
the OEP equation

Tr�GKS
¥ �GKS� � vxc�GKS��0. (18)

This equation should also be solved to self-consis-
tency, because vxc and GKS are functionals of the
corresponding density. It is important to keep in
mind that the density functional �̃[GKS] is not the
same as the Klein functional (15) and that the points
of stationarity for these two functionals [given by
Eqs. (16) and (17), respectively] are not equivalent.
We must then ask whether the total energy corre-
sponding to the solution of the OEP equation (18) is
similar to the energy obtained from the self-consis-
tent G. In other words, whether �̃[GKS] where GKS
satisfies the OEP equation (18) is similar to �̃[G]
where G is the self-consistent solution to the Dyson
equation. In the exchange-only approximation [12],
this is known to be the case, but for other approx-
imations, this is quite questionable. Taking the GW
approximation as an example, the DFT–RPA en-
ergy corresponding to the solution of the OEP equa-
tions can be shown to be a minimum [24]. In all the
calculations we have done (on the electron gas,
atoms, and a few molecules), this minimum is
clearly below the energy obtained from the LW
functional. In the case of the electron gas, the RPA
energies are well below the self-consistent GW en-
ergies (whereas the LW functional gives energies in
good agreement with the latter).
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Similar to Casida’s derivation of the OEP equa-
tion, we can derive a DFT scheme by starting from
the LW functional rather than from the Klein func-
tional. Defining a density functional by restricting
the input G in the LW functional to DFT Green
functions, we could search for the Kohn–Sham po-
tential for which this functional is stationary, simi-
lar to Eq. (17). The resulting equation for vxc is more
complicated than the OEP equation Eq. (18), be-
cause it also contains the three-point many-body
vertex function and the contracted DFT vertex func-
tion. The implementation of such a scheme is de-
ferred to a future publication.

Calculations

In this section we present some of the results
obtained for the diatomic molecules H2 and LiH.
These molecules are interesting to study, because
their simplicity implies that we can compare our
results with several other calculations. In particular,
the recent RPA calculations on the H2 molecule [13,
14] are interesting in this context, because they il-
lustrate some of the properties of the Klein func-
tionals discussed above. The calculations have been
performed using a basis set of Slater functions. The
convergence of the basis has been checked by per-
forming MP2 calculations and comparing with re-
sults from the literature.

The first calculations using the LW and ABL
functional were done on the homogenous electron
gas within the GW approximation, which gives re-
markably accurate total energies. Later, the calcu-
lations on atoms indicated that the GW approxima-
tion is probably less suitable for a system of
localized electrons. Although the total energies
were insensitive to the input Green function and
the energies improved compared with the RPA val-
ues, the energies were not particularly close to the
accurate results obtained from CI calculations. In-
clusion of second-order exchange effects improved
the results considerably. From this experience, we
have tested the LW functional on H2 and LiH using
the two approximations shown in Figure 1. As can
be seen in Table I, the energies obtained by keeping
terms only to second order are better than those
obtained from the GW approximation. We also see
that the results of using the Klein functional (the
RPA and MP2 energies) differ considerably de-
pending on whether they are calculated using the
HF or DFT Green function [25].

In Figure 3, we have plotted the total energies as
a function of the nuclear separation. The DFT–RPA
curve is in agreement with the results obtained by
Fuchs et al. [14] but is lower than the results ob-
tained by Aryasetiawan et al. [13]. In addition to the
plotted curve, which is obtained using local density
approximation (LDA) orbitals, we have also done
calculations using exchange-only OEP orbitals such
as those in Ref. [14]. In agreement with the results
in the latter paper, we see that this curve differs
little from the LDA–RPA curve. This can be ex-
plained from the fact that the RPA as a density
functional is stationary with respect to changes in
the Kohn–Sham potential, Eq. (17). However, if we
evaluate the RPA energy using HF orbitals, the
figure shows that RPA energies differ considerably
from the DFT–RPA results. This reflects the fact that
the Klein functional, as a functional of G, is not very
stable. Exactly the same features are observed in the
RPA calculations on atoms [26, 27]. The fact that the
DFT–RPA energy is insensitive to the Kohn–Sham
potential of the input orbitals indicates that these
results are close to the solution of the OEP equa-
tions. It does not mean that we are close to the
self-consistent GW energy. The energies obtained
from the LW functional are less sensitive to the
Green function that is used in the evaluation. The
functional is, however, much more sensitive to the
input G than we observed in the atomic calculations
[26, 27], where we could see only tiny variations in
the total energy (for He, the energies differ by less

TABLE I ______________________________________
Total energies of H2 and LiH at equilibrium
separations, calculated from the LW functional, Eq.
(7), and the Klein functional, Eq. (15), with LDA and
HF Green functions as input.a

H2 LiH

ELW
GW[GHF] �2.379 �16.199

ELW
GW[GLDA] �2.357 �16.148

ERPA[GHF] �2.380 �16.201
ERPA[GLDA] �2.421 �16.262
ELW

MP2[GHF] �2.332 �16.103
ELW

MP2[GLDA] �2.319 �16.078
EMP2[GHF] �2.333 �16.104
EMP2[GLDA] �2.364 �16.151
CI �2.344 �16.080b

a The self-energy approximations are illustrated in Figure 1.
All energies are in Rydbergs. Accurate results from CI calcu-
lations are included for comparison.
b Taken from Ref. [25].
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than 4 milli-Hartree, whereas for Ca, the maximum
deviation was 40 milli-Hartree). For the molecules,
the sensitivity of the LW functional to the input
Green function is larger at large separation. This
reflects the fact that the chosen form of the input
Green function becomes quite unphysical at large
separations. It is interesting to note that although
the energies obtained using the LW functional and
LDA Green functions differ significantly from the
LDA–RPA energies, the LW and RPA energies give
practically the same result when they are both eval-
uated on GHF. The same feature was observed in the
atomic calculations [26, 27].

Although the calculations on atoms and mole-
cules clearly indicate that GW does not give accu-
rate total energies on systems with localized elec-
trons, it is important to keep in mind that we are
mainly interested in total energy differences. It has
been noted that while DFT–RPA calculations give
poor total energies, the binding energies are quite
good [13, 14, 22]. It is, however, not obvious how
the binding energies should be calculated. For in-
stance, if the total energy curves shown in Figure 3
would be extended to infinitely large separations,
the energy would most likely not converge to the
energies obtained from calculations on two sepa-
rate atoms. If we instead choose to calculate the
total energies of an isolated (spin-polarized) H
atom, the binding energy defined by � � 2E(H) �
E(H2) is accurately described by DFT–RPA calcula-
tions. Using LDA orbitals as input, binding energies

of H2 are shown in Table II. Clearly, the best bind-
ing energies are obtained from DFT–RPA calcula-
tions, despite that fact that this is the method that
gives the poorest total energies among the four
methods considered.

Conclusions

The use of variational energy functionals based
on MBPT is still in a pioneering stage, but many
things have already been learned. Although the
lack of self-consistent calculations on atoms and
molecules makes it difficult to draw conclusions
with absolute certainty, the results indicate that the
GW approximation does not give accurate total en-
ergies for systems with localized electrons. The re-
lation between the GW approximation and the
DFT–RPA calculations is interesting, because the
latter calculations appear to produce worse total
energies but better binding energies. However, the
minimum of the DFT–RPA energy does not appear
to be near the self-consistent GW results. Although
LW calculations on the homogenous electron gas
and on atoms and small molecules are quite
straightforward, there are still technical questions
on how to make the implementation as effective as
possible. As the calculations on diatomic molecules
demonstrate, it is also necessary to have a better
understanding of what constraints to put on the
Green functions that are used as input to the vari-
ational functionals. In future work, the effects of the
various self-energy approximations will be studied
in detail. We are also developing an OEP scheme
based on the LW functional rather than on the Klein
functional. Our calculations so far indicate that,
unlike traditional OEP calculations, these density
functionals will produce total energies close to the
self-consistent values.

FIGURE 3. Total energy (in Rydbergs) of the H2 mole-
cule as a function of the nuclear separation. Results of
the LW functional with the HF Green function as input
differs little from the HF–RPA curve, whereas the LW
functional with GLDA as input has a large correction to
the RPA energy.

TABLE II ______________________________________
The binding energy (in Rydbergs) of H2, calculated
by using the LDA Green as input to the energy
functionals.a

ELW
GW[GLDA] ERPA[GLDA] ELW

MP2[GLDA] EMP2[GLDA]

�0.315 �0.347b �0.320 �0.367

a The energies should be compared with the exact result of
�0.349 Ry.
b To be compared with the value 0.347 from Refs. [14] and
[22].
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