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It was recently proposed to use variational functionals based on many-body perturbation theory for the
calculation of the total energies of many-electron systems. The accuracy of such functionals depends on the
degree of sophistication of the underlying perturbation expansions. An older such functional and a recently
constructed functional, both at the level of {B&V approximationfGWA), were tested on the electron gas with
indeed very encouraging results. In the present work we test the older of these functionals on atoms and find
correlation energies much better than those of the random-phase approximation but still definitely worse as
compared to the case of the gas. Using the recent functional of two independent variables it becomes relatively
easy to include second-order exchange effects not present in the GWA. In the atomic limit we find this to be
very important and the correlation energies improve to an accuracy of 10-20 % when obtained from calcula-
tions much less demanding than those of, e.g., configuration-interaction expansions.
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[. INTRODUCTION tively large. The CC method has been applied to extended
system&® and there is also docal version of the ClI
Over the past 15 years, the calculation of the total enerexpansiofi but neither has, so far, been able to compete with
gies of many-electron systems has become a widespread abBdF methods with regard to simplicity, versatility, or applica-
important activity in physics and chemistry. The activity, bility.
which involves an increasing number of practitioners, could Total energies can also be obtained from the one-electron
have consequences for a large number of potential applicar the two-electron Green functions of many-body perturba-
tions. One is, for instance, interested in the position, orientation theory(MBPT).” Except for the initial and very success-
tion, and binding energies of molecules adsorbed at surfacefl calculations of the total energy of the infinite electron
in the energy required to move a particular radical from onegas® this approach has had little to offer in systems of prac-
side of a large molecule to another, in the enthalpy of thdical interest. A few atoms and a number of small molecules
formation of a particular alloy, in the energy involved in the have been treated by MBRRef. 9 but, to our knowledge,
formation of a particular defect in a solid, in the energyno large molecules or solids. There have been several rea-
barrier for a certain molecular reaction, or in vibrational fre-sons for this dismal record. Although there are systematic
guencies. The list can be continued indefinitely. rules for carrying the perturbation expansion to higher order
The overwhelming majority of all such calculations is car-in the Coulomb interaction, the expansion is, in principle,
ried out within the framework of density-functional theory divergent and physical intuition must be allowed to guide the
(DFT).! This is due to the simplicity of the resulting one- choice of Feynman diagrams to be included. The statement
electron equations and the accuracy one can achieve from tligore diagrams are better than fewer” is certainly not true.
use of modern so-called generalized gradient approximation&nother reason is the fact that the diagrammatic expressions
(GGA's).22 Binding distances between constituent atoms arejuickly become prohibitively difficult to calculate with in-
usually correct to within a tenth of an Angstnoand the creasing order.
binding energies of metallic systems are, on the average, Two major developments have made us reconsider the use
correct to within 0.3 eV/atom. For more open systems ane®f MBPT as a tool for obtaining total energies of many-
particularly for finite and small systems the errors in bindingelectron systems. In an attempt to find the limitations and
energies can easily exceed 1 eV/atom and reaction barrieedso possible improvements of the so-cal@W approxima-
can be several factors off the mark. There is thus a clear negtbn (GWA) (Ref. 10 for the quasiparticle energies of solids,
for better approximations within DFT. The impressive Holm and von Barth' carried out self-consistet@W calcu-
progress which has been achieved so far is, however, thations for the interacting but homogeneous electron gas. The
result of tedious and painstaking work over a long period ofcalculations were self-consistent in the sense that the Green
time and there is no obvious route toward systematic imfunction used to calculate the electronic self-energy within
provements within DFT. the GWA was identical to that which was obtained from
An additional reason for the popularity of DF methods isDyson’s equation using, as a potential, the calculated self-
of course the lack of alternative methods applicable to reaénergy. As a byproduct of these calculations, it was discov-
systems of practical interest. For atoms and smaller molered that the total energy obtained from the self-consistent
ecules there are certainly very accurate initio methods Green function of the gas was as accurate as that obtained
like, e.g., the coupled clustefCC) method or ordinary from very elaborate Monte Carlo simulations—to within the
configuration-interactionCl) expansions. For larger mol- computational accuracy. Stimulated by these results Alm-
ecules and particularly in extended systems the calculationdlladh, von Barth, and van LeeuwéhBL )23 reexamined a
effort required for suclab initio methods becomes prohibi- variational expression for the total energy due to Luttinger
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and Ward(LW).1* This expression was not used by the latteruse of MBPT as a tool for calculating the total energies of
authors for obtaining total energies. It was rather used foreal electronic systems.

deriving certain exact properties of the expansions within Given the success of the variational methods as applied to
MBPT. The same expression has later been used bthe total energy of the electron gas, the assessment of the
LangretH® for “deriving” DFT from MBPT and by Sham quality and feasibility of these methods in inhomogeneous
and Schiter'® for obtaining an expression for the so-called systems is an obvious continuation of our research. Two ma-
derivative discontinuity of the effective potential for ex- jor questions need to be answerétl Is the GW level of
change and correlation within DFT. The central quantity ofapproximation adequate also in strongly inhomogeneous sys-
the LW variational expression is the functiorf G] whose  tems?(2) Does the variational property of the new function-
variational derivative with respect to the Green funct®n als alleviate the necessity for self-consistency? Anticipating
yields the electronic self-energy. If the functional® is  the results of the present work on atomic systems, we could
chosen to yield the GWA fak, the LW functional is station-  answer the first question in the negative and the second ques-
ary at the Green function of the self-consistent GWA and theion by “yes, provided certain conditions are met.” It is the
resulting total energy is that of the GWA. The stationarypurpose of the present work to qualify these answers and to
property of the LW functional at the solution to Dyson’s provide suggestions for future approximations which are
equation can now be used for obtaining a close approximabsoth accurate and feasible to apply to real systems.

tion to the self-consistent total energy by evaluating the func- Concerning the first question above, a lot can be said
tional at, e.g., a noninteracting Green function, a task muclalready from the vast experience pertinent to finite systems
easier than iterating to self-consistency. In 1996, it wasaccumulated within the community of quantum chemists.
shown by Hindgretl that only a few millihartrees were lost For atoms and molecules it is well known that the second-
in this procedure when it was applied to the electron gas agrder exchange diagrams have to be included in order to
the level of the GWA. obtain reasonable values for the correlation ener§igsthe

The next development, also from 1996, was GdBL)  GW level, however, the LW functional does not include
discovery that one can easily replace the bare Coulomb inthese important physical effects. The LW functional does in-
teractionv with the screened interactio’W by means of a clude an infinite number of Feynman diagrams above the
simple Legendre-like transformation of the origimklfunc-  normal random-phase approximati¢RPA), the latter ap-
tional. In this way, the central quantity becomd#$G,W]  proximation being essential for cutting down the long range
which is a functional of two independent variabl€andW.  of the Coulomb interaction. The additional diagrams are of
As before, the functional derivative df with respect to the high orders in the screened interaction and are probably re-
Green functionG yields the electronic self-energy, whereas sponsible for modifying the screening effects. But they do
the functional derivative with respect ¥ now yields the not include the second-order exchange effects so important
irreducible polarizabilityP of the system. From the basic in systems with localized electrons. The latter effects are
functional ¥ it is a rather trivial matter to invent expressions known to be important also in the electron gas especially at
for the total energy which are stationary with respect tolow densities. Thus, in retrospect, the accurate results previ-
variations of both the Green functio@ and the screened ously obtained for that system might have been fortuitous.
interactionW whenG is a solution to Dyson’s equation and A further indication on the importance of the effects be-
W a solution to thecontracted Bethe-Salpetequation. The yond the GWA can be found in the work by Schindimayr
latter equation is simply defined as the exact relation whichal.X® After learning about the results of our group, they per-
expresses the screened interactiéin terms of the irreduc- formed self-consisten&W calculations on a model system
ible polarizability P and the bare Coulomb potential The  consisting of a finite two-dimensional lattice of model atoms
expression for the total energy is, by no means, unique anwith on-site Hubbard interactions. For this system the total
the investigation of different choices would be an interestingenergy could be obtained by direct diagonalization and com-
task for future research. In 1996, Hindgtétested a rather pared to that of the GWA. They found a rather large devia-
straight-forward choice by evaluating the total energy of thetion between the two sets of energies—especially at the
electron gas at a simple plasmon-pole approximation to théarger Coulomb repulsions. True enough, the model appears
screened interactioWV. They again found that this very somewhat remote from real systems but some of the effects
simple and fast procedure gave energies which deviated littlluminated by the work of Schindimayet al. are indeed
from those of the fully self-consistent GWA. present also in our atomic systems.

When attempts are made to go beyond simple one- With regard to the second question about the quality of
electron or mean-field theories in realistic systems, presenthe variational procedure, there is no previous experience to
day computational facilities do rarely allow the use of inter-draw from. Neither have we here performed any self-
acting Green functions and the calculation of the screenedonsistent calculations. Our investigations of this issue rely
interaction is usually a bottleneck of such calculati¢gas, on evaluating the functionals at different reasonable Green
e.g., INGW calculation$. If the variational principle would functions and screened interactions, and monitoring how re-
allow for the use of noninteracting Green functions andsults change. As already mentioned above, in these very in-
simple models of the screened interaction, it might becomé&omogeneous systems results are much more sensitive to the
feasible to evaluate rather complicated but, hopefully, accuehoice of noninteracting Green function and also to the
rate expressions for the total energy of real systems. This ishoice of screened interaction. We argue that certain choices
the reason behind our newly found interest in the possiblare to be preferred to others.
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With regard to the very essential question on how to proformalism, lettingT—0 at the end of the calculations. All
ceed beyond the less satisfactory GWA without jeopardizingjuantities are given on the imaginary frequency axis, and the
the possibility of applying our variational methods to realis-Green functiorG(ro,r’ ;i w) satisfies the equation of mo-
tic systems, we propose and test the inclusion of exchanggon (leaving out coordinates and indides
effects which are second order in the screened interaction. In
order to make the calculation tractable also in extended sys- [iw—f—W—VH+M]G=1+EG, (1)
tems, we then find it essential to make use of the variational R
property of the energy functional based on darformula-  Where t=—V?%2, w(r) is the external potentialVy(r)
tion. =[d3'n(r')v(r—r') is the Hartree potential, and is the

We will conclude this introduction by a quicksemeof  chemical potential. We use atomic units throughout this pa-
the short history of the variational procedures based omer. The self-energ® (ro,r'o’;iw) includes the exchange
MBPT plus an outline of the present paper. The history goegnd correlation effects of the electron interaction, and will
back to the construction of the LW functional in 1960. This have to be approximated at some level in perturbation theory.
functional, although discussed in several later papers, waéd/e will in the following skip the coordinates, and tre@t
never used for calculating total energies. It was first used bypnd 2 as matrices withr,o) and {',0’) as indices. The
Hindgren and Almbladh at the level of the GWA to calculate ground-state total enerdy is, atT=0, related to the grand
the energy of the gas. Suggestions and precursors toward tpetential() according to2(T—0)=E— uN, whereN is the
¥ formulation can be found in several older papers by, e.g.total number of particles.

Hedin® Klein,?° and De Dominicig! Again, these authors  Since bothV,, andX are functionals of the Green func-
never found any practical use for their theories. The comition G, Eq. (1) should be solved to self-consistency within
plete theory of theV functionals was first presented in 1997 the chosen approximate schemeXorWhile a knowledge of

at the conferencRecent Progress in Many-Body Theories the Green function provides us with the ground-state expec-
Sydney. The ensuing pap&rs’ presented the main ideas tation values of one-particle operators, as well as the total
illustrated by an application to the electron gas with numeri-energy, these values will necessarily depend on the choice of
cal results by Hindgren and Almbladh. A longer paper givingapproximation forS,. Baym and Kadanoff-?’ showed that a
details of the new theory including complete derivations asonserving approximation fax, i.e., an approximation for
well as instructions for the application of the theory to inho-which the resulting Green function obeys the same conser-
mogeneous systems was written in 199After 1996, the  vation laws as the underlying Hamiltonian, is obtained when
new theory has been presented at many internationd is derived from a functionad[ G] according to
conferences? A simplified version of the variational theory

was recently used by a former member of our group and his _ 6D

collaboratoré to calculate the binding energy of the hydro- %= 5G” 2

gen molecule at different separations. The latter authors em- .
ployed a simpler functiondP?*24also at thes W level. This A recipe for how to construct such a functional was devel-

h . . 14
functional is, however, inferior to the LW functional in the oped in an earhet paper by L.uttlnge.r and Wathv), who
sense that it yields an inaccurate RPA energy, whereas t ggesteq summing over all wreduublg self-energy.d[agrams
LW functional gives almost the exact answer when bothC osed with an additional Green function and multiplied by

functionals are evaluated for the electron gas at a noninteSPECific numerical factors,

acting Green function. Finally we should mention the results 1

of th_e self-consisteiigt calc,ulations, by Holm and vog Batth, q’[G]ZE Z_Tr[z(kn)G]_ (3
Schindimayr et al,'° Garca-Gonzéez and Godby® and nk <N

26 . . . .
Gouldet al,”which the variational procedures are deS|gnedThe indexn indicates number of interaction lines and Tr

to reproduce and which thus serve as benchmarks for the?’l’?dicates a summation over all indices as well as a frequency

5
procedures: . . . L integration, T3, [d% f(dw/27). The construction ofb
In the following section of this paper we will give some diagrams is illustrated in Fig. 1 for the lowest orders.

basic formulas for the application of the theory to inhomo- While this was not the main purpose of their work, Lut-
geneous systems plus some details on how the theory Coﬂhger and Ward in the same paper derivedasiational e’x-
nects to the exact DF formulation. In Sec. IIl we will discuss J.ccion for the total energy. MBPT provides several possi-
the calculations of the total energies of atoms using the L ilities for obtaining the groﬁnd—state energy. One is, e.g.
functional and in Sec. IV we will include second-order ex- through the Galitskii-Migdal formuf& which, however, ,re- 1
change effects within .thdf formulf':mon. Finally, in Sec. V ires an accurate Green function which, in turn, necessitates
we state ou.r.conclusmns and discuss the way to proceegl goi¢ consistent solution to Dyson’s equation. Since the
t.OW‘.”“d obtaining more accurate results without any SUbStar}btal—energy expression presented by Luttinger and Ward is
tial increase of the computational effort. variational with respect tds, the result will not be very
sensitive to the quality of the input Green function.

The original formulation in Ref. 14 takes the Green func-
tion corresponding to a completely noninteracting system as

We will in this paper only consider ground-state energiesa starting point for a perturbation series in terms of the
but will for notational simplicity use the finite temperature electron-electron interaction. This is inconvenient for calcu-

Il. GREEN FUNCTIONS AND CONSERVING
APPROXIMATIONS

195102-3



NILS ERIK DAHLEN AND ULF von BARTH PHYSICAL REVIEW B 69, 195102 (2004

imply any particular dependence @ys, but is equivalent
to Eq. (1).

With this connection between the fully interacting Green
function and the Kohn-Sham system, the derivative of the
grand potential with respect to the interaction strength is

do*  [dA _olfew L
d \dn /T [ 2T

G"]. (6)

L1
2
!
4
The last two terms in Eq(6) are related to the interaction
energy, conveniently divided into its classical padt,
N 1 =1TrV4G] and the exchange-correlation energy)”(C
4 =3T3 *G"]. The grand potential can then be obtained by
integrating Eq.(6) from A\=0 to A=1. In the limit T—0,
the thermodynamic potential at=0 is just the sum over the
difference between the occupied Kohn-Sham eigenvalues
1 and the chemical potentiat,
¥ 7%

N
Qo=-TrIn(—Gyd)=>, &—puN. @)
FIG. 1. The figure shows how th functional is constructed by =1
closing irreducible self-energy diagrams with a Green-function line

and multiplying with an appropriate prefactor. The figure shows all In order to relate the total energy to tefunctional, let

of the first- and second-order diagrams and one of the many thirdS _ConSIdeFI) defined in _Eq.(_3) as_a functlonal_of the inter-
order diagrams. action strength. The derivative with respectxtas

: : . dor 1n 5P dG*
lations on inhomogeneous systems. The strong attractive ——=> TNV +Tr| — ——
force of the bare atomic nucleus produces orbitals which are dh - T 2n A »odh
tightly bound, and a more reasonable starting point is a N

Tan ; ; 1 dG

Hamiltonian where the static screening by the other electrons _ A Y
) . X X ) TS GM+Tr| X . (8
is taken into account. A natural choice of a noninteracting 2\ dA

system is given by DFT, which already produces the exact,mining this equation and E6), we can express the
one-electron density. While the variational functionals them-

I t based DET. th il b luated Usi derivative of® in terms of the derivative of the grand po-
Selves are not based on U1, they will be evaluated usingy i Using also Dyson’s equatidb), we can rewrite this
noninteracting Green functions which are typically obtained .

; oo ) . .~ -as follows:
from DFT calculations. To highlight this connection, we will
therefore deviate from the original work and sketch a deri- g d¢*
vation more closely related to the formalism of DFT. We a

d d
X K—Uo— KTI'[E)\G)\]—KTI’“’](E)\-‘F)\VH—FW)\
introduce an interaction strength parametersuch that\

=0 corresponds to a noninteracting system ardl corre- —Uks— Glzsl)_ 9
sponds to the fully interacting system. The Hamiltonian can ) ) ) _ )
then be written as a function of the interaction strength, Integrating over the interaction strength, we finally obtain the

LW functional,

N N N
N “ A —B_1].— _ _, -1
H)\:,thi"',ZlW}\(ri)""Ezi,U(ri_rj)a 4) Q=P—-Ug—TI[XG]-TrIn(X —vy—Ggs), (10
o o i whereu,. is the exchange-correlation potential of DFT. This

wherelv is the modified electron interaction and the exter-funcuon‘fjII is stationary with respect @, since

nal potentialw® is such that the electron density remains 50
constant at all\. It is thus equal to the exact ground-state —=
densityn*(r)=n(r). At A=0, the external potentiak® is oG
equal to the Kohn-Sham potentiakg[n](r). The Green when G satisfies Dyson’s equationG=Gygs+ Gks(S
function then reduces to the Kohn-Sham Green fUﬂCtiOﬂ—UXC)G_ This variational property suggests that evaluating
Gks, Which is related to the Green function at a genaral Eq.(10) at some approximate Green function should result in

0, (11

through Dyson’s equation a total energy close to the self-consistent result. Note that,
while Eqg. (11) shows that() is stationary at the self-
GM=Gygt+ Gys(SM+ AV + W' —vyg) GM. (5)  consistenG, it does not say that it is a minimum. The energy

will of course depend not only on the quality of the approxi-
Note that bothGys andvks are functionals of the electron mate G, but more fundamentally on the approximation
density. The definition of3* in Eq. (5) does not therefore scheme for®. The accuracy of the total energy obtained
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from the LW functional can therefore never exceed the qual-
ity of the chosen® functional.

Note that the inclusion of v,.— Ga in the logarithm in
Eq. (10) is somewhat formal. The LW functional can equally
well be written without any reference at all to DFT:

(a) (b)

Q=P—-Ug—THEG]-TriIn(S+Vy+w+t—p—iw).
(12)

Thus, wherea@,zé andv,. taken separately are both very
complicated functionals of the one-electron Green function
G—through the density—their sum is a rather trivial func-
tional of G. (e)
Note also that it is essential that the chemical potential
uxs Of Ggs is equal to the true chemical potential corre-
Sponding to the approxima@_ For a finite system, as we FIG. 2. Some of the low-ordeWw diagrams. These diagrams
discuss in the present paper, this is not a serious concern. Aliffer from the diagrams contributing to the functional in that the
long as the total particle number given bly= — 5Q/Su is interaction lines represent the screened interadfibrand the dia-

correct, the energy is independent of the location of th&drams therefore have no polarization insertions. There is only one
chemiclal potential first-order and one second-order diagram, shown on the upper line.

(d)

(f)

OB D
B O ®

It is actually possible to write the energy functional in an
infinite number of other ways, but the LW functional has the
advantage of being quite stable. For instance, a slightly dif
ferent functional due to KleiR?

thanv. Writing the screened interaction in terms of the bare

interaction and the irreducible polarizabili§y according to
the contracted Bethe-Salpeter equation

W=v+vPW, (14

(13)  ABL constructed a functiona¥’ of G and W, defined by a
Legendre-like transformation of the functional

Q=d—Uy— T G(Grd+vy)—1]-Trin[ -G~ 1],

which has been used by several autHdr®?>%3%%s also a
variational grand potential with exactly the same value as the ¢[G,W]=®[G,v[G,W]]— T PW—In(1+PW)].
LW functional when evaluated at the self-consisténfThis (15)
functional is, however, much more sensitive to the quality o
the Green function, as we will demonstrate in Sec.(sge
also Sec.). Note that when the input to this functional is a SV SV
Kohn-Sham Green function, the third term on the rhs simpli- G =3 and W iP, (16)
fies to —Tr[GKS(G,ZlervXC)— 1]=-[nv,.. The reference
to DFT in the Klein functional(13) can, however, be re- which we will here present without any further proof. In
moved in a manner similar to going from E@LO) to Eq.  analogy with the diagrammatic construction of tiefunc-
(12. tional in Eq.(3), the ¥ functional can be constructed by a
Any choice of ® diagrams results in a conserving ap- similar summation over self-energy diagratigeeping only
proximation forX,. For instance, including only the diagram the diagrams without any polarization insertions. Labeling
shown in Fig. 1a) yields the Hartree-FockHF) approxima-  these diagrame{"”, wheren denotes the order i, the
tion, while other examples of conserving-derivable functional is constructed according to
schemes mentioned in Ref. 27 are A&V approximatior’
and theT-matrix approximatiori’ The primary reason why
we are interested in calculating the total energy from varia-
tional expressions such as the LW functional is that we want
to avoid solving Dyson’s equation. If the self-consistent so-A few of these diagrams are shown in Fig. 2. Even though
lution gives accurate total energies, the LW functional willthe expansior(17) involves self-energy diagrams different
produce approximations to these energies with much leskkom those involved in the construction of tide functional,
computational effort. There are, however, no obvious rulegny ¥-derivable schemémeaning that the self-energy can
for choosingd diagrams that will produce good total ener- be obtained a& = 5¥/3G) is also® derivable™
gies. Employing theW functional, ABL suggested the follow-
Whereas the LW functional is based on a perturbatioring form for the grand potential:
series in terms of the Green function and the bare Coulomb N
interactionv, the Hedin equatiori8 describe a perturbation Q=¥ -Up=T2G]+ 3z T{PW+In(1-Pv)]
expansion in terms oz and the screened interactiof. _ . _a-t
Almbladh, von Barth and van Leeuw®n® constructed a Trn(E = vye=Cs), 18
variational energy functional similar to the LW functional, where they used Edq14) in order to keep a coupling be-
but where the perturbation expansion is in term§\bfather  tweenW andv. As we did also for the LW functional pre-

fThis functional has the properties

1
xlr[G,W]ank %Tr[o-(k”)G]. (17)
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viously, we can rewrit@;§+ Uy IN @ way which reveals the

rather trivial dependence on the density of the sum of these . = _ & N N ES

terms and obtain Gw = tee
Q=T —-Uy,—TSG]+ T PW+In(1-Pv)] ow = -3 @ _%(X}_% @ +

- +VptwHi—p—io). , , .
TrnE+Vytwht-p—io) (19 FIG. 3. The figure shows how g, is constructed by summing

the exchange diagram and the ring diagrams. The upper diagrams
show X = —GW where W is the screened interactioNgps. The
diagrams on the lower row show the correspondingliagrams.

This functional is stationary with respect to bathand W,
meaning thatsQ/8G=0 and 6Q/6W=0 if G 1=G,g
-3 +v,.andW 1=y 1—P. The form of this functional is

not at all unique, It is possible to add any functionBi2 known self-consistent results. TI&W approximation to the

— -1 — —
~Uxet G 1= Gyg] and HIP+W ' —v 1.] as long asF g f,nctional is obtained by summing the ring diagrams, as
=0F=0 andH=6H=0 at the self-consister® andW. In  gnq\yn in Fig. 3. These are the infinite set of diagrams with
this way, we can improve the stationarity of the energy funCy,qir corresponding numerical factors such that the electronic
thnal, but the qqahty of the energies is ultimately deter'self-energy generated by E®) is that of the GWA. This
mined by the choice of approximation . implies that> = — GWgpa Where the screened interaction is
given by the RPA expressioWgpy=v/(1—vPy) in terms of

lll. ATOMIC CORRELATION ENERGIES FROM THE LW- the noninteracting irreducible polarizability=GG. The

GW FUNCTIONAL first of the &g\ diagrams in Fig. 3 is just the exchange
energyE,[ G]=3Tr[GX,], whereX, is the exchange part of
Sthe self-energy. The remaining diagrams can be summed as
Iollows:

We will in this section present atomic correlation energie
calculated by using the LW functional, E¢LO). As men-
tioned in the preceding section, the energies we obtain wil
be approximations to the self-consistent energies correspond-

—FE Tl 2,1 34...
ing to the choser functional. The calculations allow us to Pow=Ex= Tl a(vPo)"+5(vPo) "+ -]

fces_t thg variational properties of thg LW functional , as vyell as =E,+ 3Tr{vPy+IN(1—vPy)]
indicating whether the self-consiste@W approximation
produces good total energies even for atoms. There are nu- =E+®X (20)

merous highly accurate results for the total energies of at- . . )

oms, and our goal is not to produce more accurate resultd/ithout the numerical prefactors in front of thkgy dia-

than obtained with quantum chemical methods. Our mairgrams, their sum would just have generated the usual expres-
interest is rather in finding a simple and accurate method th&tion for the exchange-correlation part of the electron-

can be extended to infinite systems, where quantum chemicglectron interaction energy within the RPA. The numerical
methods are impractical. prefactors actually correspond to integrating each diagram

In some Simp'e cases, the variational properties can b@Ver the Strength of the Coulomb interaction. Therefore, the

tested directly. For instance, keeping only the uppermost diaSUm of this particular infinite series df diagramsincluding
gram in Fig. 1, the self-consistent total energy is equal to théhe numerical prefactorss what in DFT is referred to as the
HF energy. In this case, the Klein functional defined by Eq.exchange-correlation energy within the RPA, ie., the
(13) reduces to the energy functional of the HF approxima_exchange—correlation part of the interaction energy plus the
tion, but with the orbitals of the input Green function. If we correlation part of the kinetic energy. Consequently, the term
use the HF Green functioB,, the result will be the HF ~ ®5™ is the common formula for the correlation energy of
energy, but at a different noninteracti@y the energy will be  the RPA. BothE, and ®™ are functionals ofG, and will
higher and not necessarily close to the HF energy. The LWdepend strongly on the input Green function.
functional has additional terms that reduce this error and The only previous total-energy calculation using the LW
make the functional less sensitive to the choic&ofCalcu-  functional was one for the electron g&s,’ where the results
lations on some spherical atoms show the difference in staagreed with the accurate results from self-consistelt
bility between the two functionals: Whereas the LW func- calculationst® Schindimayret al!® did not study the LW
tional evaluated at an LDA Green function deviated from thefunctional, but they obtained self-consist&itV energies for
HF energy by only 1 millihartree for Ne and 2 millihartree a Hubbard model, in poor agreement with the exact energies.
for Ca, the HF energies calculated from the functional giverAryasetiawanet al?? recently observed similar results in a
in Eq. (13) differed by 17 and 23 millihartree for the same two-site Hubbard model. Given these quite different conclu-
atoms. Due to the poor variational properties of this func-sions from two sets of extreme model systems, a calculation
tional, we might, of course, obtain an accurate total energpf atomic total energies is highly interesting. If the self-
using an unphysical choice of functiondl and a Green consistentGW approximation gives accurate total energies
function far from self-consistency. But we consider such re-also for a real system, the LW functional at t&anN level
sults to be irrelevant. (LW-GW) constitutes a simple method for obtaining highly
To go beyond HF and calculate correlation energies is accurate total energies with only a simple noninteracthg
significantly more complicated task, and there are not mangs input.
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TABLE I. Correlation energies for some spherically symmetric atoms. The RPA correlation energies were
calculated usin@sogp. The columns indicated bﬁf‘f’w are results from the LW functional at tli&W level,
calculated usin@sogp, G pa andGye. All energies are in hartrees.

Atom ES™ Goerl EcG,m/[GOEP] EcG,m/[GLDA] EcG,m/[GHF] ci@
He —0.083 —0.064 —0.062 —0.066 —0.042
Be —-0.174 —0.110 —-0.104 —0.128 —0.094
Ne —-0.579 —0.494 —0.481 —0.498 —0.390
Mg?* —0.574 —0.510 —-0.501 —-0.511 —0.390
Mg —0.651 —0.550 —0.535 —0.560 —0.438
Ar —1.070 —0.906 —0.891 —0.928 —-0.722
ca”’ —-1.104 —0.946 —0.939 —0.967 —0.754
Ca —-1.175 —-0.977 —-0.972 —1.013

8 rom Ref. 32.

We have calculated the total energy for a few sphericallyover the eigenvalues is close to the sum over the HF eigen-
symmetric atoms and ions, approximati@gwith noninter-  values. This is of course not the only way of performing this
acting HF and DFT Green functions. The DFT Green func-integral, but it is a simple procedure for atomic systems. If
tions were calculated using both the LDA and the exchangethe HF Green function is given as an input to the LW func-
only optimized effective potentidlOEP method:* The HF  tional, thenG = G,. As a consequence, for atoms, the LW
and DFT atomic orbitals were calculated using a set of Slatefynctional reduces to
basis functions. The polarizability is represented in a basis of
excitation functionsf;, where the indexj represents a pair E.wlGuel=Enet @[ Gurl, (23
g=(i,j) of an occupied and an unoccupied atomic orbital, . i ~ ~ L
if we approximate—TrIn(1—GXp) by T{ GX]. This is cer-
fo(N=ai(Ng;(r), i<N<j. (21)  tainly not valid in solids, but is quite reasonable in atoms. By

) @ . we mean the correlation part of tkde functional[see Eq.
We do not want the conclusions of the present paper to bgp)].4°

obscured with irrelevant difficulties associated with the use Calculated correlation energi€s=E — E,;¢ are shown in

of too limited basis sets. Consequently, care has been takemple 1. In addition to the correlation energies obtained from
to use a large enough basis set to, e.g., ensure the convefie LW functional, we have included the RPA correlation
gence of the termb¢™ which is known to be difficult to  energiesERP evaluated aGogp. With the exception of Be,
converge. The accuracy of the results ranges from less thange results clearly show that the LW functional is not very
millihartree for the lighter atoms to a few millihartree for the sensitive to the input Green function. This is in contrast to
heavier. Since our theory is variational, the results should, ifhe RPA correlation energies which are much more unstable.
principle, not be very sensitive either to the choice of Greerwhile the RPA values in Table | are distinctly lower than the
function or to the choice of basis for the orbitals. In future |\ energies, they will, according to E@23), be approxi-
applications we will exploit this fact in order to make com- mately equal to the LW results if they are evaluated at the HF
putational shortcuts and to save computational time. But thagyreen functionG rather than aGggp.**
is not the purpose of the present work. _ _ The obtained LW W values were, however, not particu-
Itis not possible to calculate the frequency integral in Eq.arly close to the exact results. Beryllium was the only atom
(10) without manipulating the expression somewhat. Thefor which the LWGW calculations produced accurate re-
logarithm contains terms which are static and will cause they|ts but the values for Be were, on the other hand, much
frequency integral to diverge. This problem can be overcomenore sensitive to the choice of Green function. For the other
by extracting the static exchange pait of the self-energy, atoms, the results differ only little when changif% This
and introducing a new Green functi@ defined by—G™* confirms the good variational property of the LW functional
=3, +Vy+w+t—pu—iw. The logarithmic term can then and indicates that the results are close to the self-consistent

be rewritten according to GW total energies. Consequently, self-consistem/ calcu-
lations do not produce accurate total energies for atoms. In
—TrINCE+Vy+w+i—pu—iw) the absence of self-consistent calculations, this conclusion

cannot be drawn with absolute certainty. But we know what
=—Trin(-=G H—Trin(1-G= p), (220  physical processes are left out at (B&V level (second-order
) ) ) exchange effecisand are not surprised by the deviation from
whereX, is defined ast, =X —ZX,. The first term on the the exact results. These conclusions are in agreement with
right-hand side of Eq(22) is just a sum over the difference the total-energy results for atoms obtained from a second-
between the eigenvalues and the chemical potential of thgrder approximation té. The LW functional here showed a
occupied orbitals o6 [as in Eq.(7)]. Note thatG is the first  similar insensitivity to the inpu, but the resulting energies
iteration towards the HF Green function, and that the sunwere much closer to the exact valués.
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TABLE Il. Removal correlation energies, [as defined in Eq.
(24)] for Be, Mg, and Ca. The energies are calculated using the L\W- =
GW functional evaluated at various approximate Green functions.
The experimental result is obtained by subtracting the HF removal

energy from the experimental removal energies. Po=- Q - @

Atoms D[ Goepl O[Gpal O[Gel Expt. FIG. 4. The figure shows the approximafeand P diagrams
corresponding to including the first- and second-order diagrams in

+

+
Be—Be 0.032 0.028 0.051  0.050 thew, functional,
Mg— Mg?* 0.040 0.034 0.049  0.049
Ca-Ca&* 0.031 0.033 0.046  0.056

input G. As discussed above, their calculations amount to
aFrom Ref. 34. finding the RPA energy of | It would be interesting to
perform similar calculations for that case, using the LW
It is important to remember that the total energies offunctional and varioqs no_ninteracting Green fu_nctions in or-
der to check the stationarity as well as the quality of the LW-
GW energies.

the larger atoms such as AE{ —527 hartree) and Ca
(E~—678 hartree) are very large. Most of it comes from the
physically less interesting core region and is not very inter-

estingper se It is more relevant to study changes in the total IV. CORRELATION ENERGIES FROM THE ABL

energy as the structure of the system is modified, i.e., FUNCTIONAL

changes mainly due to the valence electrons. The simplest

way of testing this for the spherically symmetric atoms is to The results of the LWGW calculations clearly indicate
remove two electrons and calculate the removal energy. ThiatGW is not sufficient for obtaining accurate total energies
correlation part of the removal energies, defined for an atonfior atoms. It is, however, well known that the second-order

A as Mdller-Plesset perturbation theofylP2) gives very accurate
atomic total energie¥® The name MP2 designates ordinary
A(A)=E4(A?T)—E.(A) (24) second-order perturbation theory, starting from the HF
single-particle Hamiltonian. In essence this amounts to add-
were calculated for Be, Mg, and Ca using the IGW func-  ing to the HF energy the contributions from the diagrams in

tional and the same Green functions as above. The calculatddgs. 1b) and Xc). The MP2 scheme is, however, not varia-
removal energies are shown in Table Il together with experitional and the total energy is very sensitive to the choice of
mental values. The removal energies obtained when usingne-electron Green function used to evaluate the diagrams. It
GoegpandG  pa are not particularly good, yielding 50—80 % would, however, not be very difficult to incorporate the
of the experimental results. The removal energies calculategiecond-order exchange effects present in MP2 theory into an
from Gy are in excellent agreement for Be and Mg. ThelW functional. One could construct th@ functional from
removal energy for Ca is less accurate but the relativistigust the diagrams in Figs.(d—9 in order to obtain a varia-
effects are expected to be significant for Ca. This could caustonal energy expression of similar accuracy to MP2 theory
the discrepancy. We should also keep in mind that, while théut much less sensitive to the choice of Green function and
LW functional is a variational expression for the total energy,basis set. Such calculations have been carried out by us with
we do not have a variational expression for the removal enrather promising results for the atorfis’® Unfortunately,
ergies. This is evident from Table I, where the removal en-MP2 is an expansion in the bare Coulomb interaction which
ergies differ significantly depending on ti@ used in the will lose its relevance in larger molecules and solids.
evaluation. The calculations on the electron'gasdicated The knowledge of the importance of second-order ex-
that the stationary value of the LW functional is indeed achange in systems with localized electrons, and the necessity
minimum, although we have not yet tried to formally prove of screening the electron interaction in extended systems,
this conjecture. Should this be the case, the results of Tablel¢ads in an obvious way to the ABL functional. As discussed
indicate thaiG,¢ is closest to the self-consistent Green func-in Ref. 13, any¥ -derivable scheme is alsb derivable. And
tion in our atomic systems. The results for the removal enthe GW approximation described in Fig. 3 in terms &f
ergies in Table Il then suggest that the self-consistent GWAliagrams is, in th& formalism, represented by only a single
gives a very accurate description of valence electron enetV diagram, shown in Fig.(@). A further advantage of th#
gies. It should be noted that we have also calculated th&rmalism is that the inclusion of second-order exchange ef-
removal energies corresponding to the RPA, and have founfiécts amounts to adding only one extra diagram, shown in
them to be very different from the experimental numbers. Fig. 2(b). The self-energy diagrams are shown in Fig. 4,
A more interesting test of the GWA would be to considertogether with the corresponding irreducible polarizabikty
a redistribution rather than a removal of valence electrons=—26¥/6W. Here, the interaction lines represent the
e.g., by calculating the total energy of a molecule as a funcscreened interactioklV. Another very essential property of
tion of the position of the nuclei. Such a calculation hasthe W formulation is the fact that it is stationary with respect
recently been carried out by Aryasetiawanal?? for a H, also to variations in the screened interaction. This will allow
molecule. As mentioned above, the latter authors employetbr the use of approximate such interactions, thus reducing
the Klein functional, Eq(13), which is quite sensitive to the the computational labor.
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The stationarity properties of the ABL functional is, how- self-energy diagram is just the statically screened exchange
y prop _ uo ' gy diag J Yy

ever, somewhat more complicated because it is a functlonaiiagram2‘§= —GWK. Considering the last term of E(L9),

of two variables. The functional is stationary onlyGfsat- we see that the argument in the logarithm defines a Green

isfies Dyson’s equation and/ satisfies the contracted Bethe- function

Salpeter equation. This implies that we cannot really expect . .

the error inQ) to be small if we evaluate at an approximate G=[iw—t—w—Vy—3k+pu] L (26)

W, unless Gsatisfies Dyson’s equation. And we cannot ex- . . . .
. . . If the screened interaction entering the self-enelyis

pect the error i) to be small if we employ an approximate ) i —

G whenW does not satisfy Eq14). The problem is illus- changed according to ES5), we can obviously expe

trated by considering the ABL functional at ti@W level, 0 change significantly. In the extreme limit @/—0, this

denoted ABLGW. SettingW=uv, a choice which clearly Green function will describe the solution to the Hartree equa-

does not satisfy the contracted Bethe-Salpeter equation, tHNS with th? Se|f-lnte_ra}cthn included, a system which is

energy functional reduces to a sum of two ter§G] physically quite unrealistic since the electrons will be pushed

=ERV[G]+®RG]. The termELY is the LW functional ~3Way fm”r‘tetgf tﬂgfltehues cbr?etmhizglorgtgﬁtlg? .I:agr%t)e _goltoe_ntlal.

for the HF energy and is, as mentioned above, quite accurafb S Important tr ical potential in E@6) i

and insensitive to the inpuB. The term®X™ is on the cated such thag, has the correct number of particles. As the

contrary quite sensitive t&. As a numerical example, the €igénvalues of the Hartree equations are much higher than

correlation energy of Ne will be 81 millihartree lowémore ~ for instance the HF eigenvalues, this implies tashould

negative if it is calculated withGogp instead ofG,. If we e modified as the screening is switched on, in order to pre-

instead evaluate the ABGW functional at W=Wgp,, ~ SE€rve the number of particles. o

whichis a solution to the contracted Bethe-Salpeter equation, AS mentioned above, the grand potential will be more

the ABL-GW functional is equal to the LVGW functional, ~ Sensitive to the quality oW if G does not satisfy Dyson’s

and the results are indeed insensitivétas demonstrated in €duation, but solving Dyson's equation is exactly what we
Sec. Ill. The difference in the correlation energies for NeWanted to avoid by employing the variational energy func-
calculated withGogp and G is then only 4 millihartree. tionals. In order to make the functional more stable, we have

In the present work, we have chosen to calculate atomigherefore chosen to evaluate the ABL functional at the Green

total energies using a functiond,y that, in addition to the ~function
GW diagram, includes also the second-orderdiagram. .. -
Keeping in mind our ultimate goal of applying the theory to Gie=liw—t-w-Vy—3i+u]™, (27)

extended systems, we want to avoid evaluating the energy fhich is the HF Green function with a statically screened
some Complicated screened interaction which m|ght lead t@xchange_ This Green function is a solution to an approxi_
undue computational labor. The simplest possible mddel mate Dyson equation in which we have neglected the
which does not lead to divergent results in extended systeMgecond-order exchange part of the self-energyWst v,

is a simple Yukawa interaction, G reduces to the ordinary HF Green function, and when
—kr k—oo, it approaches the Hartree Green function. As men-

WK(r) = ) (25) t|on¢d_ above, the _Green funct!on is, in this limit, not very
r realistic but, more importantly, it does reduce the magnitude

of 6Q/SW.

: k
By varying k, we can actually allowV* to span the whole At Gﬁp, ¥,y becomes

range of possible screened interactions, i.e., from a nonexist-

e_nt interaction akﬂ@ to an unscree_ned Cqulomb interac- lPZX:%Tr[EEGhF]—’—%Tr[EEGhF]! (29)

tion atk=0. Our choice of screened interaction clearly lacks

the proper analytic properties in frequency space and iwhere the first term on the right-hand side is just the stati-

would certainly have been interesting to use a plasmon-polesally screened exchange energy. In addition to calculating

like model as we did for the electron gas. It should be rethe total energy using the ABL functional with,y , we also

membered though that our present simple choice is far frongalculated the total energy using only the first-order approxi-

unphysical. In fact, nearly all the very successful calculationsnation (¥ g\y), for which G- is a self-consistent solution to

of excitonic effects in the optical spectra of semiconductordDyson’s equation. Unlike the LM&W calculations presented

and insulators are based on this simple choice of particlein the previous section here has static screening instead of

hole interactior?’ With this choice we hope to be able to find RPA screening. Furthermore, the ABEW functional is

an intermediate value for the parameteéhat could simulate evaluated at a Green function which satisfies Dyson’s equa-

the effects of a dynamically screened interaction. The ratiotion, whereas the LW functional was previously evaluated at

nale for this hope is, of course, the variational property of theHF and DFT Green functions.

ABL functional with respect to the screened interaction. It The calculated total energies turned out to be quite stable

turns out that in all our calculations we do find a particularwhen changing the statically screen@d Plotting the total

value for k which renders the total energy stationary. Thisenergy as a function of the screening paramktehe ABL

value ofk is different for different atoms. functional yields a minimum in the energy curves for both
The self-energy and irreducible polarizability correspond-¥,yx and¥ gy, This can be seen in Fig. 5 where the corre-

ing to our approximationV ,yx are shown in Fig. 4. The first lation energy curves for Ne and Mg are shown. We will refer
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-0.35 y , TABLE lll. Correlation energies for some spherically symmetric
atoms and ions. The LM&W values in the first column are the
same as in Table |. The second and third column contains the values
from ABL, using ¥V ¢y and ¥,y , respectively. The fourth column
contains the results from CI calculations. The columns labeled by

o kew and k,x are the screening parameters corresponding to the
w L tabulated ABL results. The values of these parameters are those for
T~ __--"" which the ABL functional is stationargcompare Fig. b
-0.55
Atom ESIWIGhel Egas Kow EZhs. kox GGA? cP
0 05 1 15 He —0.066 —0.072 0.50 —0.056 0.10 —0.045 —0.042
k Be?t —0.078 —0.081 1.00 —0.053 0.00—0.039 —0.044
Be —0.128 —0.144 0.40 -0.120 0.17 —0.088 —0.094
Ne —0.498 —0.532 0.80 —0.430 0.30 —0.426 —0.390
Mg?* —0.510 —0.536 1.20 —0.414 0.00 —0.414 —0.390
Mg —-0.560 —0.584 0.60-0.475 0.11 —0.478 —0.438
—05 1 Ar —0.928 -0.963 0.70 —0.779 0.20 —0.734 —0.722
o ca’ —-0.966 —1.020 1.20 —0.807 0.20 —0.766 —0.754
w L
J e i 4Using the BLYP functionalsee Ref. 8
-06 ] From Ref. 32.
07 stead, the bare Coulomb interaction is replaced by a stati-

05 1 15 cally screened one, the energy decreases although the
k variation with the screening parameter is rather weak as can

FIG. 5. The sensitivity of the correlation energies for Ne andb€ seen in Fig. &Note thatk=0 in Fig. 5 represents a bare,

Mg, to the screening parametkr calculated using the ABL func- unscreened Coulomb interactipriThus, in this respect a

tional, Eq.(18). The full lines show the energies calculated from the statically screened interaction cannot be said to simulate a

W,x functional, while the dashed lines show the energies from thelynamically screened one.

W gw functional. For comparison, the results from CI calculations  Note that the expression aboyEq. (29)] is not valid

(taken from Ref. 3pare also plotteddotted lines. when the energy function&ABL-GW) is evaluated at, e.g.,

- -~ , the Green function of the OEP. The difference in energy

to these minimum values as the “true” total energies. Tabl&, oy een 4 screened and an unscreened interaction then con-

!gngo?gagi;:]e_t?'tw;nferg K:IfL:ErSn ft?]; iphe”CC;L ﬁg_rgﬁsandtains a term which is linear in this difference with a coeffi-
lons, 10g wi u - ; viations,  ~ient which is proportional to the difference betweBpgp
results from GGA calculations, and the “exact” correlation

energies from Cl calculations. The results are now much im@nd the self-consistet@* [defined in Eq.(26)]. This differ-
proved compared to those of the L@M functional, al- ence is large already &t=0 and becomes much more pro-
though the trend is less dramatic for the smaller atoms.  hounced at large screening parameterrresponding to a
The insensitivity of the results to the screening at an apnegligible exchange interaction. TheaX approaches the
proximately self-consistent Green function is evident fromHartree Green function with charge moving away from the
Fig. 5. It can also be appreciated from the following argu-nucleus, a situation very different as compared to that de-
ments applied, for simplicity, to the ABL functional taken at scribed byGqep. These circumstances will cause a drastic
the GW level (ABL-GW). If this functional is evaluated at screening dependence whépep is used in the evaluation
the Green function of the HFA, the difference in the totalang there is really no natural way of defining a particular

energies between using a bare Coulomb interaction and ORgyjue as the proper total energy. The correlation energy at a
which is dynamically screened within the RPAis, to leadingpgre interaction is also rather poor.
order, an expression of the form Similarly, usingGogpin ¥,y again results in poor corre-

N lation energies and there is then no improvement on the re-
E[Ghr, Wrpal ~ E[ G v]= 2 TH G PGexP], (29 Sults of the LWGW functional.

whereXP is the dynamical part of the self-energy, i.e., that

part which vanishes at large frequencies. The numerical V. SUMMARY AND CONCLUSIONS

value of this term is indeed very small in the atoms we have

studied—usually less than 1 millihartree. And it is a mani- Recently proposed variational methods for the total en-
festly positive quantity meaning that the total energy movesergy of electronic systems were tested a few years ago on the
upwards(becomes less negativevhen a bare Coulomb in- electron gas. The results suggested that very accurate total
teraction is replaced by a dynamically screened one. If inenergies can be obtained at a computational cost so limited
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that the application of the methods to systems of practicapensates for the errors in the functional?
importance is clearly within reach. Of course, tests on the In small systems, it would be quite straightforward to in-
homogeneous gas say little about the performance of thelude second-order exchange processes based on the bare
variational methods in systems with strongly localized elec-Coulomb interaction within the framework of the LW func-
trons. We have, therefore, in the present work, tested thed®nal. We are, however, ultimately interested in extended
methods in the opposite but realistic case of atoms. systems for which an unscreened Coulomb interaction has
There are two major issues to be discussed in connectiolittle relevance. In terms of a dynamically screened interac-
with the methods. They are based on MBPT and their accution within the LW functional, the second-order exchange
racy will therefore depend on the set of diagrams ongerms become exceedingly difficult to evaluate in any realis-
chooses to include in the variational functionals. The diatic system. Fortunately, switching to thk formulation of
grams describe different physical processes which might ogur group, the inclusion of second-order exchange effects
might not be of importance to the physical system at handeomprises adding only one extra diagram. Moreover, already
The second issue is the sensitivity of the variational energyne screened interaction constitutes a difficult problem in,
functionals to the use of simple, approximate quantities ins g, a solid—let alone the two such factors needed for these

their evaluation. effects. Therefore, the variational property of oMrformu-

o In th? homogeneous gagl the tests ciply mqlu(g;\? telrms Ihtion with respect also to the screened interaction will be
the total energy corresponding to a sefi-consis cak very important because it will allow for the use of model

culation. Thusf secor_1d-0rder exchange efiects were left Oustcreened interactions such as a plasmon-pole approximation
of the calculation. Still, the results were very close to those

- : ; T Previously and successfully used for the gas. Or even a stati-
of sophisticated Monte Carlo simulations. This is somewha ally screened interaction which is what we have chosen to
surprising in view of the fact that the second-order exchang y

diagram gives a density independent contribution which i est here. . . . .
large and quite important at the lower densities. Here, in From a simple Taylor expansion of a stationary function
atoms, we find that the correlation energy of the self-Of two variables, it is not hard to realize that there will be

consistent GWA lies about half way between the correct refirst-order corrections to the stationary value unless one of
sult and the rather poor correlation energies of the RPA. |ihe variables lies at or close to the stationary point. In order
accordance with the previous work on the gas, we here usd@ be able to use a crude approximation to the dynamically
what we in the text refer to as the Luttinger-Ward functionalscreened Coulomb interaction such as a static Yukawa poten-
as our variational expression. In the gas there was almost rié@l, we have found it essential to use a Green function rela-
loss of accuracy in evaluating this expression at the veryively close to self-consistency. It is, however, adequate to
simple noninteracting Green function. We here find, a sometise the HF Green function corresponding to a statically
what larger but still small—less than 10%—variation in the screened nonlocal exchange potential as evidenced by the
total correlation energies when using a variety of noninterinsensitivity of the resulting correlation energies to the cho-
acting Green functions. Based on the vast previous expersen screening parameter of the model interaction. In accor-
ence of the calculation of atomic and molecular correlationdance with our expectations concerning the importance of
energies we attribute the remaining errors in the atomic corsecond-order exchange effects, we obtain substantially better
relation energies to the absence of second- and higher-ordeorrelation energies when these effects are included.
exchange effects within the GWA. Seen asab initio calculations of atomic correlation ener-
Total correlation energies of atoms increase rapidly withgies, our results are certainly not that impressive. The results
their size, whereas our main interest lies in an accurate dere particularly bad for the smaller atoms with errors of the
scription of correlation effects in binding and reactions.order 10—20 millihartrees amounting to 33% in helium. In
More appropriate tests would thus be the application of theparticular, they are worse than the atomic correlation ener-
variational methods to, e.g., molecular binding energies. Weies recently obtained by our group from the exchange-only
are presently involved in such investigations which will be approximation within time-dependent DE¥.The latter
reported in due course. In the meanwhile we have here simuheory is, however, computationally more demanding in sol-
lated structural changes in calculations of electronic removaids and we are, after all, looking for binding energies rather
energies. These are differences between variational quantiti¢isan total energies.
and are thus not themselves variational. Consequently, as our The main results of the present paper can be summarized
results show, they differ markedly depending on the nonin-as follows.
teracting Green function used in their evaluation. The results (1) We have demonstrated the feasibilty of applying our
closest to the experiments—and they are indeed very close-variational many-body approach to strongly inhomogeneous
are those obtained from using a HF Green function. It issystems at different levels of approximation with regard to
however, hard to draw any definite conclusions from thisthe electron-electron interactions. The computational effort
Are the results good because the IGW functional is ac- involved is such that the application to real solids is within
curate for the outer valence electrons and the HF Green funceach.
tion is the one which is, in some sense, closest to the self- (2) We have shown that absolute values for total energies
consistent Green function? Or are they good because tha strongly inhomogeneous systems definitely require the in-
LW-GW functional is inaccurate but the HF Green function clusion of second-order exchange effects in the variational
is far from the optimal Green function in a way that com- functionals.
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(3) The results are much more encouraging for valencdeyond RPA effects, i.e., vertex effects, are accounted for
energies as compared to energies involving also the atomitirough approximate local vertex functions obtained from

cores.
(4) The stationary property of th& formalism is not

impaired by the use of a simple statically screened electron-

electron interaction.

time-dependent DFT.
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