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First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of
interest for organic photovoltaic applications
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We evaluate the performances of ab initio GW calculations for the ionization energies and highest occupied
molecular orbital-lowest unoccupied molecular orbital gaps of 13 gas phase molecules of interest for organic
electronic and photovoltaic applications, including the C60 fullerene, pentacene, free-base porphyrins and
phtalocyanine, PTCDA, and standard monomers such as thiophene, fluorene, benzothiazole, or thiadiazole.
Standard G0W 0 calculations, that is, starting from eigenstates obtained with local or semilocal functionals,
significantly improve the ionization energy and band gap as compared to density functional theory Kohn-Sham
results, but the calculated quasiparticle values remain too small as a result of overscreening. Starting from
Hartree-Fock-like eigenvalues provides much better results and is equivalent to performing self-consistency on
the eigenvalues, with a resulting accuracy of 2%–4% as compared to experiment. Our calculations are based on
an efficient Gaussian-basis implementation of GW with explicit treatment of the dynamical screening through
contour deformation techniques.
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I. INTRODUCTION

The flexibility in the synthesis of novel molecules and
polymers is an important advantage of organic photovoltaics
as compared to the inorganic route.1,2 Despite a rather limited
quantum efficiency, the possibility of tailoring the solubility,
crystallinity, and electronic properties of the building molecu-
lar units offers much to improve upon the actual best cells, such
as those based on the combination of acceptor fullerene deriva-
tives and derivatives of polythiophene as donors.3,4 In particu-
lar, it has been shown that there are strong correlations between
the “band offsets” at the donor/acceptor interface and the open
circuit voltage or the driving force for separating the hole and
electron of the photoinduced excitons.5,6 The ability to tune the
electronic affinity and ionization energy of the donor and ac-
ceptor molecules, under the constraint that sunlight absorption
should be kept as large as possible, is a current and intense field
of research.7–10 There is, therefore, much interest in developing
efficient quantum simulation methods, which allow us to
provide the spectroscopic and optical properties of standard
molecules with both a reasonable computer cost and accuracy.

For isolated molecules, an excellent trade-off between
computer cost and accuracy of the calculations of the
ionization energy and electronic affinity can be found with
the so-called delta self-consistent field approach using hybrid
functionals such as PBE0 and B3LYP obtained by the
admixture of a fixed amount of Fock exchange.11,12 However,
these techniques can not be used for extended systems such as
bulk semiconductors and molecules deposited on a surface or
in a solution, and the percentage of Fock exchange needed for
obtaining good results with these functionals is expected to
change from isolated molecules to bulk systems. For the same
reasons, the “Kohn-Sham” ionization energies, electronic
affinities, and band gaps as obtained from the eigenvalues
of the Hamiltonian may be certainly improved with hybrid
functionals as compared to (semi)local ones, but again the
amount of Fock exchange needed to get accurate results may
change from one system to another.

A technique based on many-body perturbation theory
(MBPT), namely, the GW approximation,13–17 has shown
excellent results for the evaluation of the band edges and band
gaps of extended bulk systems.18 Distinct from the perturbative
techniques developed by the quantum chemistry community to
build up correlations from the Hartree-Fock solution,19 such
an approach is generally derived from functional derivative
techniques13,20 yielding an exact (nonperturbative) set of self-
consistent (closed) relations between the one-body Green’s
function G, the polarizability P , the dynamically screened
Coulomb potential W , the “exchange and correlation” self-
energy �, and the so-called vertex corrections �, which
is related to the variation of the self-energy with respect
to an external perturbation. In practice, neglect of vertex
corrections leads to the so-called GW approximation for the
self-energy, which can be loosely described as a generalization
of the Hartree-Fock method by replacing the bare Coulomb
potential with a dynamically screened Coulomb interaction.
The ingredients needed to proceed through the GW calcu-
lations further pave the way to Bethe-Salpeter calculations17

aimed at exploring optical absorption spectra as an alternative
to time-dependent density functional theory (DFT). While
decades of expertise exist for appraising the performances of
the GW approximation in the case of extended bulk systems,
the application of such MBPT approaches to organic molecules
in the gas phase, and, in particular, molecules of interest
for photovoltaic applications,21–26 remains extremely scarce,
a situation that can be mostly attributed to the associated
computational cost for molecules such as fullerene derivatives
or porphyrins containing several dozens of atoms. As a result,
an understanding of the merits of such an approach in the case
of organic molecular systems, as compared to well-established
quantum chemistry techniques, is still in its infancy.

We present in this paper a GW study of the quasiparticle
properties of 13 of the most standard molecules involved
in organic electronic and photovoltaic devices, including
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FIG. 1. (Color online) Symbolic representation of (a) 21H, 23H-porphine (H2P), (b) tetraphenylporphyrin (H2TPP), (c) phtalocyanine
(H2Pc), (d) 3,4,9,10-perylene tetracarboxylic acid dianydride (PTCDA), (e) thiophene, (f) fluorene, (g) benzothiazole, (h) 2,1,3-
benzothiadiazole, and (i) 1,2,5-thiadiazole. Small white atoms are hydrogen atoms, gray atoms are carbon atoms, while red, blue, and
yellow atoms are oxygen, nitrogen, and sulfur atoms, respectively.

the C60 fullerene, the free-base 21H,23H-porphine (H2P),
tetraphenylporphyrin (H2TPP), phtalocyanine (H2Pc), and the
3,4,9,10-perylene tetracarboxylic acid dianydride (PTCDA)
(see Fig. 1). We also study anthracene, tetracene, and pen-
tacene, π -conjugated molecules of interest for organic elec-
tronics (although not of interest for optical applications), and
for which experimental band-gap data are available. Finally,
the tiophene, fluorene, benzothiazole, 2,1,3-benzothiadiazole,
and 1,2,5-thiadiazole monomers, building blocks of common
donor polymers, are also investigated.27,28 Our results suggest
that, while the standard non-self-consistent G0W 0 calculations
based on Kohn-Sham eigenstates with (semi)local functionals
certainly improve on the DFT results, the G0W 0 ioniza-
tion energy and highest occupied molecular orbital-lowest
unoccupied molecular orbital (HOMO-LUMO) gap remain
underestimated as compared to experiment. A simple partial
self-consistency on the eigenvalues only, or the use of Hartree-
Fock-like eigenvalues in a one-shot G0W 0 calculation, allows
us to obtain much improved results. We show that, in particular,
these simple schemes lead to an average error of ∼0.3 eV for
the ionization energies and 0.1–0.2 eV for the band gaps.

Our paper is organized as follows. In Sec. II, we briefly
describe our implementation of the GW formalism within a
Gaussian basis, including details about the evaluation of the
Coulomb matrix elements. In Sec. III, our results for the ioniza-
tion energy and HOMO-LUMO gap of selected molecules are
presented and compared to existing experimental results. The
importance of a simple self-consistency on the eigenvalues
is discussed. Section IV describes a simplified non-self-
consistent approach based on an approximate perturbative
Hartree-Fock starting point for building the Green’s function
and screened Coulomb potential. We conclude in Sec. V.

II. METHODOLOGY

Our code is based on a Gaussian-basis implementation of
the GW formalism and builds on a previous implementation
of calculating the inverse dielectric matrix using numerical

strictly localized orbitals.29 To avoid dealing with a numerical
basis, this implementation now expands the needed two-point
operators (bare and screened Coulomb potentials, susceptibil-
ities, etc.) on an “auxiliary” Gaussian basis composed of one-
center atomiclike orbitals, with real spherical harmonics for the
angular part and a radial dependence composed of Gaussian
functions. The use of such an auxiliary basis, commonly
implemented in several DFT quantum chemistry codes to
express the charge density for ground- or excited-state30

calculations, allows us to greatly speed up the evaluation of,
e.g., the Coulomb matrix elements. We discuss these points in
the following subsections.

A. General formalism

With the notations of Ref. 31, we introduce for any two-
point function f (r,r′) the 〈f 〉 and [f ] matrices in the auxiliary
basis related through

[f ]μ,ν =
∫ ∫

dr dr′ μ∗(r)f (r,r′)ν(r′),〈f 〉 = S〈f 〉S,

f (r,r′) =
∑
μ,ν

μ(r)〈f 〉μ,νν
∗(r′),

where μ and ν are elements of the basis and S is the
overlap matrix. The standard Dyson equation relating the
dynamically screened Coulomb potential W (ω) to the bare
Coulomb potential (v) can then be written as

〈W (ω)〉 = 〈v〉 + 〈v〉[χ0(ω)]〈W (ω)〉
with χ0 the unscreened (free-electron) susceptibility

[χ0(ω)]μ,ν =
∑
spins

occ∑
i

unocc∑
j

〈φi |μ|φj 〉〈φj |ν|φi〉

×
(

1

ω + εi − εj + iδ
− 1

ω − εi + εj − iδ

)
,
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where δ = 0+. The input (φi,εi) are one-body eigenstates
and related eigenvalues traditionally taken as the Kohn-Sham
solutions of a ground-state DFT calculation. In this paper,
we start with a standard DFT local density approximation
(LDA) calculation but, as discussed in the following, this may
not constitute the best starting point for molecular systems.
The knowledge of the dynamical screened Coulomb potential
W (ω) allows us to build the nonlocal and energy-dependent
self-energy operator �, which accounts for exchange and
correlation in the present quasiparticle formalism13 and reads
as

�GW (r,r′|E) = i

2π

∫
dω ei0+ωG(r,r′|E + ω)W (r,r′|ω),

G(r,r′|ω) =
∑

n

φn(r)φ∗
n(r′)/(ω − εn ± iδ),

where the time-ordered Green’s function G is again built from
the (φi,εi) eigenstates. The sign of the δ infinitesimal ensures
that the occupied (unoccupied) states correspond to poles in
the fourth (second) quadrants. Again, the choice of the “best”
input (φi,εi) for the building of G will be discussed in the
following.

This implementation is formally equivalent to that of
Ref. 31, except that we go beyond the plasmon-pole model and
proceed with the explicit calculation of the frequency integral
for the correlation part of the self-energy �GW

c = �GW − �x ,
with �x the Fock operator. We use contour deformation
techniques with an integration along the imaginary axis
complemented by the evaluation of the poles in the first and
third quadrant for states away from the band edges16,32:

�GW
c (r,r′|E) =

∑
n

φn(r)φ∗
n(r′)Vn(r,r′|E)

with, introducing W̃ = W − v, EF the Fermi level, and θ the
Heaviside step function,

Vn(r,r′|E) = W̃ (r,r′|εn − E) [θ (E − εn) − θ (EF − εn)]

−
∫ +∞

0

dω

π

E − εn

(E − εn)2 + ω2
W̃ (r,r′|iω).

A change of variable allows us to fold the smooth function
W̃ (iω) onto the finite [0,1] interval, where the Gaussian
quadrature with as little as 12 Gaussian points is sufficient
to reach convergency. An analytically integrable tail is added
(subtracted) to avoid instabilities with the integrand for ω → 0
when E → εn.

The first-order perturbation theory self-energy correction
to the DFT Kohn-Sham eigenvalues is extrapolated to the
quasiparticle energies by a Taylor expansion, namely,

εQP
n = εn + Zn〈φn|�GW (εn) − V LDA

xc |φn〉,
where Zn is the renormalization factor defined as

1/Zn = 1 − (
∂�GW/∂E

)
ε=εn

with (εn,φn) the LDA Kohn-Sham eigenvalues and eigenstates
in this case.

B. Gaussian basis

The auxiliary basis used to expand the two-point functions
reads as μ(r) = exp(−αr2)rlRm

l (r̂) with Rm
l (r̂) the real-

spherical harmonics and (r̂) the angular components of the
r vector. It is computationally more efficient to work with the
Rm

l instead of the standard Ym
l complex harmonics with the

following relation:

Rm
l (r̂) =

⎧⎪⎨
⎪⎩

[
Ym

l (r̂) + (−1)mY−m
l (r̂)

]
/
√

2 (m > 0)

Ym
l (r̂) (m = 0)[
Y−m

l (r̂) − (−1)mYm
l (r̂)

]
/
√

2 (m < 0).

The products rlRm
l (r̂) yield the standard expressions (x,

y, z, xy, yz, x2-y2, etc.) for the p, d, etc., orbitals (within
constant factors). We briefly recall that the main advantage of a
Gaussian radial part (as compared to numerical or Slater-type
orbitals) is that the product of two Gaussians centered on
atoms A and B with decay coefficients α1 and α2 yields
a Gaussian centered on C = (α1A + α2B)/(α1 + α2) with a
decay constant γ = α1α2/(α1 + α2). Further, the rlRm

l (r̂) can
easily be “shifted” from one center to another with, for the
sake of illustration,

(x − xA)(y − yA) = (x − xC)(y − yC)

+(yC − yA)(x − xC)

+(xC − xA)(y − yC) + constant,

showing that a dxy orbital centered on A can be easily expressed
as a function of (s,p) and dxy orbitals centered on C. Such trivial
expressions allow us to express multi-center overlaps in terms
of one-center integrals.

In this paper, our calculations start with a DFT calculation
of the structural and electronic properties of the molecules
of interest using the SIESTA package.33 We use a double-
ζ+polarization (DZP) basis34 and standard norm-conserving
pseudopotentials. Since the SIESTA package uses “numerical”
orbitals, we first fit the numerical radial part by up to five
contracted Gaussians35 in order to exploit the relations briefly
sketched above. As such, both the “ground-state” DFT basis
and the auxiliary basis are based on Gaussians. Beyond the
analytic character of the Gaussian basis, our choice was also
motivated by the possibility of using eigenstates generated by
standard chemistry codes with all electron approaches and/or
hybrid functionals, possibly providing for some systems a
better starting point for MBPT calculations (see discussion in
the following). We labeled our code “FIESTA” as an attempt
to extend the “SIESTA” package to excited-state properties.

Contrary to the plane-wave case, the auxiliary basis for the
two-point response functions is larger than the ground-state
basis. Following Kaczmarski and co-workers,36 we typically
adopt for the first row elements such as carbon, nitrogen, and
oxygen, four s,p,d sets of Gaussian orbitals, that is, 36 orbitals
per atom, while three s,p,d Gaussian orbitals are sufficient
for hydrogen. We show in the following that such a basis is
large enough for the studied organic systems. In the case of
sulfur, f-channel orbitals are added. With such a basis, a typical
G0W 0 calculation with full dynamics for our largest molecule
(H2TPP) can be performed within one day on a single standard
processor. Better timings and scaling may be obtained upon
implementing the recently introduced techniques allowing
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us to avoid summation over the conduction states,24,37–39 or
techniques decoupling the sum over valence and conduction
states,40 even though the number of unoccupied states is rather
limited with standard DZP or larger TZDP basis.

The choice of the “optimal” α coefficients, controlling
the localization of the basis orbitals, is a difficult question.
Auxiliary bases have been implemented in many quantum
chemistry codes in order to fit the charge density and speed up
the calculation of the Coulomb integrals. The coefficients of
the charge density on the auxiliary basis are optimized using
identity rules,41 but not the decay coefficients in the exponen-
tials. Years of expertise in the quantum chemistry community
yielded reliable auxiliary bases for the Periodic Table and
numerous tests have shown that high precision can be obtained
with such bases, provided that they are sufficiently large.

Since the auxiliary basis must project onto products of
Kohn-Sham orbitals, optimized bases for all-electron calcu-
lations can not be straightforwardly used for GW calculations
starting from ground-state calculations with pseudopotentials.
The same guiding lines, however, can be followed. We adopt,
in particular, the idea of a “tempered” basis,42–44 suggesting
that it is better to generate a chain of α parameters such that
αi+1/αi = constant, rather than spreading them uniformly
between αmin and αmax. Such a scheme hinges on the fact
that the overlap of two Gaussian orbitals is a function of their
alpha coefficient ratio and that, maintaining a constant overlap
between “adjacent” Gaussians, allows us to better span the
associated Hilbert space.44 As such, with the αmin, αmax, and
the number of Gaussian per l-channel being chosen, the other
Gaussian coefficients are automatically generated.

We adopt the basis proposed by Kaczmarski and co-
workers,36 namely Gaussians with localization parameters
of (0.2,0.5,1.25,3.2) a.u. for the (s,p,d) channels of C, O,
and N atoms, and Gaussians with α = (0.1,0.4,1.5) a.u. for
hydrogen. As shown in Table I, in the case of anthracene,
H2P porphyrin, and C60, changing the αmin and αmax values,
or increasing the number of Gaussians in the basis, does
not significantly change the results. The case of C60 shows,
however, that reducing the number of Gaussians to three
per l-channel yields a significant error on the band gap. We
will show in the following that the results obtained with this
implementation compare rather well with previous available
calculations based on another Gaussian basis, plane waves
(PWs), or a combination of Gaussians, PWs, and Wannier
functions.

TABLE I. Evolution of the ionization (IE) and band-gap energies
of selected molecules as a function of the carbon auxiliary basis,
changing the number (ng) of Gaussians per l-channel, the αmin and
αmax coefficients. Results are in eVs.

Auxiliary basis Anthracene H2P C60

ng (in αmin → αmax) IE Gap IE Gap IE Gap

3 in 0.2 → 3.2 6.83 6.02 6.49 4.67 7.21 4.08
4 in 0.2 → 3.2 6.89 6.15 6.56 4.79 7.29 4.44
5 in 0.2 → 3.2 6.86 6.14 6.52 4.76 7.30 4.37
4 in 0.15 → 3.2 6.89 6.15 6.52 4.74 7.40 4.47
5 in 0.15 → 3.2 6.82 6.06 6.56 4.77 7.29 4.36
5 in 0.15 → 3.5 6.83 6.08 6.51 4.75 7.28 4.33

We conclude this section related to the auxiliary basis
by mentioning an important numerical aspect related to the
overcompleteness of the generated nonorthogonal Gaussian
basis. While the basis on a given atom can be easily
orthogonalized using, e.g., a Gram-Schmidt procedure, the
overlap between the most diffuse orbitals on adjacent atoms
tends also to be rather large, yielding an overlap S matrix
that is “nearly singular.” Following the strategy developed in
the case of product basis,40,45 we rotate our basis to that of the
eigenvectors of the overlap S matrix from which we remove the
eigenvectors with eigenvalue smaller than typically 10−5. In
the case of the auxiliary basis, such a truncation does not reduce
significantly the size of the basis, but avoids the potential
numerical instability associated with inverting the nearly
singular S matrix and the amplification of errors associated
with the 〈v〉 = S−1[v]S−1 transformation (see above). The
cost of rotating the Coulomb and 〈φi |β|φj 〉 matrix elements
from the original one-center auxiliary basis (β) to the (filtered)
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FIG. 2. (Color online) Experimental and theoretical ionization
energies in electronvolts. Red circles: experimental values; light blue
triangles up: LDA Kohn-Sham HOMO energy; green squares: non-
self-consistent G0W 0(LDA) value; black diamonds: GW value with
self-consistency on the eigenvalues; green stars: non self-consistent
G0W 0(HFdiag) (see text). The black dashed line is a least-squares fit
of the GW results. The figure has been formatted so as to preserve
the same physical scale on both axes.
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TABLE II. Ionization energies in eV as obtained from the Kohn-Sham eigenvalues (LDA-KS), from non-self-consistent G0W 0(LDA)
calculations, from a GW calculation with self-consistency on the eigenvalues (GW ), and from a non-self-consistent G0W 0 calculation starting
from Hartree-Fock-like eigenvalues [G0W 0(HFdiag), see text]. MAE is the absolute mean error in eV. The average error in percent as compared
to the experiment is indicated in parentheses.

Ionization energy

LDA-KS G0W 0(LDA) GW G0W 0(HFdiag) Experiment

Anthracene 5.47 6.89 7.06 7.03 7.4a

Tetracene 5.15 6.37 6.51 6.48 6.97a

Pentacene 4.94 5.98 6.12 6.08 6.6a

C60 6.37 7.28 7.41 7.41 7.6a

PTCDA 6.65 7.57 7.68 7.67 8.2b

H2P 5.64 6.55 6.70 6.72 6.9a

H2TPP 5.40 6.09 6.20 6.24 6.4a

H2Pc 5.56 6.08 6.10 5.93 6.4c

Thiophene 6.15 8.37 8.63 8.64 8.85a

Fluorene 5.92 7.44 7.64 7.64 7.9a

Benzothiazole 6.33 8.20 8.48 8.50 8.8a

Thiadiazole 7.22 9.65 9.89 9.90 10.1d

Benzothiadiazole 6.55 8.31 8.56 8.57 9.0a

MAE 1.83(23%) 0.47(6%) 0.30(3.8%) 0.31(4.0%)

aReference 48.
bReference 21.
cReference 49.
dReference 50.

S eigenvectors basis scales as N3 and represents a marginal
part of the CPU time.

C. Coulomb matrix elements

An important ingredient is the evaluation of the Coulomb
matrix elements between two auxiliary basis orbitals localized
on two different atoms. Exploiting the properties of the Fourier
transform (FT) of Gaussian-based orbitals, namely,

FT
[
e−αr2

rlRm
l (r̂)

] = Ce−γ q2
qlRm

l (q̂) (1)

with γ = 1/4α and (r̂ ,q̂) the angular components of the (r,q)
vectors in direct and reciprocal space, respectively (C is a
constant), the Coulomb matrix elements reduce to a sum
of terms built from the product of one-center overlaps of
three real-spherical harmonics 〈Rm

l Rm′
l′ |RM

L 〉 [related to Gaunt
coefficients with |l − l′| � L � (l + l′)] times radial integrals
I (l,l′; L) of the form

I (l,l′; L) =
∫ ∞

0
dq e−ζq2

qμJν(−βq2).

The 〈Rm
l Rm′

l′ |RM
L 〉 factors are pretabulated. The oscillatory

behavior of the Bessel function of the first kind Jν makes
the direct numerical evaluation rather unstable. We prefer to
notice that I (l,l′; L) is straightforwardly related to the 1F1

confluent hypergeometric functions,46 which, for the needed
(l,l′) values, can be expressed in terms of simple functions such
as the error function (erf) or the Dawson integral F (z) = √

π

exp(−z2) erfi(z)/2, with erfi(z) = erf(iz)/i, for which rapidly
convergent serial expressions exist.47 This is an important
advantage of the auxiliary-basis approach that the evaluation
of the off-site Coulomb matrix elements is not a costly part of
the present GW implementation.

III. RESULTS

A. Ionization energies

We start by exploring the ionization energy of our selected
molecules. While experimental data for the electronic affinity
of molecules in the gas phase are scarce, accurate measured
ionization energies are much more common.48 Experimental
ionization energies are represented by red circles in Fig. 2
and are given in the last column of Table II. The DFT-LDA
ionization energies, as obtained from the opposite sign of
the Kohn-Sham highest occupied (HOMO) energy level, are
clearly much too small, with an average error of 1.83 eV or
23% (see blue triangles in Fig. 2). Very similar results are
obtained using the HOMO energy value as obtained with a
semilocal functional such as PBE.51

We now turn to G0W 0(LDA) calculations, that is, non-
self-consistent calculations with the Green’s function and
screened Coulomb potential directly built from the LDA
Kohn-Sham eigenstates and eigenvalues. The analysis of the
results (column 3 in Table I and green squares in Fig. 2)
shows that the ionization energies are greatly improved, with
an average error of 0.47 eV, that is, a much reduced 6% error.

Even though they are in much better agreement with
experiment than LDA or PBE, the discrepancies are still
sizable. As shown in the following, part of the problem
originates in that the “starting” LDA HOMO-LUMO gap
is dramatically too small for isolated molecules, inducing a
large overscreening.52 To avoid using some arbitrary scissor
operator to open the HOMO-LUMO gap in calculating the
susceptibility, we instead perform a restricted self-consistency
by reinjecting the corrected eigenvalues in G and W up to
convergency. As a matter of fact, no more than three or four
iterations are needed to reach convergency within 0.01 eV.
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Such an approximation is labeled as GW in the following. This
is not a full self-consistent approach, as the eigenstates are not
updated, with the advantage that it keeps the computational
costs reasonable.

The analysis of the results (fourth column in Table II
and black diamonds in Fig. 2) clearly shows that the self-
consistency on the eigenvalues improves the results for the
ionization energy, reducing the average error from 0.47 eV
(6%) to 0.30 eV (or 3.8%). Such a discrepancy is still sizable,
but much better than that obtained from the LDA Kohn-Sham
HOMO energy. An interesting observation is that the final
GW ionization energies gather much closer to a straight line
(dotted black line on Fig. 2) parallel to the first diagonal (red
“experimental” line) than the LDA data, which are much more
spread. From a pragmatical point of view, this means that
the band offset between two molecules will strongly benefit
from cancellation of errors in GW as compared to LDA. In
particular, the remaining error (∼0.2 eV) on the ionization
energy for C60, the most standard acceptor, is nearly identical
to the error on the ionization energies of porphyrins and
phtalocyanines, which are commonly used donors. We now
show that self-consistency, even though limited to updating the
eigenvalues only, has an even larger effect on the magnitude
of the HOMO-LUMO gaps.

B. HOMO-LUMO gaps

Due to the lack of experimental values for the electronic
affinity, experimental quasiparticle HOMO-LUMO gaps (red
circles in Fig. 3) are scarce, so we plot our results as a function
of our “best” calculated HOMO-LUMO gaps, namely, the
GW ones. In the case of C60, anthracene, tetracene, and
pentacene, for which experimental data are available, we
observe as expected that the LDA HOMO-LUMO gap (blue
triangles) is too small. This is well known in the case of bulk
semiconductors, but here the discrepancy is much larger, with
an average error of ∼4.1 eV or 71%.

The G0W 0(LDA) HOMO-LUMO gaps (green squares)
significantly improve with respect to LDA. Comparing
to available G0W 0(LDA) data for this class of aromatic
molecules, our calculated 6.15 eV HOMO-LUMO gap for
anthracene compares well with the 5.97 eV values of Niehaus
and co-workers, despite the differences in basis and the
treatment of dynamical effects.53 Our G0W 0(LDA) 4.79 and
4.23 eV HOMO-LUMO gaps for the H2P and H2TPP free-
base porphyrins, respectively, compare well with the 5 and
4.39 eV plane-wave results of Palummo and co-workers.23

Similarly, our G0W 0(LDA) 4.44 eV band gap for C60 is
in good agreement with the real-space grid formulation of
Tiago and co-workers,22 yielding a band gap of 4.36 eV.
Such comparisons certainly underline the reliability of our
Gaussian-basis implementation. Our 4.53 eV band gap for
PTCDA is, however, smaller than the 4.9 eV band gap found
with a previous plane-wave GW calculation.21,58,61

Overall, we remark on a systematic underestimation of
the G0W 0(LDA) HOMO-LUMO gap with respect to the
experiment, with an average error for our test molecules
of ∼0.75 eV or 13%. This contrasts with the case of bulk
systems for which the results of G0W 0(LDA) are generally
in much better agreement with experimental values. Such

a behavior can be analyzed by noticing that building the
polarizabilities and screened Coulomb potential with LDA
eigenvalues leads to a significant overscreening.52 This induces
too large a correlation correction G(W − V C) to the Hartree-
Fock HOMO-LUMO gap.

Even though it is much better than the Kohn-Sham HOMO-
LUMO gap obtained with, e.g., the B3LYP functional54 (see
empty down triangles in Fig. 3), it is desirable to improve
the results. Following the simple scheme introduced above,
performing self-consistency on the eigenvalues in G and W ,
the GW HOMO-LUMO gap is further increased to reach
much better agreement with experiment. The MAE is now
reduced to 0.22 eV or 3.8% for our four test molecules. In the
case of C60, which is the most standard acceptor in organic
photovoltaic cells, the excellent agreement with experiment
for the band-gap value is rather satisfactory. It is interesting to
note further that the MAE of 0.22 eV for HOMO-LUMO gaps
is close to the 0.3 eV MAE obtained for the ionization energies,
suggesting that the electronic affinity is quite well reproduced
on average.
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TABLE III. HOMO-LUMO gap in eV as obtained from the Kohn-Sham eigenvalues (LDA-KS), non-self-consistent G0W 0(LDA)
calculations, a GW calculation with self-consistency on the eigenvalues (GW ), and a non-self-consistent G0W 0 calculation starting from
Hartree-Fock-like eigenvalues [G0W 0(HFdiag), see text]. MAE is the absolute mean error in eV for the anthracene, tetracene, pentacene, and
C60 cases for which experimental band-gap data are available. The average error in percent as compared to the experiment is indicated in
parentheses.

HOMO-LUMO gap

LDA-KS G0W 0(LDA) GW G0W 0(HFdiag) Experiment

Anthracene 2.25 6.15 6.74 6.86 6.9a

Tetracene 1.57 5.03 5.58 5.69 5.9a

Pentacene 1.10 4.21 4.76 4.86 5.2a

C60 1.58 4.44 4.91 5.08 4.9a

MAE 4.10 (71%) 0.76 (13%) 0.22 (3.8%) 0.10 (2%)

PTCDA 1.52 4.53 5.0 5.11
H2P 1.94 4.79 5.31 5.44
H2TPP 1.82 4.23 4.71 4.91
H2Pc 1.42 3.67 4.03 4.12
Thiophene 4.49 9.93 10.61 10.71
Fluorene 3.59 7.72 8.38 8.54
Benzothiazole 3.85 8.62 9.40 9.56
Thiadiazole 4.29 10.19 10.81 10.89
Benzothiadiazole 2.94 7.52 8.14 8.23

aReference 48.

IV. A SIMPLE NON-SELF-CONSISTENT G0W 0 APPROACH
BASED ON HARTREE-FOCK-LIKE EIGENVALUES

We conclude this study by exploring a simple non-self-
consistent G0W 0 scheme starting from an “ansatz” Hartree-
Fock (HF) calculation obtained by removing the exchange-
correlation contribution to the LDA eigenvalues and adding
the diagonal part of the exchange operator in the LDA basis,
namely,

εHF
n = εLDA

n + 〈
φLDA

n

∣∣�x − V LDA
xc

∣∣φLDA
n

〉
,

where �x and V LDA
xc are the Fock and (semi)local exchange-

correlation operators. We label this very simple scheme
G0W 0(HFdiag). This approximation was tested by Hahn,
Schmidt, and Bechstedt62 in the case of three small molecules
(silane, disilane, and water), arguing as we do that the Kohn-
Sham eigenvalues are not a good starting point to evaluate
the time-ordered Green’s function and the screened potential.
Such an approach is also a variation on the G0W 0(HF)
scheme recently introduced in Ref. 52, which was shown
to yield the best ionization energies for small molecules.
With increasing size and number of electrons, the role of
correlations in the self-energy is expected to become more
important; using Hartree-Fock eigenstates (eigenvalues) as
a starting point for the much larger systems we study may,
in principle, not be better than using (semi)local functionals
for generating the starting eigenstates. This is what we now
explore.

For the sake of comparison, we have studied the two small
carbon-based conjugated molecules C2H2 and C2H4, which
were investigated by Rostgaard and co-workers within their
full G0W0(HF) scheme. The present G0W 0(HFdiag) treatment
increases the ionization energy by 3.48 and 3.80 eV for C2H4

and C2H2, respectively, as compared to the LDA values. Such
corrections compare well with the 3.61 and 3.90 eV values
obtained within the full G0W0(HF) scheme of Rostgaard
and co-workers (as compared to DFT/PBE), emphasizing the
reliability of this simplified approximation.

As compiled in Tables II and III (column 5) and in Figs. 2
and 3 (green stars), we do find as well that a single shot
G0W 0(HFdiag) calculation provides results that are in good
agreement with the full GW calculations with self-consistency
on the eigenvalues. In particular, the G0W 0(HFdiag) cal-
culations yield much better results than the G0W 0(LDA)
scheme. Such a conclusion agrees with that of Rostgaard and
co-workers, concluding that, for small isolated molecules,
the full G0W 0(HF) scheme actually outperforms a full
self-consistent GW calculation where both eigenstates and
eigenvalues are updated.52

Within the present G0W 0(HFdiag) approach, the MAE on
the ionization energies as compared to experiment is 0.31 eV,
in good agreement with the 0.4 eV result of Ref. 52 for
small molecules. Such an agreement indicates that the present
G0W 0(HFdiag) implementation captures most of the features
of a full G0W0(HF) approach, suggesting that LDA and
HF eigenfunctions may not be too different for this set of
molecules, a conclusion often discussed in the literature.
Further, the error on the band gap, averaged on the calculated
values for anthracene, tetracene, pentacene, and C60, for which
precise experimental data are available, is found to be as
small as 0.1 eV (2% error). Such values compare very well
with accurate quantum chemistry calculations with a scheme,
the GW formalism, which can be applied both to finite-size
and extended systems, and allows us to obtain not only
the band edges, or frontier orbitals, but also the full quasi-
particle spectrum (see Ref. 61).
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V. CONCLUSIONS

We have explored the performances of several GW ap-
proximations for the calculation of the ionization energy and
HOMO-LUMO gap of 13 “large” molecules of interest for
photovoltaic applications, including C60, free-base porphyrins
and phtalocyanine, PTCDA, and standard donor monomers
such as thiophene. Our calculations are based on a Gaussian-
basis implementation with full dynamical effects through
contour deformation techniques. Due to the dramatic error
on the HOMO-LUMO gaps obtained with (semi)local func-
tionals, we find that the standard non-self-consistent G0W 0

calculations based on input LDA eigenstates perform rather
poorly, in particular in evaluating the HOMO-LUMO gaps.
A simple self-consistency on the eigenvalues used to build
G and W provides much better results. As an even simpler
scheme, a non-self-consistent G0W 0(HFdiag) starting from
Hartre-Fock-like eigenvalues provides equivalent results. Both
the GW and G0W 0(HFdiag) approaches provide ionization
energies with a mean average error within ∼0.3 eV (∼4%)
of the experiment. Concerning the HOMO-LUMO gaps, with
a limited number of experimental data, the same GW and
G0W 0(HFdiag) approaches yield a mean average error of
0.1–0.2 eV (2%–4%), in much better agreement than the 4.1 eV
(71%) error within DFT/LDA, but also in significantly better
agreement than the 0.76 eV (13%) error within the “standard”
G0W 0(LDA) approach. The possibility of performing GW

calculations for molecules comprising several dozens of atoms
with reasonable computer time and accuracy, with a scheme
allowing us to obtain the full quasiparticle spectrum of
both finite-size and extended systems, opens the way to the
investigation of organic photovoltaic systems with techniques
that may possibly compete with well-established quantum
chemical approaches.

Note added in Proof: In a recent work, G0W0(LDA)
calculations for anthracene, starting from similar SIESTA LDA
eigenstates, but with the full product-basis for describing the
two point operators within the GW scheme, yield an ionization
energy and band gap in excellent agreement with our own
results. See: D. Foerster, P. Koval, and D. Sánchez-Portal,
cond-mat, arXiv:1101.2065.
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