%% ****** Start of file auguide.tex ****** % %% %% This file is part of the AIP distribution of substyles for REVTeX 4.1 %% For version 4.1r of REVTeX, August 2010 %% %% Copyright (c) 2009,2010 American Institute of Physics %% %\listfiles \documentclass[ reprint, amssymb, amsmath, aip,jcp ]{revtex4-1} \usepackage{comment} \usepackage{dcolumn} %\usepackage{docs}% %\usepackage{bm}% \usepackage[colorlinks=true,linkcolor=blue]{hyperref}% \expandafter\ifx\csname package@font\endcsname\relax\else \expandafter\expandafter \expandafter\usepackage \expandafter\expandafter \expandafter{\csname package@font\endcsname}% \fi \hyphenation{title} \usepackage{xspace} \usepackage{graphicx} %\usepackage{subfig} \usepackage[version=3]{mhchem} \parskip=0.1in \usepackage{amsmath} \usepackage[normalem]{ulem} \usepackage[utf8]{inputenc} %Macros: \newcommand{\basis}[0]{\mathcal{B}} \newcommand{\efuncbasispbe}[0]{\bar{E}_{\text{srPBE}}^{\basis}[n]} \newcommand{\epspbeueg}[0]{\bar{\varepsilon}^{\text{sr},\text{PBE}}_{\text{c,md}}} \newcommand{\epspbe}[0]{\varepsilon^{\text{PBE}}_{\text{c}}} \newcommand{\potpbeueg}[0]{\bar{v}_{\text{srPBE}}^{\basis}} \newcommand{\potpbe}[0]{v^{\text{PBE}}_{\text{c}}} \setcounter{secnumdepth}{4} \begin{document} \section{PBE-based complementary potential $\potpbeueg$} The PBE-based multideterminant short-range correlation complementary density functional used in this paper is the one presented in Ref.~\onlinecite{LooPraSce} and which is defined with the following equation: \begin{equation} \label{eq:def_pbe} \efuncbasispbe = \int \, \text{d}{\bf r} \,\,n({\bf r})\epspbeueg(n({\bf r}),s({\bf r}),\mu^{\basis}({\bf r})), \end{equation} with, \begin{equation} \label{eq:def_epsipbeueg} \epspbeueg(n,s,\mu) = \frac{\epspbe(n,s)}{1+\beta(n,s)\mu^3}, \end{equation} where $\epspbe$ is the usual PBE correlation functional~\cite{pbe}, $s({\bf r})=\nabla n({\bf r})/n({\bf r})^{4/3}$ is the reduced density gradient, \begin{equation} \beta(n,s) = \frac{3}{2\sqrt{\pi}(1-\sqrt{2})}\frac{\epspbe(n,s)}{n_2^{\text{UEG}}(n)/n}, \end{equation} and where \begin{equation} \label{eq:uegotop} n_2^{\text{UEG}}(n)=n^2(1-\xi^2)g_0(r_s), \end{equation} is the on-top pair density of the uniform electron gas. In eq.~\ref{eq:uegotop}, $\xi=(n_{\uparrow}-n_{\downarrow})/n$ is the spin polarisation,$r_s=(\frac{4\pi n}{3})^{-1/3}$ the Wigner-Seitz radius and $g_0(r_s)$ is the UEG on-top pair-distribution function. The parametrization used in this paper for this last function is detailed in eq.46 of Ref.~\onlinecite{GorSav2006}. In the present investigation, we have only studied close shell cases for which $n_{\uparrow} = n_{\downarrow}$, which implies that $\xi = 0$. The on-top pair density of the uniform electron gas can thus be rewritten: \begin{equation} \label{eq:uegotop2} n_2^{\text{UEG}}(n)=n^2 g_0(r_s). \end{equation} The potential of this GGA-based functional has the following form: \begin{equation} \begin{aligned} & \potpbeueg[n]({\bf r},\mu) = \frac{\delta \efuncbasispbe}{\delta n({\bf r})} \\ & = \frac{\partial n \epspbeueg }{\partial n}- \nabla . \frac{\partial n \epspbeueg }{\partial \nabla n}\\ & =\epspbeueg +n\frac{\partial \epspbeueg }{\partial n}- \nabla . n\frac{\partial \epspbeueg }{\partial \nabla n}. \end{aligned} \end{equation} So we have to compute two main contributions, the scalar part $\frac{\partial \epspbeueg }{\partial n}$ and the gradient part $\frac{\partial \epspbeueg }{\partial \nabla n}$. $\bullet$ For the scalar contribution, we simply derived eq.~\ref{eq:def_epsipbeueg} with respect to the density: \begin{equation} \frac{\partial \epspbeueg }{\partial n}=\frac{\potpbe(1+\beta \mu^3)-\epspbe \frac{\partial\beta}{\partial n}\mu^3}{(1+\beta\mu^3)^2}, \end{equation} Where \begin{equation} \potpbe[n]({\bf r}) =\frac{\partial\epspbe}{\partial n} \end{equation} and \begin{equation} \frac{\partial \beta}{\partial n}=\frac{3}{2\sqrt{\pi}(1-\sqrt{2})}\frac{\potpbe (n_2^{\text{UEG}}/n)-\epspbe \frac{\partial n_2^{\text{UEG}}/n}{\partial n}}{(n_2^{\text{UEG}}/n)^2}. \end{equation} The only remaining part is the derivative of $n_2^{\text{UEG}}/n$ with respect to the density: \begin{equation} \frac{\partial n_2^{\text{UEG}}/n}{\partial n} = \frac{\partial n g_0(r_s)}{\partial n} = g_0(r_s)+ n\frac{\partial g_0(r_s)}{\partial n}. \end{equation} To compute $\frac{\partial g_0(r_s)}{\partial n}$, we used the chain rule: \begin{equation} \frac{\partial g_0(r_s)}{\partial n} = \frac{\partial g_0(r_s)}{\partial r_s}\frac{\partial r_s}{\partial n}. \end{equation} The derivative with respect to $r_s$ can be express: \begin{equation} \begin{aligned} &\frac{\partial g_0(r_s)}{\partial r_s} = \\ & 0.5e^{-F_{g_0}*r_s} ( (-B_{g_0}+2C_{g_0}r_s+3D_{g_0}*r_s^2+4E_{g_0}r_s^3) \\ & -(F_{g_0}(1 - B_{g_0}r_s + C_{g_0}r_s^2 + D_{g_0}rs^3 + E_{g_0}r_s^4))), \end{aligned} \end{equation} with \begin{equation} \begin{aligned} & C_{g_0} = 0.0819306, \\ & F_{g_0} = 0.752411, \\ & D_{g_0} = -0.0127713,\\ & E_{g_0} =0.00185898,\\ & B_{g_0} = 0.7317 - F_{g_0}. \end{aligned} \end{equation} And finally the derivative of $r_s$ with respect to $n$ is equal to: \begin{equation} \frac{\partial g_0(r_s)}{\partial n} = -(6^{2/3}n^{4/3}\pi^{1/3})^{-1}. \end{equation} $\bullet$ For the gradient part, we also used the chain rule: \begin{equation} \frac{\partial \epspbeueg}{\partial \nabla n}=\frac{\partial \epspbeueg}{\partial \epspbe}\frac{\partial \epspbe}{\partial \nabla n}. \end{equation} $\frac{\partial \epspbe}{\partial \nabla n}$ is already known (\textbf{Quelqu'un a une ref pour ça??}), and the partial derivative of $\epspbeueg$ with respect to $\epspbe$ is trivial: \begin{equation} \frac{\partial \epspbeueg}{\partial \epspbe}= \frac{(1+\beta \mu^3)-\epspbe \frac{\partial\beta}{\partial \epspbe}\mu^3}{(1+\beta\mu^3)^2} \end{equation} where \begin{equation} \frac{\partial \beta}{\partial \epspbe}= \frac{3}{2\sqrt{\pi}(1-\sqrt{2})}\frac{1}{n_2^{\text{UEG}}/n}. \end{equation} \bibliography{paper} \end{document}