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With the aim of properly understanding the basis for and the utility of many-body perturbation theory as
applied to extended metallic systems, we have calculated the electronic self-energy of the homogeneous
electron gas within the GW approximation. The calculation has been carried out in a self-consistent way; i.e.,
the one-electron Green function obtained from Dyson’s equation is the same as that used to calculate the
self-energy. The self-consistency is restricted in the sense that the screened interaction W is kept fixed and
equal to that of the random-phase approximation for the gas. We have found that the final results are margin-
ally affected by the broadening of the quasiparticles, and that their self-consistent energies are still close to
their free-electron counterparts as they are in non-self-consistent calculations. The reduction in strength of the
quasiparticles and the development of satellite structure ~plasmons! gives, however, a markedly smaller dy-
namical self-energy leading to, e.g., a smaller reduction in the quasiparticle strength as compared to non-self-
consistent results. The relatively bad description of plasmon structure within the non-self-consistent GW
approximation is marginally improved. A first attempt at including W in the self-consistency cycle leads to an
even broader and structureless satellite spectrum in disagreement with experiment. @S0163-1829~96!05136-3#

I. INTRODUCTION

In the late 1950s the techniques of field theory and many-
body perturbation theory ~MBPT! were incorporated into the
tool box of solid-state theory. After an enthusiastic period in
the beginning of the 1960s, when a lot of fundamental theo-
rems were proven and some numerical results were obtained
for a few systems, especially for the electron gas, the activity
within this area of research showed a marked decline. This
was certainly not caused by a widespread feeling that most
important problems were already solved, although remarks
to that effect can nowadays be found in the literature. Instead
there were two obvious reasons for the diminishing interest
in many-body perturbation theory as applied to real solids.
The numerical difficulties associated with evaluating any-
thing but the most simpleminded approximations in real sol-
ids were prohibitively large. Second, the original enthusiasm
was damped by the realization that, at least in highly degen-
erate metallic systems, one is dealing with a divergent per-
turbation series. Thus the choice of physical processes or
diagrams to include in a particular approximation must be
guided by physical insight and intuition. There is thus no
systematic way of obtaining successively better approxima-
tions.
Armed with modern computers and with a better knowl-

edge on how to describe the underlying one-electron struc-
ture in a very efficient way, we are now able to apply more
complicated and therefore more realistic approximations
within MBPT to real solids. These efforts are exemplified by
the so called GW calculations for different
semi-conductors,1–3 and for the transition metals4–6 and their
oxides.7
The GW approximation8 owes its name to the fact that it

is defined by approximating the electronic self-energy as a
product of the Green function G and the screened interaction

W . In this way one obtains one of the simplest possible ex-
tensions of Hartree-Fock theory by replacing the bare Cou-
lomb interaction by a dynamically screened interaction
(W). Thus the GW approximation could equally well have
been referred to as the dynamically screened exchange ap-
proximation. The GW approximation has a number of desir-
able physical properties in most physical systems ranging
from atoms to the electron gas. For a review of these we
refer to Ref. 9. For one thing, the GW approximation gives a
very accurate description of the quasiparticles in all systems
to which it has been applied. It is important to stress, how-
ever, that these nice features are not consequences of the GW
approximation being the lowest-order correction in a rapidly
convergent perturbation expansion starting from the
independent-particle approximation. On the contrary, it has
proven exceedingly difficult to go beyond the GW approxi-
mation, and results most often deteriorate by adding higher-
order corrections.
In the original formulation of the GW approximation,8 the

Green function used to generate the electronic self-energy
within the GW approximation, was the Green function ob-
tained from Dyson’s equation in which the same self-energy
appeared as a nonlocal energy dependent potential. The self-
consistency implied by this prescription has never been at-
tempted in any realistic system — not even in the electron
gas. As far as we know, the first fully self-consistent GW
calculation was recently carried out for a model system con-
sisting of a quasi-one-dimensional semiconducting wire.10
Unfortunately, the relevance of this model to actual solids is
somewhat unclear.10 Nevertheless, it was shown early on11,12
that such a self-consistent scheme results in a so-called con-
serving approximation which automatically obeys several
sum rules and consistency requirements like, e.g., particle
conservation and energy conservation under the influence of
external perturbations. Moreover, it has been demonstrated,
e.g., in NiO,7 that the effect of self-consistency can be large

PHYSICAL REVIEW B 15 SEPTEMBER 1996-IIVOLUME 54, NUMBER 12

540163-1829/96/54~12!/8411~9!/$10.00 8411 © 1996 The American Physical Society



in strongly correlated systems and possibly also in systems
with weaker correlation effects.
Comparing the starting Green function — usually chosen

to be that obtained from a self-consistent local-density ~LD!

calculation — with the Green function obtained after one
iteration toward self-consistency ~i.e., what has been
achieved so far in solids!, one can distinguish four major
effects of self-consistency. ~i! The quasiparticles are broad-
ened, indicating their finite lifetime. ~ii! The quasiparticle
energies are shifted. ~iii! The strength of the quasi-particle
peak is significantly reduced ~typically by one third!, and the
spectral weight is transferred to different system dependent
satellite structures. ~iv! The average screening properties of
the medium is altered due to an interacting Green function
appearing in the dynamically screened interaction (W). It is
not difficult to realize that a marked reduction in quasiparti-
cle weight could easily lead to a significantly smaller self-
energy. In this way, the nice agreement obtained between
theory and experiment for, e.g., the band gaps of semicon-
ductors or the band widths of transition metals could be de-
stroyed by self-consistency.
Being interested in understanding many-body perturba-

tion theory and in its usefulness with regard to physical prop-
erties, we believe it is important to pursue the issue of self-
consistency. Our ultimate aim is a study of the effects of
self-consistency in strongly correlated systems. In view of
the extent of such a project and because of the numerical
difficulties associated with it, we decided to gain some pre-
liminary insight through numerical calculations for the elec-
tron gas. In this way, we could study the four separate effects
discussed above. Our preliminary results indicate that the
largest effect of self-consistency is associated with a modifi-
cation of the screening effects. Instead of distinct plasmon
satellites, the results show a broad structureless satellite
spectrum, in clear contradiction with experimental data.
These results suggest that non-self-consistent self-energies
are to be preferred. Before pursuing full self-consistency any
further, we decided, however, to carry out a restricted self-
consistency, keeping the screened interaction fixed in the
process. Such a limited self-consistency is what presently
might be within our computational feasibility in realistic sys-
tems. The converged results of this paper are thus obtained
by, as our fixed W5W0 , using that of the random-phase
approximation ~RPA! based on the noninteracting Green
function. In this way, we can study the three effects ~i!–~iii!
discussed above, but not the fourth effect. This will be post-
poned until a later publication.
In Sec. II we recapitulate some basic results of MBPT,

and present those basic ideas which make self-consistent
GW calculations a relatively straightforward procedure, at
least for the electron gas. In Sec. III we present a useful sum
rule valid within all GW-type procedures, and discuss some
numerical details. Our results are discussed in Sec. IV, and
our conclusions are summarized in Sec. VI. Some prelimi-
nary results of forthcoming work on including the screening
effects in the self-consistency procedure are discussed in
Sec. V.

II. THEORY AND BASIC PROCEDURES

In performing a self-consistent calculation for the elec-
tronic self-energy or, which amounts to the same thing, for

the one-electron Green function G , one must evidently save
some representation of, i.e., G from one iteration to the next.
This is assuming the self-consistency problem can be solved
by an iterative procedure, which actually turns out to be the
case. As a minimal and convenient representation for G we
have chosen its spectral function A , which completely deter-
mines G through the Lehmann representation

G
~

k,v!5E
C

A
~

k,v8!

v2v8
dv8, ~1!

where C is the contour in the complex frequency plane de-
fined as a straight line from 2` to 0 just above the real axis
and another straight line from 0 to ` just below the real axis.
At this point we mention that here and throughout this paper,
the zero of energy is always chosen at the Fermi energy.
Thus all propagators, fermion or boson, interacting or non-
interacting, always change their analytic structure at v50.
We also note that, due to the full translational and rota-

tional symmetry of the homogeneous gas, the spectral func-
tion A(k,v) is diagonal in reciprocal space (k space! and
depends only on the absolute magnitude k of k. These two
features simplify the calculations in a decisive way.
Instead of representing the function A as a numerical ma-

trix in k and v , we have chosen a representation in terms of
Gaussian basis functions:

A
~

k ,v!5
(

n

W
n

~

k !

A2pG

n

~

k !

expF2
@

v2E
n

~

k !#

2

2G

n

2
~

k !

G . ~2!

Here, the quantities E
n

(k), G

n

(k), and W
n

(k) are numerical
functions of k which, in actual fact, also are easily param-
etrized in terms of relatively simple analytical formulas
which we, however, refrain from presenting here.
The representation defined by Eq. ~2! has several advan-

tages. First of all, any positive definite spectral function A
can be represented in this way to any desired degree of ac-
curacy. More importantly, already with very few terms in the
sum over n , the representation has the form one expects for
the A of an interacting system. A main quasiparticle peak
with a certain energy position and a certain broadening plus
a few sidebands corresponding to plasmon satellites are eas-
ily modeled by Eq. ~2!. The actual form of the different
peaks is easily accounted for by adding a few more Gauss-
ians. It should be kept in mind that the output for A(k ,v)
from one iteration is completely numerical. These numerical
results are then fitted to the form given by Eq. ~2!, which, in
turn, is used as input for the next iteration. It turns out that,
when approaching self-consistency, the details of the shape
of the input A have a very small effect on the output A as
long as the main physical effects are correctly described.
This means, e.g., that the output A is very insensitive to the
detailed shape of the plasmon satellites as long as their
weights and positions are correct, and the same is true for the
dominant quasiparticle peak. Numerically, we have found
that, e.g., quasiparticle energies or renormalization factors
are converged to within two significant digits using only
three terms in Eq. ~2!. For the final converged results, we
have used five terms in Eq. ~2!.
Let us now go to a description of the screened interaction

W0(q,v), which, in the present work, is obtained from the
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RPA and thus simply related to the bare Coulomb interaction
v(q)54p/q2 and the frequency-dependent Lindhart func-
tion x0(q ,v) ~see Ref. 9! ~again due to symmetry, W is a
function only of the magnitude q of q),

W0~q ,v!5v~

q !1v~

q !x0~q ,v!W0~q ,v!. ~3!

In order to facilitate the calculations we also need the spec-
tral function B(q ,v) of W defined in the usual way @see Eq.
~1!#,

W0~q ,v!5v~

q !1E
C

B0~q ,v8!

v2v8
dv8, ~4!

where

B0~q ,v!52
1
p

v2~q ! Imx 0~q ,v !

u 1 2 v~

q !x 0~q ,v ! u 2sgn~v!. ~5!

The real and imaginary parts of x0(q ,v) are simple analyti-
cal expressions in q and v which, however, we refrain from
giving here.
We now remind the reader that the GW approximation is

defined8 by the following approximation for the self-energy
S(k,v):

S

~

k,v!5i
(

q
E dv8
2p

G
~

k1q,v1v8!W0~q,v8!, ~6!

where (q is short for (2p)23
*d3q . It is well known @it

follows directly from Eq. ~6!# that the self-energy of the GW
approximation has the correct analytic properties of a ferm-
ion propagator, and consequently has a Lehmann representa-
tion of the form

S

~

k,v!5SHF~k!1E
C

G

~

k,v8!

v2v8
dv8 ~7!

in terms of a positive definite spectral function G(k,v). The
high-frequency limit SHF(k) of S is the energy-independent
Hartree-Fock part of the self-energy given by the usual ex-
pression

SHF~k!52
(

q
v~

k1q!nq, ~8!

where, however, the momentum distribution nk is that of the
interacting gas within this approximation. Thus,

nk5E
2`

0
A

~

k,v!dv . ~9!

Combining the three spectral representations, Eqs. ~1!, ~4!,
and ~7!, with the definition, Eq. ~6!, of the GW approxima-
tion we obtain the following relation between the three spec-
tral functions A , B0, and G:

G

~

k,v!5
(

q
E
0

v

A
~

k1q,v2v8!B0~q,v8!dv8. ~10!

Since B0 remains fixed during the calculation, a knowledge
of A suffices to determine G and therefore S through Eq. ~7!.

In order to close the self-consistency cycle we need to con-
nect S to A or, equivalently, to G , and for this purpose we
have Dyson’s equation

G
~

k,v!5G0~k,v!1G0~k,v!S~

k,v!G~

k,v!. ~11!
Here the free-electron Green function G0(k,v) is simply
given by

G0~k ,v!5
1

v2ek
, ~12!

with ek being equal to k2/2. We note in passing that Dyson’s
equation results from an infinite partial summation of Feyn-
man graphs.
At this point we remind the reader that, in the present

work, we consider shifted correlation functions where
v50 corresponds to the Fermi energy m . Thus, ek5k2/2 in
Eq. ~12! needs to be shifted to ek5k2/22m . Now, by defi-
nition, m is the position of the pole of the Green function at
the Fermi momentum kF and, consequently, from Dyson’s
equation above:

m5eF1S̃

~

kF ,m!. ~13!

Here S̃(v) represents the ‘‘normal’’ unshifted self-energy,
i.e., S̃(v)5S(v2m) in terms of our shifted self-energy
S . The Fermi momentum kF is given by the usual expression
kF5(3p

2n)1/3, n being the density of the gas, and eF the
Fermi energy of free electrons, i.e., eF5kF

2 /2. Thus, in total,
ek in Eq. ~12! should be

ek5
1
2 k22 1

2 kF
22S

~

kF,0!. ~14!
Finally, using the Lehman representation for the Green func-
tion, Eq. ~1!, and for the self-energy, Eq. ~7!, and taking
imaginary parts of both sides of Dyson’s equation, Eq. ~11!,
we arrive at

A
~

k ,v!5
G

~

k ,v!

uv2ek2S

~

k ,v!u2 . ~15!

This is the desired relation that closes our self-consistency
cycle.
Using the formulas presented above, our calculational

procedure is easily described as follows. We start from some
guessed representation of A in terms of Eq. ~2!. In order to
make contact with previous work on the electron gas,13–16
we usually start with a noninteracting A given by G0 of Eq.
~12!. For each k , we then obtain G from Eq. ~10!, and sub-
sequently A from Eq. ~15!. This purely numerical result for
A is then refitted to the form in Eq. ~2!, and the procedure is
repeated until no further changes occur in the output A .

III. SUM RULE AND NUMERICS

In this section we will derive a useful sum rule which we
have not seen earlier in the literature, and which is generally
valid within the GW approximation whether self-consistent
or not. We will also give some details concerning our nu-
merical procedures, and describe a more accurate way of
obtaining the momentum distribution function nk , defined in
Eq. ~9!.
Due to the well-known sum rule ~see, e.g., Ref. 9!

E
2`

`

A
~

k,v!dv51, ~16!
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the high-frequency limit of G(v) is always 1/v . Thus by
taking the high-frequency limits of Eqs. ~6! and ~7! and
equating the coefficients of 1/v , we obtain

E
2`

`

G

~

k,v!dv5
(

q
E
0

`

B0~q,v!dv , ~17!

where we have also used the spectral representation @Eq. ~4!#
of W0. There are two noteworthy features to this sum rule. ~i!
This particular integral over G , which, in turn, determines the
self-energy, is independent of self-consistency and is only a
consequence of the prechosen screened potential W0. This
means that, although a reduction of the strength of the qua-
siparticle will give a smaller dynamical self-energy at some
energies, mainly at the quasiparticle energy, the total spectral
weight of the self-energy is conserved. ~ii! The left-hand side
of Eq. ~17! is k dependent, but the right-hand side is not.
Thus the total spectral density of the self-energy does not
vary with the k vector of the excitation. In our calculation we
have found it convenient to use the derived sum rule as a
check on our numerical accuracy. Two other sum rules
which are also useful for numerical purposes are readily ob-
tained from the high-frequency limits of Eqs. ~1!, ~7!, and
~11!:

E
2`

`

vA
~

k,v!dv5Ek
HF, ~18!

E
2`

`

v

2A
~

k,v!dv5E
2`

`

G

~

k,v!dv1
~

Ek
HF

!

2, ~19!

where

Ek
HF5ek1SHF~k! ~20!

is the quasiparticle energy in the Hartree-Fock approxima-
tion @although obtained from an interacting momentum dis-
tribution, cf. Eq. ~9!#.
Due to the very sharp quasiparticle structure in A(k ,v), it

is numerically difficult to obtain the momentum distribution
nk directly from the definition @Eq. ~9!#. An accurate value
for nk is needed, e.g., in order to check whether particle
conservation is obeyed at least approximately in this calcu-
lation with restricted self-consistency. We would thus like to
check if

2
(

k
nk5n , ~21!

where the 2 comes from the spin degeneracy. For this pur-
pose, we first write

A(k,v)52
1
p

Im G
~

k,v!sgn~v!, ~22!

and then observe that, for v,0, G(v) is the limit when
Imv! 02 of a function which is analytic in the lower half-
plane. This allows us to deform the frequency integral along
the negative real axis to the negative imaginary axis, thereby
picking up a contribution from the quarter circle. We obtain

nk5 1
2 1

1
p

Re E
0

`

G
~

k,2iv!dv ~23!

and for G(k,v) we use Dyson’s equation @Eq. ~11!# in which
all quantities including S are smooth and well behaved at the
negative imaginary axis.
The quasiparticle energies Ek are the energy positions of

well-defined peaks in the spectral function A(v). From Eq.
~15! we see that they are given by the solutions of the qua-
siparticle equation

Ek5ek1 ReS
~

k,Ek!. ~24!

If the imaginary part of S becomes large, signaling more
ill-defined quasiparticles, there could be a small deviation
between the Ek as defined by Eq. ~24! and the actual position
of the maximum of the peak. In this work, we have not had
reason to consider this case. In fact, the imaginary part of
S is small throughout the band, and quasiparticle energies
are close to the free-electron energies (k2/22kF

2 /2; see Fig.
3!. This fact immediately suggests a fast way of obtaining a
solution to the nonlinear quasiparticle equation. Expanding
Re S around ek1D , where D5S(kF ,0), to first order in the
difference between the quasiparticle and the free-electron en-
ergies gives

Ek5ek1D1Z
~

k !@

S

~

k ,ek1D!2D

#

, ~25!

where

Z
~

k !5F12
] ReS

~

k ,ek1D !

] v

G21

~26!

is the quasiparticle renormalization factor. We have found
this linear approximation to be accurate enough for our pur-
poses, i.e., for the plots in the figures.
The quasiparticle renormalization factor Z(k) is seen

~Fig. 1! to be relatively constant over the occupied part of the
band and at the Fermi surface ZF5Z(kF), we take it as a
measure of the correlation effects ~also see Table I!. When
the quasiparticle is reduced in strength ~scaled down by
ZF) we expect the self-energy to be similarly reduced in
magnitude, although maybe not to the same extent since
some contributions to S come from the incoherent part of the

FIG. 1. The quasiparticle renormalization factor Z(k) as a func-
tion of momentum k(rs54).
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Green function, a part which is enhanced rather than dimin-
ished. Let us simply assume ]S/]v to be proportional to
ZF allowing us to write @see Eq. ~26!#

ZF5
1

11gZF
, ~27!

with some constant of proportionality g . At the first iteration,
we start with free particles (Z51) and obtain a renormaliza-
tion factor Z1. Thus

Z15
1

11g

. ~28!

Eliminating g between Eqs. ~27! and ~28! gives

ZF5
2

A4/Z12311
, ~29!

a formula that actually allows us to obtain the fully self-
consistent renormalization factor ZF from a knowledge of
that of the first iteration. We have found numerically that this
formula @Eq. ~29!# is quite accurate, and it can be used to
speed up convergence.
The heaviest part, or rather the least easy part, of the

calculations are associated with obtaining the spectral func-

tion G from Eq. ~10!. Due to spherical symmetry the convo-
lution integral in k space involves only the azimuthal angle
which is converted to a momentum integral. Thus Eq. ~10!
amounts to a double integral in k space and a single integral
over the frequency. For the momentum integrals we have
used altogether 168 points from zero to 4kF, and for the
frequency integrals we have used altogether 558 points from
28EF to 16EF .
As discussed in Sec. II, the output spectral function

A(v) depends weakly on the details in the input A(v), as
long as the latter has the correct physical content, i.e., correct
quasiparticle weight, position and broadening, and approxi-
mately the correct satellite positions. In fact, using only three
Gaussians in Eq. ~2!, i.e., one for the quasiparticle peak and
one each for the first high- and low-energy plasmon satel-
lites, gives almost self-consistent results. This can be seen in
Fig. 2, comparing output A(v)’s from using three and five
Gaussians.
In all this work momenta are in units of the Fermi mo-

mentum (kF) and all energies in units of the Fermi energy
(kF
2 /2). As is evident from many formulas, the chemical po-

tential is chosen to be the zero of energy.

IV. RESULTS

We have chosen to present most of our results in the form
of several figures. Since our model ~the electron gas! is not
directly applicable to any real system, we are mainly inter-
ested in the qualitative effects of self-consistency and not so
much in the precise numbers.
In Fig. 3 we display the self-consistent spectral function

G(kF ,v) of the self-energy. It is compared with the corre-
sponding quantity from the first iteration starting from non-
interacting electrons, and we see the main effects of self-
consistency. The spectral function G is reduced in
magnitude, and the oscillator strength is shifted away from
the Fermi level in order to preserve the total weight in ac-
cordance with the sum rule @Eq. ~17!#. This reduced spectral

FIG. 2. The self-consistent spectral function A(k5kF ,v) @Eq.
~1!# is shown at two different levels of approximations using three
and five Gaussians in Eq. ~1!. This demonstrates the insensitivity of
the output A(v) to the input A(v).

FIG. 3. The self-consistent spectral function of the self-energy
at the Fermi surface (k/kF51) compared to that of the first itera-
tion. Note the reduction in magnitude and the spreading of the total
weight.

TABLE I. Quasiparticle renormalization factor at the Fermi sur-
face ZF @Eq. ~25!# at two different densities for the self-consistent
~SC! result and for the first ~1st! iteration. SC3 and SC5 are results
using three and five Gaussians in Eq. ~2! thus demonstrating the
usefulness of the Gaussian representation.

ZF

rs 1st SC3 SC5
2 0.764 0.804 0.807
4 0.645 0.702 0.706
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function will of course produce a smaller dynamical self-
energy @Eq. ~7!#, as can be seen in Fig. 4. @By the dynamical
self-energy we mean that part of the self-energy which is due
to correlations and which tends to zero at large v; see Eq.
~7!.# The slope of the real part of the self-energy at the qua-
siparticle energy is a measure of the renormalization factor.
The smaller slope of the self-consistent result leads to a
larger renormalization factor (ZF), and a smaller reduction
of the strength of the quasiparticle as compared to the results
of the first iteration @Eq. ~26!#.
In Fig. 5 we give the dispersion of the quasiparticle ener-

gies Ek for two different densities of the gas corresponding
to rs52 and 4, where rs is the usual radius of a sphere
corresponding to the volume per electron. It is seen that the
high-density result is indeed very close to the free-electron
dispersion. At lower density (rs54) the correlation effects
are more pronounced, and for this reason most of our fully
self-consistent results are shown at that density.
In Fig. 6 we compare the self-consistent momentum dis-

tribution function nk with those of the first iteration, and of
noninteracting electrons at rs54. Note that the discontinuity
at the Fermi surface is again the quasiparticle renormaliza-
tion factor ZF which, however, now is obtained from Eq.
~23! rather than from Eq. ~26!. We take the near equality
between the values obtained from these two very different
methods as a consistency check on our calculations. Figure 6
shows again the increase in quasiparticle strength caused by
self-consistency.
Provided the present approximation with a restricted self-

consistency is particle conserving, the momentum distribu-
tion function can be integrated to yield the particle density
@see Eq. ~26!#. This has been done numerically, and we have
found the present scheme to be particle conserving to within
the accuracy of the calculation ~four digits for n). It should
also be possible to investigate this point analytically, al-
though we have so far made no attempt in this direction.
The quasiparticle dispersion Ek is again shown in Fig. 7,

but this time compared with the corresponding results from
the first iteration. In the first iteration one obtains a promis-

ing band narrowing which, however, is too small compared
to experiment17 in sodium, with an electron density corre-
sponding to rs54. Unfortunately, the self-consistency de-
stroys this nice feature and gives a band wider than the free-
electron result, in clear contradiction to experiment.17 This
clearly indicates the necessity for vertex corrections. The re-
sults would have been even worse if it were not for the fact
that the Hartree-Fock contribution to the dispersion is also
reduced because of the interacting momentum distribution
function appearing in Eq. ~8!. The results can be understood
as follows. The Hartree-Fock self-energy contribution wid-
ens the gap by a large factor, but the dynamical part @the last
term in Eq. ~7!# of S almost cancels this effect in the first

FIG. 4. The real part of the self-energy of the self-consistent
calculation and of the first iteration, respectively. Note the less steep
slope at the Fermi energy for the self-consistent case.

FIG. 5. The quasiparticle dispersion (Ek) for two electron den-
sities rs52 and 4, where rs is the usual electron-gas parameter. The
largest change in the bandwidth occurs for rs54.

FIG. 6. The momentum distribution function nk of the electrons
for three cases: ~i! the self-consistent case, ~ii! the first iteration, and
~iii! the noninteracting electron gas. The quasiparticle renormaliza-
tion factor at the Fermi surface here shows up as the magnitude of
the discontinuity, which is increased by self-consistency (rs54).
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iteration, and we obtain a very free-electron-like behavior.
When we go to self-consistency, the reduction in strength of
the quasiparticle causes a smaller dynamical part of the self-
energy, which is no longer large enough to cancel the very
large exchange part. The fact that the latter is also somewhat
reduced by self-consistency cannot alter this fact, and we
obtain too large a bandwidth.
Self-consistency also has an important effect on the qua-

siparticle broadening which, in turn, has a negligible effect
on the outcome of the calculation. This leads, however, to
sharper quasiparticles especially closer to the band bottom
~see Fig. 8!, an effect which should be possible to observe
experimentally.
In Figs. 9 to 11, we show the spectral function A(v) with

its satellite structure, and compare the full results with those
of the first iteration. We see that the bad description of the
plasmon satellite that we are used to from ordinary GW cal-
culations ~first iteration! is not much improved by self-
consistency. Although the plasmon peak becomes sharper
and moves closer to the main peak, it is still too diffuse and
too far away from the main peak — especially away from the
Fermi surface. This discouraging result is not going to be
remedied by including the screened interaction W in the self-
consistency ~see below!, and again clearly indicates the need
for including vertex corrections.

V. SELF-CONSISTENT SCREENING

As discussed above, we also intend to include the
screened interaction W(q,v) in the self-consistency, as was
advocated by Kadanoff and Baym11,12 in order to have a
conserving approximation. The full results of such work will
be postponed to a forthcoming publication. We will here just
indicate those results of that work that can be obtained from
simple reasoning. When the self-consistent Green function is
used also for obtaining W through the GG polarization dia-
gram, the spectral function B0(q,v) of W becomes18

S0~q,v!52
(

k
E
0

v

A
~

k,v82v!A~

k1q,v8!dv8. ~30!

This function S0(v) is the spectral function which replaces
that of the normal Lindhart function x0, and from which we
obtain the spectral function B(q,v) of W(q,v) by solving
Eq. ~3!. It can then be seen that, when A(v) develops a sharp
plasmon structure at the energy vp below the quasiparticle
peak, then S0(v), being the convolution of two A’s, will
have peaks at vp and 2vp above zero. Consequently, the
spectral function B(v) will be suppressed around v5vp ,
resulting in a disappearance of the sharp plasmon structure in
W(v). This, in turn, will lead to a very broad satellite struc-

FIG. 7. The self-consistent quasiparticle dispersion compared to
that from the first iteration. Also shown is the free-electron disper-
sion and that obtained by using the noninteracting nk when calcu-
lating the Hartree-Fock self-energy (rs54).

FIG. 8. The broadening of the quasiparticle peak as obtained
from the spectral function ~multiplied by p) of the self-energy
evaluated at the quasiparticle energy. The sharpening of the quasi-
particle peak due to self-consistency is evident (rs54).

FIG. 9. The self-consistent spectral function A(k5kF ,v) @Eq.
~1!# compared to that of the first iteration. Here the quasiparticle
peak is too large and narrow to be displayed in the figure. Only the
plasmon side bands are shown (rs54).
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ture in the spectral function A(v). The only conceivable
self-consistent solution to the problem is a spectral function
A(v) with a relatively broad and diffuse structure around
vp below the quasiparticle peak. Although such a result is in
conflict with the experimental facts, we stress that there is
nothing which would prevent the fully self-consistent theory
from providing an accurate picture of the quasiparticles, in-
cluding the total energy of the system. We are presently pur-
suing this very interesting problem.18

VI. CONCLUSIONS

We will here summarize our findings in a few sentences.
~1! Allowing the quasiparticles to broaden has a negli-

gible effect on the final results.
~2! Allowing the quasiparticle energies to move from their

free-electron positions has a very small effect on the final
results for the electron gas.

~3! The main effects of self-consistency are caused by
allowing for a reduction in the quasiparticle strength. Com-
pared to ordinary GW results, i.e., the results of what in this
work has been referred to as the first iteration, self-
consistency leads to a smaller quasiparticle width, a substan-
tially larger bandwidth, and a larger quasiparticle renormal-
ization factor. All these effects are due to a smaller
dynamical self-energy.

~4! The relatively bad description of the satellite structure

due to plasmons in ordinary GW calculations is marginally
improved.

~5! An attempt to include the screened potential in the
self-consistency procedure is shown to lead to an even worse
description of the satellite regions. However, nothing is yet
known about full self-consistency with regard to quasiparti-
cle properties. We hope to get back to this point in the near
future.18

~6! Several of our results mentioned above demonstrate a
strong need for vertex corrections even in such a simple sys-
tem as the electron gas.

~7! A useful sum rum rule has been derived, which is
valid in all GW-type calculations.

~8! Finally, we would like to stress that we have here
demonstrated how physical insight can be used to obtain a
decisive simplification of self-consistent calculations. The
procedure is based on a representation of the Green function
in terms of its spectral function, which, in turn, is represented
as a sum of Gaussians.
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