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Based on exact limits and quantum Monte Carlo simulations, we obtain, at any density and spin polarization,
an accurate estimate for the energy of a modified homogeneous electron gas where electrons repel each other
only with a long-range Coulombic tail. This allows us to construct an analytic local-spin-density exchange-
correlation functional appropriate to new, multideterminantal versions of the density functional theory, where
quantum chemistry and approximate exchange-correlation functionals are combined to optimally describe both
long- and short-range electron correlations.
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I. INTRODUCTION

Density functional theory1–3 �DFT� is by now the most
popular method for electronic structure calculations in con-
densed matter physics and quantum chemistry, because of its
unique combination of low computational cost and high ac-
curacy for many molecules and solids. There are, however,
exceptions to such an accuracy. Even the best approxima-
tions of its key ingredient, the exchange-correlation �XC�
energy functional, cannot describe strong electron correla-
tions, such as those of the cuprates, and cannot exactly can-
cel the so-called self-interaction, a property which the exact
functional should satisfy. On top of that, they fail to recover
long-range van der Waals interactions,4 are not completely
safe for the description of the hydrogen bond,5 and have
intrinsic problems with situations of near degeneracy �when
two sets of Kohn-Sham orbitals have very close energies�;6–8

more generally, the “chemical accuracy” has not yet been
reached. To overcome the latter group of problems, there has
been a growing interest in “mixed schemes” which combine
the DFT with other approximate methods by splitting the
Coulombic electron-electron interaction 1/r=vee�r� into a
short-range �SR� and a long-range �LR� part �see, e.g., Refs.
6–18�. The idea is to use different approximations for the LR
and the SR contributions to the exchange and/or correlation
energy density functionals of the Kohn-Sham �KS� scheme.
It descends from the observation that LR correlations, poorly
described by local or semi-local density functionals, can be
accurately dealt with by other techniques, like the random-
phase approximation �RPA� or standard wave function meth-
ods of quantum chemistry. Conversely, correlation effects
due to the SR part of the electron-electron interaction are in
general well described by local or semilocal functionals.19,20

The error function and its complement

1

r
= vee�r� = vSR

� �r� + vLR
� �r� =

erfc��r�
r

+
erf��r�

r
, �1�

where � controls the range of the decomposition, are often
used6–8,10,11,13,15–17 to split the Coulomb interaction into a SR
and a LR part, since they yield analytic matrix elements for

both Gaussians and plane waves, i.e., the most common basis
functions in quantum chemistry and solid state physics. Cor-
respondingly, the universal functional of the electron density
n, as defined in the constrained-search formalism21

F�n� = min
�→n

���T + Vee��� �2�

can be divided into a short-range and a complementary long-
range part F�n�=FSR

� �n�+FLR
� �n�

FSR
� �n� = min

�̃�→n

��̃��T + VSR
� ��̃�� ,

FLR
� �n� = F�n� − FSR

� �n� �3�

or, alternatively, into a long-range and a complementary
short-range part F�n�=FLR

� �n�+FSR
� �n�

FLR
� �n� = min

��→n

����T + VLR
� ���� ,

FSR
� �n� = F�n� − FLR

� �n� . �4�

The two decompositions lead to different strategies and XC
energy functionals, whose merits and drawbacks are dis-
cussed in Ref. 22. In any event, for actual electronic-
structure calculations to be performed, these functionals ul-
timately need approximations, in analogy with the standard
DFT. Regardless of the strategy adopted, the potential supe-
riority of “mixed schemes” comes into play precisely at this
stage: compared to the standard version, a DFT which only
deals with the SR part of the electron-electron interaction
should be much more accurately approximated, as men-
tioned, by local-density XC energy functionals.15,19,20 While
both decompositions �Eqs. �3� and �4�� are aimed at the ex-
ploitation of the DFT scheme for the SR part of the interac-
tion only, the corresponding approximate functionals require
an accurate description of the homogeneous electron gas
�HEG� either with SR �Eq. �3�� or LR interaction �Eq. �4��.

Up to now, the HEG exchange-correlation energies as a
function of the cutoff parameter � and of the electron density
are available for the SR case from quantum Monte Carlo
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�QMC� simulations,23 and for the LR case from coupled-
cluster �CC� calculations.7,24 A parametrization of the CC
data for the XC energy of the HEG with long-range-only
interaction has been used in Refs. 8 and 16 with very prom-
ising results for closed-shell systems. Generalized-gradient-
corrected density functionals have also been designed and
tested within this framework,13,17 but all existing functionals
are limited to the spin-unpolarized case.

The purpose of this paper is to provide, based on novel
exact limits and quantum Monte Carlo simulations, an accu-
rate representation for the energy of the LR-only interacting
HEG not only as a function of the cutoff parameter � and of
the total electron density, but also as a function of the spin
polarization �i.e., as a function of the spin densities n↑ and n↓
separately�. Since von Barth and Hedin25 showed, in 1972,
that the task of finding good approximations to exchange-
correlation density functionals is greatly simplified if the
functional is expressed in terms of the spin densities, and that
this is the simplest way to satisfy the requirement �Hund’s
rule� that a state with larger spin tends to be energetically
favored, the importance of including such a spin dependence
in approximate functionals was confirmed by countless cal-
culations for molecules and solids.26,27 In this context the
decomposition of Eq. �4�, based on the constrained-search
formalism,21 is generalized to spin-DFT as follows:27

FLR
� �n↑,n↓� = min

��→n↑,n↓

����T + VLR
� ���� ,

FSR
� �n↑,n↓� = F�n↑,n↓� − FLR

� �n↑,n↓� . �5�

The spin-polarized LR-only gas, for which no previous re-
sults are to our knowledge available, is appropriate, via Eq.
�5�, to a very promising “multideterminantal” version of the
spin-DFT. The final outcome of this work is thus a local-
spin-density approximation of the corresponding XC func-
tional, given in analytic form, by which electronic structure
calculations of this new type will be possible for unpolarized
systems28 and, more important, for spin-polarized systems,
for which no such functional is presently available. Such a
functional also represents the key ingredient for extending
gradient-corrected SR density functionals13,17 to spin-DFT.

The paper is organized as follows. In Sec. II we define the
Hamiltonian of the HEG with LR-only interaction and we
derive some exact limits of the corresponding correlation
energy, which is then computed �for values of the relevant
parameters not accessible to analytic methods� with QMC in
Sec. III. The results of Secs. II and III are then used in Sec.
IV to construct an analytic parametrization of the LR corre-
lation energy. Section V recalls, calculates and provides in
analytic form an alternative definition of the LR correlation
energy which involves the use of pair-correlation functions
�also obtained from our QMC simulations� and may be of
interest within optimized-effective-potential schemes.29 Har-
tree atomic units are used throughout this work.

II. DEFINITIONS, AND EXACT LIMITS

After decomposing the standard �Coulomb interaction�
spin-DFT functional according to Eq. �5�, the resulting SR

functional FSR
� �n↑ ,n↓� can be further decomposed, as usually,

into a Hartree and an XC term

EH
��n� = EH

��n� =
1

2
� dr� dr�n�r�n�r��vSR

� ��r − r��� ,

�6�

Exc
� �n↑,n↓� = FSR

� �n↑,n↓� − EH
��n� . �7�

The local-spin-density �LSD� approximation amounts to re-
placing the exact, unknown functional of Eq. �7� with

Exc,LSD
� �n↑,n↓� =� drn�r���xc�n↑�r�,n↓�r��

− �xc
LR�n↑�r�,n↓�r�,��� =� drn�r�

���xc�rs�r�,��r�� − �xc
LR�rs�r�,��r�,��� ,

�8�

where �xc�n↑ ,n↓� is the exchange-correlation energy per par-
ticle of the standard jellium model30–33 with uniform spin
densities n↑ ,n↓, and �xc

LR�n↑ ,n↓ ,�� is the corresponding quan-
tity for a jellium model with LR-only interaction vLR

� �r�,
which forms the object of this paper. In the third line of Eq.
�8� we express the same quantity in terms of the electronic
density n=n↑+n↓= �4�rs

3 /3�−1 and spin polarization �= �n↑
−n↓� /n, thus introducing the notation used in what follows.
To obtain �xc

LR�rs ,� ,�� we consider a uniform system with
LR-only interaction

HLR
� = −

1

2	
i=1

N

�ri

2 + VLR
� + Veb

� + Vbb
� , �9�

where VLR
� is the modified electron-electron interaction

VLR
� =

1

2 	
i�j=1

N
erf���ri − r j��

�ri − r j�
, �10�

Veb
� is the interaction between the electrons and a rigid, posi-

tive, uniform background of density n

Veb
� = − n	

i=1

N � dx
erf���ri − x��

�ri − x�
, �11�

and Vbb
� is the corresponding background-background inter-

action

Vbb
� =

n2

2
� dx� dx�

erf���x − x���
�x − x��

. �12�

Our Hamiltonian HLR
� , and thus its ground-state energy

per electron �LR, depends on the density parameter rs, on the
spin-polarization �, and on the cutoff parameter �. When
�→�, we recover the standard jellium model; in the oppo-
site limit �→0, we recover the noninteracting electron gas.
In this section we derive the asymptotic behavior for �→0
and �→� of the correlation energy per electron, defined as
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�c
LR�rs,�,�� = �LR�rs,�,�� − ts�rs,�� − �x

LR�rs,�,�� , �13�

where ts�rs ,��=3kF
2�5��� /10 is the usual kinetic energy of

the noninteracting electron gas, with kF= �	rs�−1, 	
= �4/9��1/3, and

�n��� =
1

2
��1 + ��n/3 + �1 − ��n/3�; �14�

the exchange energy is given by7

�x
LR�rs,�,�� =

1

2
�1 + ��4/3fx�rs,��1 + ��−1/3�

+
1

2
�1 − ��4/3fx�rs,��1 − ��−1/3� , �15�

fx�rs,�� = −
�

�

�2y − 4y3�e−1/4y2

− 3y + 4y3

+ ��erf� 1

2y

�, y =

�	rs

2
, �16�

and has the asymptotic behaviors

�x
LR�rs,�,���

�→0
= −

�

��
+

3	rs�
2

2�
�2��� + O��3� , �17�

�x
LR�rs,�,���

�→�
= −

3kF

4�
�4��� +

3�1 + �2�
16rs

3�2 + O��−4� .

�18�

A. Approaching the noninteracting gas

When �→0 and/or rs→0, we are approaching the limit
of the noninteracting Fermi gas. Toulouse et al.15 have stud-
ied the �→0 limit of the long-range exchange and correla-
tion energy functionals for confined systems �atoms, mol-
ecules� using standard perturbation theory. Their results
cannot be applied to the case of an extended system like the
uniform electron gas, because the integrals of their Eqs. �17�
and �20� would diverge. Instead, the �→0 limit �as well as
the rs→0 limit� of the uniform electron gas can be studied
with RPA,25,34 which becomes exact both for long-range cor-
relations ��→0: in this limit the long-range Coulombic tail
shows up only beyond larger and larger interelectronic dis-
tance r�1/�� and in the high-density limit �rs→0�. We gen-
eralize to the LR-only interaction erf��r� /r the standard RPA
expression for the correlation energy �see the Appendix for
details�, and find that, for small ��rs �i.e., small-� and/or
rs→0 limit�, the correlation energy �c

LR scales as

�c
LR�rs,�,����,rs→0 = ��2����3Q�x�, x =

��rs

�2���
, �19�

where �2��� is given by Eq. �14�, and the function Q�x� has
the following asymptotic behaviors:

Q�x → 0� = −
3	

2�
x2 + O�x3� , �20�

Q�x → � � =
2 ln�2� − 2

�2 ln�x� + const. �21�

The scaling of Eq. �19� for the long-range correlation energy
was also expected from the fact that the long-range part of
the pair-correlation function of the standard jellium model
has a similar scaling.35–37 Notice also that, in the small-�
expansion of �c

LR �Eqs. �19� and �20��, the term proportional
to �2 exactly cancels with the corresponding term in the
exchange energy �x

LR �Eq. �17��, so that the XC energy �ex-
change plus correlation� has no �2 term; in a confined sys-
tem, on the other hand, the �2 terms are separately zero for
exchange and correlation.15 We found that the function Q�x�
�see the Appendix� is accurately approximated by

Q�x� =
2 ln�2� − 2

�2 ln�1 + ax + bx2 + cx3

1 + ax + dx2 
 , �22�

with a=5.84605, c=3.91744, d=3.44851, and b=d
−3�	 / �4 ln�2�−4�.

A final remark on the scaling of Eq. �19� is that, although
it exactly holds only in the small-x regime, even in the large-
x regime of Eq. �21� �obtained e.g. with small rs but very
large ��, it represents an excellent approximation, because in
this regime the � dependence of �c

LR/Q is described by a
function �Eq. �32� of Ref. 38� which is very similar to
��2����3, and exactly equals it for �=0 and �=1. All the
densities corresponding to rs
0.1 are not affected by this
small difference in the � dependence of Eq. �19�, as dis-
cussed in the Appendix.

B. Approaching the Coulombic gas

The large-� behavior of the long-range correlation func-
tional appropriate to the decomposition of Eq. �5�, obtained
in Refs. 15 and 39, is straightforwardly extended to the uni-
form electron gas. For ��1 we have39

�c
LR�rs,�,����→� = �c�rs,�� −

3gc�0,rs,��
8rs

3�2 −
g�0,rs,��
�2�rs

3�3

+ O��−4� , �23�

where �c�rs ,�� is the correlation energy of the standard elec-
tron gas with Coulomb interaction, g�0,rs ,�� its on-top pair-
distribution function,36,37,40 and gc�0,rs ,��=g�0,rs ,��− 1

2 �1
−�2�. For the fully polarized gas ��=1� the terms propor-
tional to �−2 and �−3 in the large-� expansion of �c

LR vanish,
and the next leading terms are39

�c
LR�rs,� = 1,����→� = �c�rs,� = 1� −

9gc��0,rs,� = 1�
64rs

3�4

−
9g��0,rs,� = 1�

40�2�rs
3�5

+ O��−6� , �24�

where g��0,rs ,�=1� is the second derivative at r=0 of the

LOCAL-SPIN-DENSITY FUNCTIONAL FOR¼ PHYSICAL REVIEW B 73, 155111 �2006�

155111-3



pair-distribution function36,37,40 of the fully polarized gas,
and gc��0,rs ,�=1�=g��0,rs ,�=1�−25/3kF

2 /5.

III. DIFFUSION MONTE CARLO

The details of the simulations are similar to our previous
calculation of a local density functional for a short-range
potential.23 Here we give a technical summary focusing on
the main differences, which concern the size extrapolation
and the treatment of the long-range tails of the interaction
and of the pair pseudopotential in the trial wave function. For
the reader not keen on technicalities, it is enough to say that
we provide a very tight upper bound to the exact ground-
state energy, choosing a level of approximation which
closely matches the Ceperley-Alder30 �CA� result for �→�.

The ground-state energy of the Hamiltonian of Eq. �9� is
computed with the diffusion Monte Carlo �DMC� method in
the fixed-node �FN� approximation,41 using a standard
Jastrow-Slater trial function with plane-wave orbitals and
RPA pseudopotentials.42 Several values of the density �rs
=1,2 ,5, and 10�, of the cutoff parameter ��rs=0.5,1 ,2, and
4� and of the spin polarization ��=0 and 1� are considered.
The results are fitted �see Sec. IV� to a convenient analytical
expression for the correlation energy �c�rs ,� ,��, which also
embodies the exact limits of Sec. II and is further constrained
to recover the CA result for the Coulomb potential.

This constraint sets the target precision of our simulations,
since there is no point in pushing the accuracy much beyond
the statistical uncertainty of the CA results. Correspondingly,
we make sure that the biases due to a finite time step and a
finite number of walkers are much smaller than the statistical
uncertainties of the CA results. Furthermore, as discussed in
Ref. 23, a smoother match to the CA results of the FN energy
in the �→� limit is expected using the nodal structure given
by Slater determinants of plane waves, instead of the more
accurate43 �and computationally more demanding� backflow
nodes.

We simulate N particles in a cubic box with “twist-
averaged boundary conditions”44 �TABC�, which have been
shown to eliminate most of the finite-size effect due to the
shell structure of the plane-wave determinants. For each sys-
tem considered, simulations are performed for 35 points in
the irreducible wedge of the first Brillouin zone �BZ� of the
simulation box, corresponding to a 1000-point mesh in the
whole BZ.

Both the interparticle potential and the RPA pair pseudo-
potential are computed using an optimized breakup45 into a
long-range part, to be treated in reciprocal space, and a short-
range part, to be treated in real space. The short-range part is
expanded in locally piecewise quintic Hermite interpolants
over 20 knots, and the k-space summation includes 20 shells
of reciprocal lattice vectors. This choice of parameters en-
sures that, for the Coulomb interaction, the potential energy
calculated for a simulation box containing 64 particles on a
simple cubic lattice reproduces the exact Madelung constant
to less than 1 part in 107.

All DMC simulations have been done with N=54 for both
the paramagnetic and the spin-polarized fluids �there is no
need of choosing closed-shell determinants with TABC�.

Following a common practice,30,43 the residual size effect has
been estimated assuming that it is the same for DMC and
Variational Monte Carlo �VMC�,41 which is somewhat less
accurate but much cheaper. Systems with up to 246 particles
were simulated with the VMC algorithm, and the size depen-
dence of the computed energies EN was modeled as

E� = EN + T� − TN + �/N , �25�

where T� and TN are the kinetic energy in the thermody-
namic limit and in the N-particle system �with TABC�, re-
spectively, and E� and � are fitting parameters. The �2 value,
less than 2 on average, is at worst about 10 for rs=1 and
�=4, at �=0. Figure 1 shows the size extrapolation proce-
dure for the Coulomb potential at rs=1. Since the depen-
dence on spin polarization of the optimal value of � is very
weak �see Fig. 1�, a systematic study of the finite-size effect
was carried out only for �=0: for given � and rs, the same
value of �, determined from the VMC energies of the para-
magnetic fluid at several system sizes, was then used to es-
timate the finite-size correction to the DMC energy for both
�=0 and �=1. For the unpolarized gas, we found that the
discrepancies on the correlation energy with the coupled-
cluster data of Refs. 7 and 24 are of the order of 5–8%.

IV. ANALYTIC REPRESENTATION OF THE
CORRELATION ENERGY

We construct an analytical representation of the correla-
tion energy as

FIG. 1. The size dependence of the VMC energy for the Cou-
lomb potential at rs=1. Empty symbols: VMC energy EN; filled
symbols: EN+T�−TN. The curves show the best-fit 1 /N dependence
of the latter, according to Eq. �25�: circles and solid line refer to
�=0 �left scale�, triangles and dashed line to �=1 �right scale�. The
cross is the �=0 result obtained in the thermodynamic limit by Ref.
43, which appears fully consistent with the present calculation. The
statistical errors on the data points are much smaller than the sym-
bol sizes. The �2 is 11.8 for �=0, and 0.4 for �=1 �much poorer
values would be obtained by just fitting EVMC, i.e., without includ-
ing the kinetic-energy size correction�.
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�c
LR�rs,�,�� =

��2����3Q� ��rs

�2���

 + a1�3 + a2�4 + a3�5 + a4�6 + a5�8

�1 + b0
2�2�4 , �26�

where the function Q is given by Eq. �22�, the parameters
ai�rs ,�� ensure the correct large-� behavior of Eqs. �23�,
�24�, and b0�rs� is fixed by a best fit to our DMC data. Some
more free parameters which are adjusted to fit the DMC data
are also contained in the coefficients ai�rs ,��, whose defini-
tion requires a detailed explanation. For the limits of Eqs.
�23�, �24� we use, for any spin polarization �, the approxi-
mation

�c
LR�rs,�,����→� � �c�rs,�� −

3�1 − �2�gc�0,rs,� = 0�
8rs

3�2

− �1 − �2�
g�0,rs,� = 0�

�2�rs
3�3

−
9c4�rs,��
64rs

3�4

−
9c5�rs,��

40�2�rs
3�5

+ O��−6�, with �27�

c4�rs,�� = �1 + �

2

2

g��0,rs� 2

1 + �

1/3

,� = 1

+ �1 − �

2

2

g��0,rs� 2

1 − �

1/3

,� = 1

+ �1 − �2�D2�rs� −

�8���
5	2rs

2 , and �28�

c5�rs,�� = �1 + �

2

2

g��0,rs� 2

1 + �

1/3

,� = 1

+ �1 − �

2

2

g��0,rs� 2

1 − �

1/3

,� = 1

+ �1 − �2�D3�rs� . �29�

The function �8 is defined by Eq. �14�; D2�rs� and D3�rs�
mimic the effect of the ↑↓ correlation on the �−4 and �−5

large-� coefficients, and are obtained by a best fit to the
DMC data. For the parallel-spin g��0,rs ,�� and for the on-
top g�0,rs ,�� an exchangelike � dependence was assumed,
starting from the values at �=1 and �=0, respectively. The
on-top g�0,rs ,�=0� was taken from Ref. 40, while
g��0,rs ,�=1� was obtained as a best fit to our DMC data.
The parameters ai�rs ,�� of Eq. �26� are then equal to

a1 = 4b0
6C3 + b0

8C5,

a2 = 4b0
6C2 + b0

8C4 + 6b0
4�c,

a3 = b0
8C3,

a4 = b0
8C2 + 4b0

6�c,

a5 = b0
8�c,

where �c�rs ,�� is the parametrization of the CA correlation
energy as given by Perdew and Wang,33 and

C2 = −
3�1 − �2�gc�0,rs,� = 0�

8rs
3 ,

C3 = − �1 − �2�
g�0,rs,� = 0�

�2�rs
3

,

C4 = −
9c4�rs,��

64rs
3 ,

C5 = −
9c5�rs,��
40�2�rs

3
. �30�

The functions b0, g�, D2, and D3 are finally obtained from a
best fit to the DMC data and read

b0�rs� = 0.784949rs, �31�

g��0,rs,� = 1� =
25/3

5	2rs
2

1 − 0.02267rs

�1 + 0.4319rs + 0.04rs
2�

, �32�

D2�rs� =
e−0.547rs

rs
2 �− 0.388rs + 0.676rs

2� , �33�

D3�rs� =
e−0.31rs

rs
3 �− 4.95rs + rs

2� . �34�

Notice that, by our construction, Eq. �32� satisfies the exact
high-density limit.46 Our data and the fitting function of Eq.
�26� are shown in Fig. 2. The small discrepancy at large �,
particularly visible for rs=1 and �=1 on the scales of the
figure, is due to the condition that our fitting function recov-
ers in the Coulomb limit the Perdew-Wang parametrization33

of the CA correlation energy, and it is consistent with our FN
results being an upper bound to the data obtained30 by CA
using a nominally exact method.

V. PAIR-DISTRIBUTION FUNCTIONS AND ALTERNATIVE
SEPARATION OF EXCHANGE AND CORRELATION

From our DMC runs we also extracted, in the usual way,47

the pair-distribution functions gLR�r ,rs ,� ,��. A sample of
our results is shown in Fig. 3. These functions are of interest
in the framework of the approach of Refs. 7, 8, and 13–17.
While a local- �or local-spin-� density approximation for
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both exchange and correlation has been, and to a large extent
still is, the most popular approach to Kohn-Sham calcula-
tions �possibly with GGA improvements�, there is a growing
interest48 in optimized-effective-potential schemes, where
the exchange is treated exactly and the construction of ap-
proximations only concerns the correlation energy. The latter
is naturally defined as whatever exceeds the exact-exchange
energy, obtained from a single Slater determinant of Kohn-
Sham orbitals. But once a multideterminantal, partially cor-
related wave function �� �Eq. �5�� is introduced, as in the
modified schemes we are concerned with here, an alternative,
more efficient choice may be to construct approximations
only for that portion of the correlation energy which is not
already taken into account by ��. In other words, one may
prefer to define29 “exchange” and “correlation” energy func-
tionals in the following way:

Ex,md
� �n↑,n↓� = ����Vee − VLR

� ���� − EH
��n� , �35�

Ec,md
� �n↑,n↓� = Exc

� �n↑,n↓� − Ex,md
� �n↑,n↓� , �36�

and then apply, e.g., the LSD approximation only to the “cor-
relation” energy functional of Eq. �36�:29

Ec,md
� �n↑,n↓� =� drn�r��c,md�rs�r�,��r�,�� . �37�

Here

�c,md�rs,�,�� = �c�rs,�� − �c
LR�rs,�,�� + 
LR-SR�rs,�,�� ,

�38�

the mixed term 
LR-SR�rs ,� ,�� is equal to


LR-SR�rs,�,�� = −
n

2
�

0

�

4�r2drgc
LR�r,rs,�,��

erfc��r�
r

,

�39�

and gc
LR is given by gLR minus the pair-distribution function

of the noninteracting gas. Using the results of Ref. 39 it is
easy to show that, for large �, the mixed term 
LR-SR be-
haves as


LR-SR�
�→�

= −
3gc�0,rs,��

8rs
3�2 −

g�0,rs,���2�2 − 1�
2��rs

3�3
+ O��−4�

�40�

for ��1, and as


LR-SR�
�→�

= −
9gc��0,rs,� = 1�

64rs
3�4 −

3g��0,rs,� = 1��3 − �2�
20�2�rs

3�5

+ O��−6� �41�

for �=1, with the same notations of Eqs. �23�, �24�.

FIG. 2. Our DMC data for the correlation energy �•� of the
electron gas with long-range interaction erf��r� /r are compared
with the fitting function �lines� of Eq. �26� for the unpolarized case
�upper panel� and the fully polarized case �lower panel�. The statis-
tical errors on the DMC data are comparable with the symbol size.

FIG. 3. A sample of our DMC pair-distribution functions. Upper
panel: for rs=2 and �=0, gLR is shown for �=0.25,0.5,1 ,2, and
for the Coulomb gas ��= � �. Lower panel: for rs=10 and �=1, gLR

is shown for �=0.05,0.1,0.2,0.4, and for the Coulomb gas ��
= � �.
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In this section we present an accurate parametrization of

LR-SR. Exploiting our DMC pair-distribution functions
gLR�r ,rs ,� ,��, we solved Eq. �39� by numerical integration,
and parametrized our results as


LR-SR =
�2�2 + �3�3 + �4�4 + �5�5 + �6�6

�1 + d0
2�2�4 , �42�

where the functions �i�rs ,�� with i=3–6 guarantee the cor-
rect large-� behavior of Eqs. �40�, �41�:

�3 = 4d0
6C̃3 + d0

8C̃5, �43�

�4 = 4d0
6C2 + d0

8C4, �44�

�5 = d0
8C̃3, �45�

�6 = d0
8C2. �46�

Here C2�rs ,�� and C4�rs ,�� are those of Eqs. �30�;

C̃3 = − �1 − �2�
g�0,rs,� = 0��2�2 − 1�

2��rs
3

,

C̃5 = −
3c5�rs,���3 − �2�

20�2�rs
3

; �47�

g�0,rs ,�=0� and c5�rs ,�� are defined in Sec. IV. The remain-
ing parameters �2�rs� and d0�rs ,�� are fitted to our DMC data
and read

�2�rs� = 0.073867rs
3/2, �48�

d0�rs,�� = �0.70605 + 0.12927�2�rs. �49�

VI. CONCLUSIONS

We have presented a comprehensive numerical and ana-
lytic study of the ground-state energy of a homogeneous
electron gas with modified, long-range-only electron-
electron interaction erf��r� /r, as a function of the cutoff pa-
rameter �, of the electronic density, and of spin polarization.
The final outcome of this work is the publication of a reliable
local-spin-density functional which fits the results of our
quantum Monte Carlo simulations and automatically incor-
porates exact limits. Such a functional �Sec. IV�, or its vari-
ant implying the use of an additional term also obtained in
this work �Sec. V�, are the key ingredient for some recently
proposed “multideterminantal” versions of the density
functional theory, where quantum chemistry and approxi-
mate exchange-correlation functionals are combined to opti-
mally describe both long- and short-range electron correla-
tions. A FORTRAN subroutine that evaluates our LSD
exchange-correlation functional and the corresponding po-
tentials is available upon request to gori@lct.jussieu.fr, or
can be downloaded at http://www.lct.jussieu.fr/DFT/gori/
elegas.html.
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APPENDIX: DETAILS OF EQ. (19)

We start from the RPA equations25 for the spin-polarized
electron gas, and we simply replace the Coulomb interaction
1/r with the long-range interaction erf��r� /r. We then repeat
the analysis done in Refs. 35 and 38 for the Coulombic gas
and find that, in the rs→0 limit, the correlation energy is
given by

�c
LR�rs,�,���rs→0 = −

12

�
�

0

� dy

	2 y�
0

�

du�	R��u�e−�y/	��rs�
2

− y2ln
1 +
	

y2R��u�e−�y/	��rs�
2�� , �A1�

where

R��u� =
1

2

z1R� u

z1

 + z2R� u

z2

� , �A2�

with

R�u� =
1

�
�1 − u arctan�u−1�� , �A3�

z1= �1+��1/3, z2= �1−��1/3, and 	= �4/9��1/3. Equation �A1�
already shows that the correlation energy becomes a function
of ��rs in the rs→0 limit.

To prove the small-x behavior of Eq. �20�, take a value of
��rs=a�1. In this case all the contribution to the integral of
Eq. �A1� comes from small y, since, as soon as y�a, the
integrand goes to zero exponentially fast, as a function of a,
when a→0. We thus integrate over y Eq. �A1� between 0

FIG. 4. The numerical evaluation of Eq. �A1�, as a function of
x=��rs /�2���, and multiplied by ��2����−3. If the scaling of Eq.
�19� were exact, all the values corresponding to different � would
lie on the solid curve. The value �=0.86 shown in the figure corre-
sponds to the maximum deviation from the scaling of Eq. �A1�.
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and a value q1 such that a�q1�1. Since y�1, the integral
reduces to

−
12

�	
�

0

q1

dyye−�y/	a�2�
0

�

duR��u� , �A4�

which gives, to leading orders in a when a→0, Eqs. �19� and
�20�. The large x behavior of Eq. �21� follows by considering
the �→� limit of Eq. �A1�, which reduces to the standard
Coulombic case studied in Ref. 38.

The � dependence of Eq. �19� is exact in the x→0 limit of
Eq. �A4�. For larger x, we evaluated Eq. �A1� numerically,
and in Fig. 4 we report our results multiplied by ��2����−3, as
a function of x=��rs /�2���: if the scaling of Eq. �19� were
exact, all the values corresponding to different � would lie on

the solid curve, corresponding to �=0 and 1. The value �
=0.86 reported in the figure corresponds to the maximum
deviation from the scaling of Eq. �19�, which is thus rather
small. The function Q�x� of Eq. �22� has been obtained by
fitting the RPA data of the solid curve. On the scale of Fig. 4
the fitting error is invisible.

To conclude the discussion, we expect that the correlation
energy �c

LR lies on the curve of Fig. 4 when �rs�1 �high-
density or really long-range-only interaction on the scale rs�.
This means that at a given rs, the “exact” �c

LR lies on the
curve of Fig. 4 for values of � such that ��rs�1/�rs, that is,
only the densities rs�0.1 would be affected by the small
deviations from the scaling in � of Eq. �19�, which appear at
x
3.
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