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INVITED ARTICLE

The connection between self-interaction and static correlation: a random phase

approximation perspective

Thomas M. Henderson* and Gustavo E. Scuseria

Department of Chemistry, Rice University, Houston, TX 77005-1892, USA

(Received 27 May 2010; final version received 4 July 2010)

Semi-local density functional theory suggests a connection between static correlation and self-interaction. It is
difficult to make such a connection from the wave function theory perspective, since few wave function methods
permit self-interaction error. However, the random phase approximation for ground-state correlation, which has
a wave function derivation, does include self-interaction in its direct (Hartree) variant. This variant also describes
left–right correlation. The self-interaction can be removed by means of second-order screened exchange; however,
this also has negative consequences for the description of static correlation. This paper discusses the connection
between the two concepts (static correlation and self-interaction) from the perspective provided by the random
phase approximation.
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1. Introduction

One of the many strengths of Kohn–Sham (KS)
density functional theory (DFT) [1–3] is that it can,
at the mean-field level, mimic some of the effects of
static correlation (i.e. correlation between the reference
determinant and determinants degenerate to it) even
though from the wave function perspective, the pres-
ence of static correlation would tend to indicate that
the single-determinant reference is qualitatively
incorrect.

The mechanism by which KS-DFT accomplishes
this feat is well understood [4,5]. When left–right static
correlation is important, the exact exchange hole
delocalises across the system, with compensating
delocalisation of the correlation hole such that the
exchange-correlation hole localises around the refer-
ence electron. The model exchange-correlation holes
used in standard semi-local density functionals are
localised around the reference electron by construc-
tion, and thus carry physics similar to that of the exact
exchange-correlation hole.

On the other hand, the exchange-correlation hole
from semi-local functionals is not localised for
the proper reasons. Instead of compensating
delocalised exchange and correlation pieces, the
KS-DFT exchange-correlation hole is built from a
localised exchange hole and a localised correlation
hole. One consequence of this is that the self-exchange
interaction is not correctly described and, in particular,

it does not cancel with the self-Coulomb interaction.

Additionally, most of these typical functionals allow

electrons to correlate with themselves as well. In other

words, the same exchange-correlation functionals

which mimic static correlation also carry

self-interaction [6]. Note that for most of this work,
we use ‘self-interaction’ to refer to one-electron

self-interaction error, and not to many-electron

self-interaction error [7,8].
The quantum chemistry community has long

realised that while static correlation and self-interac-

tion seem unrelated, they are at least qualitatively

connected. But frustratingly, it is not straightforward

to establish a formal relation between the two. The
purpose of this article is to show an explicit connection

between static correlation and self-interaction error in

the random phase approximation (RPA) [9–14] for

ground-state correlation. Section 2 reviews RPA and

includes our discussions of self-interaction and static

correlation within the random phase approximation.

Some sample results are given in Section 3, and

conclusions are drawn in Section 4.

2. The random phase approximation

The random phase approximation in the plasmonic

formulation extracts the ground-state correlation

energy of a system as the difference in zero-point
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energies from two excitation problems, one correlated
and the other uncorrelated.

The correlated excitation problem is essentially
time-dependent linear response, and one solves

A B

�B �A

� �
X Y

Y X

� �
¼

X Y

Y X

� �
x 0

0 �x

� �
, ð1Þ

where the matrices A, B, X, and Y are all ov� ov, with
o and v respectively the number of occupied and
unoccupied spin–orbitals. The excitation energies x are
chosen to be non-negative.

The uncorrelated excitation problem simply
involves making the Tamm–Dancoff approximation
(commonly known as configuration interaction sin-
gles), in which one sets B¼ 0 and recovers simply

AZ ¼ Zm: ð2Þ

The correlation energy is then simply [10]

ERPA
c ¼

1

2
Trðx� mÞ ¼

1

2
Trðx� AÞ: ð3Þ

Different variants of RPA differ in the definitions
of the matrices A and B. Roughly speaking, matrix
elements of A correspond to matrix elements of the
Hamiltonian between two singly-excited determinants,
while matrix elements of B correspond to matrix
elements of the Hamiltonian between the reference
determinant and a doubly-excited determinant. In
what we call the ‘direct RPA’ (dRPA) variant, the
matrices A and B are given by

Aia, jb ¼ hibjaji þ ð�a � �iÞ�ij�ab, ð4aÞ

Bia, jb ¼ hij jabi, ð4bÞ

in terms of orbital energies � and two-electron integrals
in Dirac notation:

hpqjrsi ¼

Z
dx1dx2 ’

?
pðx1Þ’

?
qðx2Þ

1

r12
’rðx1Þ’sðx2Þ ð5Þ

where x is a space-spin coordinate. Indices i, j, k . . .
indicate occupied orbitals, while a, b, c. . . indicate
unoccupied orbitals, so the compound index ia refers
to single excitations. Note that if one has real orbitals,
then in dRPA we have

A ¼ Bþ "e, ð6Þ

where "� is a diagonal matrix of orbital energy
differences.

2.1. The RPA as an approximate coupled-cluster
method

While the plasmonic formulation of RPA has a simple
conceptual appeal, one can also formulate the method

in a seemingly different approach, as a particularly

simple approximate coupled-cluster method [14–16].
The ring diagrams (particle–hole contractions, essen-
tially) can be summed to infinite order if one solves the
Riccati equation

Bþ ATþ TAþ TBT ¼ 0 ð7Þ

for the RPA amplitudes T. The correlation energy can
then be obtained from

E dRPA
c ¼

1

2
TrðBTÞ: ð8Þ

Note that there is some discussion about the appro-
priate definition of the correlation energy in full RPA
(also known as RPA with exchange), in which the
two-electron integrals in A and B are antisymmetrised
[9,17].

While the two formulations of RPA have long been
known in the literature, we recently provided a simple

analytic demonstration of their equivalence [14].
One has

T ¼ YX�1 ð9Þ

and finds that

TrðBTÞ ¼ Trðx� AÞ: ð10Þ

We note in passing that the Riccati equation has
multiple solutions, and in particular that if T is a
solution, so too is T�1, with

TrðBT�1Þ ¼ Trð�x� AÞ: ð11Þ

Our implementation of RPA is in this coupled-cluster
language, and some care should be taken to ensure that
the RPA solution one has found corresponds to the
plasmonic result.

2.2. Self-interaction in the RPA

Because direct RPA includes only the direct term in the
two-electron integrals, it has self-interaction error.
That is, a one-electron system should have T¼ 0 and
Ec¼ 0, and neither is the case with direct RPA. This

self-interaction can be removed from the energy (but
not the wave function) by the second-order screened
exchange (SOSEX) approximation [15,18,19], in which
one solves the dRPA equations for T but then obtains
the correlation energy from

ESOSEX
c ¼

1

2
Tr
�
ðB� KÞT

�
, ð12Þ
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where

Kia, jb ¼ hij jbai: ð13Þ

For one-electron systems, B¼K and the correlation
energy is thus zero even though the dRPA amplitudes
are not. For two-electron singlets, the same-spin block
of K and the same-spin block of B are identical and
SOSEX gives half the dRPA correlation energy. For
many-electron systems, the best that can be said is that
the diagonal elements of B�K vanish.

We should also point out that SOSEX can also be
described by first solving the dRPA equations for T

but then antisymmetrising it:

eTia, jb ¼ Tia, jb � Tib, ja: ð14Þ

The correlation energy is then

ESOSEX
c ¼

1

4
TrðeBeTÞ, ð15Þ

where we have written

eBia, jb ¼ Bia, jb � Bib, ja ¼ Bia, jb � Kia, jb: ð16Þ

This formulation also removes the self-interaction
from the wave function, in the sense that eT ¼ 0 for
one-electron systems. Little attention has been paid to
the proper way of defining SOSEX, and in our opinion
this latter formulation is more correct.

2.3. Closed-shell RPA

Because we are interested primarily in a discussion
of left–right correlation, which implies using a
closed-shell reference, it is helpful to work in a
closed-shell formulation of RPA.

Partitioning a generic matrix M as

M ¼
M"" M"#
M#" M##

� �
, ð17Þ

we write the matrices A, B, K, and T as

A ¼
aþ de a

a aþ de

� �
, ð18aÞ

B ¼
b b

b b

� �
, ð18bÞ

K ¼
k 0

0 k

� �
, ð18cÞ

T ¼
p q

q p

� �
, ð18d Þ

with

aIA,JB ¼ hIBjAJi, ð19aÞ

bIA,JB ¼ hIJjABi, ð19bÞ

ð��ÞIA,JB ¼ ð�A � �IÞ�IJ�AB, ð19cÞ

kIA,JB ¼ hIJjBAi, ð19dÞ

where indices I, J, A, and B refer to spatial orbitals.
The same-spin and opposite-spin blocks of the

Riccati equations become, respectively,

0 ¼ bþ a ðpþ qÞ þ d� pþ ðpþ qÞ aþ p de

þ ðpþ qÞ b ðpþ qÞ, ð20aÞ

0 ¼ bþ a ðpþ qÞ þ de qþ ðpþ qÞ aþ q de

þ ðpþ qÞ b ðpþ qÞ: ð20bÞ

Adding these two equations and writing t¼ pþ q,
we find

0 ¼ bþ aþ
1

2
de

� �
tþ t aþ

1

2
de

� �
þ t b t: ð21Þ

Subtracting the two equations instead gives us

0 ¼ de ðp� qÞ þ ðp� qÞ de: ð22Þ

Inserting the definition of d� and noting that d� is
diagonal, this is simply

0 ¼ ð�A þ �B � �I � �JÞð pIA,JB � qIA,JBÞ ð23Þ

with the obvious solution that p¼ q. In cases when the
orbital energy difference vanishes, any choice for p� q

will do and we may still select p¼ q.
Thus, in the closed shell case we have

T ¼
1

2

t t

t t

� �
ð24Þ

and we obtain t by solving Equation (21), which looks
just like the standard Riccati equation except that one

takes only half the orbital energy difference and works
with spatial orbitals. The correlation energies in dRPA
and SOSEX work out to be, respectively,

E dRPA
c ¼ TrðbtÞ, ð25aÞ

ESOSEX
c ¼ Trðb tÞ �

1

2
TrðktÞ: ð25bÞ

2.4. Static correlation in the RPA

Let us now consider a closed-shell system in which
the orbitals are real and all the orbitals are degener-

ate (thus, d�¼ 0 and a¼ b). In a typical
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molecular calculation, this might be achieved with a
suitable active space. Since all the orbitals are degen-
erate, the correlation in this limit is purely static in
nature. In this special case, the dRPA equation is

ð1þ tÞ b ð1þ tÞ ¼ 0: ð26Þ

When b is positive definite, the only solution is t¼�1
and the dRPA and SOSEX correlation energies are
then, respectively,

E dRPA
c ¼ �hIAjIAi, ð27aÞ

ESOSEX
c ¼ �

1

2
hIAjIAi: ð27bÞ

If b has any zero eigenvalues, then some components of
t are not well defined, but these components do not
contribute to the correlation energy.

If we further specialise to the case of left–right
correlation for two identical atoms at infinite separa-
tion, for which hIAjIAi¼ hIIjII i, the dRPA correlation
energy is exactly correct and is equal to twice the
atomic self-interaction error, while the SOSEX corre-
lation energy is too small by a factor of two. That is,
dRPA has both self-interaction and static correlation,
and SOSEX removes the former but in the course of
doing so also reduces the latter. This is a clear
illustration of the connection between static correlation
and self-interaction from a wave function perspective.

3. Results

While the results we have discussed so far – that
SOSEX recovers only half of the static correlation
energy – are only true in special cases, the general
conclusion that SOSEX greatly reduces the static

correlation energy over dRPA remains true. We

illustrate this with several examples.
All our calculations are done in the development

version of Gaussian [20], using the aug-cc-pVQZ

[21–23] basis set with no counterpoise correction

unless otherwise noted. Because dRPA is most cor-

rectly done from a semi-local reference [11,24,25], we

use PBE orbitals and orbital energies. Curves labelled

‘HF’ report the expectation value of the Hamiltonian

with respect to the PBE determinant (in other words,

the Hartree–Fock energy expression with PBE orbi-

tals), while those labelled ‘SOSEX’ and ‘dRPA’

respectively add to this the SOSEX or dRPA correla-

tion energies of Equation (25).
Figure 1 shows the dissociation curve for H2, for

which, as is well established, dRPA dissociates cor-

rectly [12]. As is typically the case, dRPA and SOSEX

are superimposable at equilibrium, but SOSEX

recovers only a fraction of the static correlation at

dissociation. It might appear that SOSEX recovers

slightly more than half of the static correlation energy.

This is simply due to the fact that SOSEX and dRPA

give different results for the hydrogen atom, which

dRPA predicts to have a non-zero correlation energy.

On an absolute energy scale, as shown in Figure 1(b),

one can see that SOSEX captures exactly half of the

dRPA correlation energy for all bond lengths, as

expected.
A more useful test case is provided by N2, for

which, in the separated atom limit, there are multiple

unoccupied orbitals at the Fermi level. Figure 2 shows

the dissociation for N2. While SOSEX and dRPA are

again superimposable at equilibrium, it is clear that

SOSEX recovers only a small fraction of the static

correlation energy at dissociation. On the absolute

energy scale, we see that SOSEX recovers rather more
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Figure 1. Dissociation of H2 with dRPA and SOSEX. (a) Dissociation relative to two hydrogen atoms. (b) Dissociation on an
absolute energy scale.
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than half of the dRPA correlation energy near

equilibrium and far less than half near dissociation.
We point out the small bumps in the dRPA

dissociation curves; these bumps are endemic to

dRPA, but removed by SOSEX. Presumably, the

bump has something to do with the self-interaction in

dRPA. This is not the only benefit of eliminating the

one-electron self-interaction error. A separate impor-

tant feature is that SOSEX also reduces the enormous

many-electron self-interaction error [7,8] from which

dRPA suffers. One consequence of this is that SOSEX

can more properly dissociate homonuclear diatomic

ions than can dRPA. Yang and co-workers define the

delocalisation error [26] as

2DEdeloc ¼ EðX�2 Þ � EðXÞ � EðX�Þ, ð28Þ

where the energy of the diatomic ion is taken at infinite

separation. The delocalisation error measures the

extent to which a method favours or disfavours an
electronically delocalised state which could be
described as 2 X�1/2 over the electronically localised
state of XþX�. The left panel of Figure 3 shows the
dissociation curve for Heþ2 , while the right panel shows
the delocalisation error for helium. As promised,
SOSEX dramatically improves upon dRPA for these
types of dissociations, though it does not improve
upon the delocalisation error (and hence the
many-electron self-interaction error) present in the
Hartree–Fock energy expression. This is in marked
contrast to more accurate wave function methods, as
illustrated by Table 1.

While dRPA does describe left–right static corre-
lation correctly, albeit at the cost of an unphysical
bump in the dissociation curve, it does not describe
all forms of static correlation exactly. This is readily
seen by considering the beryllium dimer. This sys-
tem is weakly bound, with the characteristic
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Figure 2. Dissociation of N2 with dRPA and SOSEX. (a) Dissociation relative to two nitrogen atoms. (b) Dissociation on an
absolute energy scale.
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Figure 3. Many-electron self-interaction error in helium systems from dRPA and SOSEX. (a) Dissociation of Heþ2 by dRPA and
SOSEX. (b) Delocalisation error in helium from dRPA and SOSEX.
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near-degeneracies between 2s and 2p orbitals of beryl-
lium atoms. The experimental dissociation energy and
bond length are 929.7 cm�1 and 2.454 Å, respectively
[27]. Even high-level calculations yield a fairly broad
dispersion in the results [28–36], but are qualitatively
able to reproduce the binding. This does not seem to be
true either of dRPA or of SOSEX, judging by Figure 4.
These calculations are counterpoise corrected and
basis set extrapolated [37–39] from the aug-cc-pVQZ
and aug-cc-pV5Z results. In this case, neither
Hartree–Fock nor SOSEX give bound curves, and
while dRPA has some binding, it is clearly inadequate
for the description of Be2. Fuchs and Gonze [40] also
considered the dissociation of Be2 with dRPA. Their
calculations agree with ours in finding that dRPA
underbinds Be2, although they find the underbinding
to be less severe than we do. The origins of this
discrepancy presumably have to do with basis set
effects. In this regard it is worth noting that even with
basis set extrapolation, counterpoise correction notice-
ably reduces the binding energy in our calculations.

4. Conclusions

That static correlation and self-interaction are in some
sense related (or, more precisely, that left–right static

correlation and self-interaction are related) seems fairly
clear. It is frustratingly difficult to pin down the
relation analytically; this is no doubt due in part to the
fact that essentially any meaningful wave function
method has no one-electron self-interaction error.
However, direct RPA can be thought of as a
particularly simple wave function method whose
extension to SOSEX removes the one-electron
self-interaction error, reduces the many-electron
self-interaction error, but also worsens the description
of left–right correlation.

Because SOSEX does offer significant improve-
ment in many ways, we believe that the optimal
dRPA-type method would include some fraction of the
exchange that SOSEX adds to dRPA (though perhaps
not all of it). While admixing some part of SOSEX
with dRPA will inevitably degrade the performance for
left–right correlation and thus presumably worsen
thermochemistry, the benefits in terms of reduced
one- and many-electron self-interaction error could be
sizable.
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[28] I. Røeggen and J. Almlöf, Int. J. Quantum Chem. 60,

453 (1996).
[29] S. Evangelisti, G.L. Bendazzoli and L. Gagliardi, Chem.

Phys. 185, 47 (1994).

[30] R.J. Gdanitz, Chem. Phys. Lett. 312, 578 (1999).
[31] J.M.L. Martin, Chem. Phys. Lett. 303, 399 (1999).

[32] A. Krapp, F.M. Bickelhaupt and G. Frenking, Chem.

Eur. J. 12, 9196 (2006).
[33] G.A. Petersson and W.A. Shirley, Chem. Phys. Lett.

160, 494 (1989).
[34] S. Evangelisti, G.L. Bendazzoli, R. Ansaloni, F. Duri

and E. Rossi, Chem. Phys. Lett. 252, 437 (1996).
[35] V. Spirko, J. Mol. Spectrosc. 235, 268 (2006).
[36] K. Patkowski, R. Podeszwa and K. Szalewicz, J. Phys.

Chem. A 111, 12822 (2007).
[37] T. Helgaker, W. Klopper, H. Koch and J. Noga,

J. Chem. Phys. 106, 9639 (1997).
[38] A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper and

J. Olsen, Chem. Phys. Lett. 302, 437 (1999).
[39] A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper,

H. Koch, J. Olsen and A.K. Wilson, Chem. Phys. Lett.

286, 243 (1998).
[40] M. Fuchs and X. Gonze, Phys. Rev. B 65, 235109

(2002).

Appendix 1. Solving the dRPA Equations

Solving the RPA equations as A approaches B (that is, as the
orbital energy gap goes to zero) can be somewhat challeng-
ing. Our approach is essentially a pseudo-Newton method.

Recall that the RPA equation is

Bþ ATþ TAþ TBT ¼ 0: ð29Þ

We define the residual matrix R(T) and the gradient matrix
G(T) as

RðTÞ ¼ Bþ ATþ TAþ TBT, ð30aÞ

GðTÞ ¼ Aþ BT: ð30bÞ

Then given an initial guess T0, the correction to it �T obeys

RðT0Þ þ �TGðT0Þ þGTðT0Þ �Tþ �TB �T ¼ 0: ð31Þ

Neglecting the term of order �T2 and making the approxi-
mation that the gradient is diagonal dominant, we write

�Tia, jb ¼ �
Ria, jb

Gia,ia þ Gjb, jb
: ð32Þ

In order to further assist convergence, we then take

T0 ! T0 þ � �T ð33Þ

where � is chosen to minimise Tr(R(T0þ��T)
2). In the

limiting case that T is a number instead of a matrix, we thus
converge in one iteration; convergence for larger dimensions
is much faster than we would obtain in the usual case where
we instead write

�Tia, jb ¼ �
Ria, jb

�a þ �b � �i � �j
, ð34Þ

where the �’s are orbital energies (and are a part of G, since
they contribute to A).
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