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Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid
density functionals still face challenges when it comes to describing long-range interactions, static
correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals
are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA),
a functional of occupied and virtual orbitals, has recently known a revival within the density func-
tional theory community. Following up on an idea introduced in our recent communication [H. van
Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adia-
batic connections for the correlation energy in terms of pairing matrix fluctuations described by the
particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approxi-
mation to the pp-propagator, we illustrate the potential of density functional approximations based on
pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric,
describes the strong static correlation limit in H2, and eliminates delocalization errors in H+

2 and other
single-bond systems. It gives surprisingly good non-bonded interaction energies – competitive with
the ph-RPA – with the correct R−6 asymptotic decay as a function of the separation R, which we argue
is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underesti-
mate absolute correlation energies, it gives good relative energies: much better atomization energies
than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The
adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density
functional approximations. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4865816]

I. INTRODUCTION

Density functional approximations (DFAs) based on
many-body perturbation techniques may offer solutions to
some of the challenges density functional approximations
continue to face. Commonly used local, semi-local general-
ized gradient, and hybrid density functional approximations
are unmatched in their success for many applications, but are
unable to deal with several fundamental problems for which
there is no straightforward solution.1 The most prominent
problems, such as their persistent delocalization and static
correlation errors and inability to capture long-range inter-
actions, are extremely difficult to solve within the simple
framework of (semi-)local smooth functionals of the density
or gradient.2–4 Continuous functionals of the density or the
Kohn-Sham (KS) density matrix are incapable of describ-
ing the discontinuous piecewise-linear nature of the exact en-
ergy functional,5 which lies at the heart of the static correla-
tion and delocalization errors observed in density functional
approximations.4, 6 Local and semi-local functionals are un-
able to describe long-range interactions, which require a fully
non-local functional.7, 8 As a consequence, slightly more com-
plex ab initio methods that can still be formulated in a com-
putationally efficient manner provide attractive alternatives as
computer speeds continue to increase.9–12 The most notable
density functional method of this kind is perhaps the particle-
hole Random Phase Approximation (ph-RPA).12, 13 The ph-

RPA can be viewed as a density functional through the adi-
abatic connection14, 15 and fluctuation-dissipation16 (ACFD)
theorem. The adiabatic connection forms a direct link be-
tween the correlation energy in the density functional the-
ory (DFT) perspective and the polarization propagator, which
describes density fluctuations in many-body perturbation the-
ory. The ph-RPA provides an approximation to the polariza-
tion propagator and leads to a simple analytical expression
for the correlation energy, equivalent to the sum of all ring
diagrams17, 18 (in this context, the ph-RPA is almost exclu-
sively used in its “direct” formulation, which neglects the ex-
change terms in the two-electron integrals, and so we will
use to term “ph-RPA” to denote the direct ph-RPA). Efficient
implementations reduce its computational cost to O(M4),19, 20

O(M3),21 or even O(M2)22 with M a measure of the system
size – competitive with the cost of a Hartree-Fock (HF) cal-
culation. The ph-RPA has several merits compared to com-
monly used DFAs: it is fully non-local, describes long-range
interactions,7, 23–25 eliminates static correlation errors (it gives
the correct dissociation limit for H2, for instance, Ref. 26),
and is applicable to systems with vanishing gap. But it has
large delocalization errors.27

Following an idea introduced in a recent
communication,28 we formulate an alternative adiabatic
connection for the correlation energy in terms of the particle-
particle propagator, or, equivalently, the pairing matrix
fluctuation, set forth in Sec. II. The adiabatic connection
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we formulate is similar in form to the well-known ACFD
theorem. It is in principle exact. It thus provides a basis
for developing density functional approximations based on
pairing matrix fluctuations. The most straightforward approx-
imation is the pp-RPA,17, 29 the lowest-order approximation
to the pp-propagator. As Sec. II illustrates, it is similar in
form to the ph-RPA. The pp-RPA is a well-known technique
to describe nuclear many-body effects,29 but in contrast to the
ph-RPA it has not received much attention within the DFT
community. Like the ph-RPA, the pp-RPA can be viewed
as an alternative formulation of a coupled-cluster method:
the pp-RPA correlation energy amounts to the sum of all
ladder diagrams.17 As such, it is equivalent to coupled-cluster
doubles (CCD) restricted to ladder diagrams.30–32 Although
the adiabatic connection we formulate lays the foundations
for a wealth of approximations based on pairing matrix
fluctuations, we will take the pp-RPA to be a representative
of density functional approximations based on pairing matrix
fluctuations and the ph-RPA as a representative of functionals
based on density fluctuations. Section IV illustrates some
of the main differences between the two types of RPA with
numerical examples.

II. PAIRING MATRIX FLUCTUATIONS
AND THE ADIABATIC CONNECTION

A. Pairing matrix fluctuations

The particle-particle propagator describes instantaneous
pairing matrix fluctuations. For a system with a fixed num-
ber of electrons N, for which 〈N̂2〉 = 〈N̂〉2, the pairing matrix
κ is identically zero, because it involves components of the
wavefunction with different electron numbers,

κij = 〈�0|aiaj |�0〉.

Although most quantum chemical methods restrict them-
selves to eigenstates of the electron number operator N̂ ,
it may be beneficial to break particle number symmetry
while preserving the electron number expectation value,
〈N̂〉 = N .10 In its time-dependent form, the retarded particle-
particle (pp-) propagator,

K̄ijkl(t − t ′)

= −i

¯
θ (t − t ′)

〈
�N

0

∣∣[aHi
(t)aHj

(t), a†
Hl

(t ′)a†
Hk

(t ′)]
∣∣�N

0

〉
, (1)

describes the response of the pairing matrix to a perturbation
in the form of a pairing field, F̂ (t) = ∑

kl fkl(t)a
†
l a

†
kθ (t). The

operators a
†
Hi

(t) are the creation operators in the Heisenberg

picture, a
†
Hi

(t) = e
i
¯

(Ĥ−νN̂ )a
†
i e

−i
¯

(Ĥ−νN̂ ) and the term −νN̂ ,
with ν the chemical potential, is added to the Hamiltonian
such that the N-electron state is the minimum under the total
Hamiltonian Ĥ − νN̂ when the particle number is allowed to
change. Under the influence of such a pairing perturbation, the
pairing matrix no longer vanishes, and its change is described

by the pp-propagator in the linear response regime,

κij (t) = −i

¯

∫ +∞

−∞

〈
�N

0

∣∣[aHi
(t)aHj

(t), F̂H (t ′)]
∣∣�N

0

〉
dt ′

=
∫ +∞

−∞

∑
kl

K̄(t − t ′)ijklfkl(t
′)dt ′,

where F̂H (t) = ∑
kl fkla

†
Hl

(t)a†
Hk

(t)θ (t) is the Heisenberg
form of the pairing field. Since the pairing matrix vanishes
for the N-electron ground state, the particle-particle propaga-
tor completely describes the dynamic fluctuation of the pair-
ing matrix, i.e.,

K̄ijkl(t − t ′) = −i

¯
θ (t − t ′)

〈
�N

0

∣∣[(aHi
(t)aHj

(t) − 〈aiaj 〉),

(a†
Hl

(t ′)a†
Hk

(t ′) − 〈a†
l a

†
k〉)]

∣∣�N
0

〉
.

From its Fourier transform to the energy domain it is appar-
ent that the retarded particle-particle propagator characterizes
double electron addition and ionization processes,

K̄(E)ijkl =
∫ +∞

−∞
e

i
¯
E(t−t ′)K̄ijkl(t − t ′)d(t − t ′)

=
∑

n

〈
�N

0

∣∣aiaj

∣∣�N+2
n

〉〈
�N+2

n

∣∣a†
l a

†
k

∣∣�N
0

〉
E − ωN+2

n + iη

−
∑

n

〈
�N

0

∣∣a†
l a

†
k

∣∣�N−2
n

〉〈
�N−2

n

∣∣aiaj

∣∣�N
0

〉
E − ωN−2

n + iη
, (2)

since its poles determine the double electron addition and
ionization energies, ωN+2

n = EN+2
n − EN

0 − 2ν and ωN−2
n

= EN
0 − EN−2

n − 2ν, and the residues determine the corre-
sponding transition amplitudes. These properties of the pp-
propagator have been used to compute Auger spectra, which
involve double ionization processes, with the pp-RPA.33, 34

The time-ordered pp-propagator K,

Kijkl(t − t ′) = −i

¯

〈
�N

0

∣∣T [aHi
(t)aHj

(t)a†
Hl

(t ′)a†
Hk

(t ′)]
∣∣�N

0

〉
with T the time-ordering operator, differs only from the re-
tarded propagator K̄ in the position of its poles in the negative
real plane,

Kijkl(E) =
∫ +∞

−∞
e

i
¯
E(t−t ′)Kijkl(t − t ′)d(t − t ′)

=
∑

n

〈
�N

0

∣∣aiaj

∣∣�N+2
n

〉〈
�N+2

n

∣∣a†
l a

†
k

∣∣�N
0

〉
E − ωN+2

n + iη

−
∑

n

〈
�N

0

∣∣a†
l a

†
k

∣∣�N−2
n

〉〈
�N−2

n

∣∣aiaj

∣∣�N
0

〉
E − ωN−2

n − iη
. (3)

The retarded and time-ordered propagator therefore carry
much of the same physical information. However, as is the
case with the linear response, it is often more convenient to
adopt the time-ordered propagator to which the methodology
of many-body perturbation theory applies.35
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For a non-interacting reference wavefunction, the
particle-particle propagator K0 becomes

K0
ijkl(E) = δikδjl

θ (i − F )θ (j − F )

E − (εi + εj − 2ν) + iη

− δikδjl

θ (F − i)θ (F − j )

E − (εi + εj − 2ν) − iη
, (4)

where F denotes the Fermi level and θ the Heaviside func-
tion, so the left term generates particle-particle terms and the
right term generates hole-hole terms. As the pp-propagator is
antisymmetric under the exchange of two electrons, Kijkl(E)
= −Kjikl(E), we have used here (and in the following) an an-
tisymmetric basis in which the two-particle indices ij are re-
stricted, i < j. The non-interacting propagator is the particle-
particle propagator in the uncorrelated limit, and provides a
basis in which the exact propagator is approximated in many-
body perturbation theory. The adiabatic connection is par-
ticularly valuable in this context, as it forms an energetic
link between the exact, fully interacting, system described
by K and the non-interacting reference system described
by K0.

B. Adiabatic connections in terms of pairing
matrix fluctuations

The pp-propagator describes pairing matrix fluctuations
and, similar to the well-known ACFD theorem, pairing matrix
fluctuations determine the correlation energy via the adiabatic
connection. We formulate such an adiabatic connection in this
section. It relates the linear response of a system under an ex-
ternal pairing perturbation to its correlation energy in equi-
librium and is therefore also a type of fluctuation-dissipation
theorem.16

The energy of a system involving at most two-particle
interactions is determined by its second order density
matrix 
,


ijkl = 〈
�N

0

∣∣a†
i a

†
j alak

∣∣�N
0

〉
=

∑
n

〈
�N

0

∣∣a†
i a

†
j

∣∣�N−2
n

〉〈
�N−2

n

∣∣alak

∣∣�N
0

〉
, (5)

but it can also be formulated in terms of other second-order
metric matrices, like the G-matrix G,

Gijkl = 〈
�N

0

∣∣a†
i aj a

†
l ak

∣∣�N
0

〉
=

∑
n

〈
�N

0

∣∣a†
i aj

∣∣�N
n

〉〈
�N

n

∣∣a†
l ak

∣∣�N
0

〉
. (6)

In the second line in Eqs. (5) and (6) we have used the com-
pleteness of the basis to make the relationship between these
second-order metric matrices and the residues of the prop-
agators (such as Eq. (3)) more apparent. All such second-
order metric matrices are linearly interrelated via the anti-
commutation relationships of the creation and annihilation
operators; for instance 
ijkl = −Gilkj + δjlγik = Gjlki

− δilγjk, where γik is the first-order density matrix, γij

= 〈�N
0 |a†

i aj |�N
0 〉. As a consequence, the adiabatic connec-

tion can be formulated equivalently in terms of G and 
. The

adiabatic connection path is defined by the Hamiltonian Ĥλ,

Ĥλ = ĥ + ûλ + λV̂ , (7)

where ĥ = t̂ + v̂ext and ûλ is so far only specified in the limits
λ = 0 and λ = 1: û0 is the effective potential that defines
the non-interacting reference system and û1 = 0. This ensures
that Ĥλ corresponds to the non-interacting Hamiltonian Ĥ0

when λ = 0 and to the physical Hamiltonian Ĥ when λ = 1.
The adiabatic connection is then

E − E0 =
∫ 1

0
〈�λ|∂Ĥλ

∂λ
|�λ〉dλ

= tr
∫ 1

0
V�λdλ + tr

∫ 1

0

∂uλ

∂λ
γ λdλ,

where

E0 = 〈�0|Ĥ0|�0〉
= tr (h + u0)γ 0.

Using the exact exchange functional,

EHF [γ 0] = 〈�0|Ĥ |�0〉

= tr
∫ 1

0
V�0dλ + tr ĥγ 0,

as a reference, the correlation energy Ec ≡ E − EHF[γ 0]
becomes

Ec = tr
∫ 1

0
V(�λ − �0)dλ + tr u0γ

0

+ tr
∫ 1

0

∂uλ

∂λ
γ λdλ.

Given the linear relation between the second order density
matrix and the G-matrix, this gives rise to two equivalent
formulae for the correlation energy:

Ec = tr
∫ 1

0
V(�λ − �0)dλ + tr u0γ

0 + tr
∫ 1

0

∂uλ

∂λ
γ λdλ

(8)

Ec = tr
∫ 1

0
Ṽ(Gλ − G0)dλ −

∑
ijk

∫ 1

0
〈ij |ki〉(γ λ

jk − γ 0
jk

)
dλ

+ tr u0γ
0 + tr

∫ 1

0

∂uλ

∂λ
γ λdλ, (9)

where

〈ij |kl〉 =
∫

φ∗
i (x1)φ∗

j (x2)φk(x1)φl(x2)

|r1 − r2| dx1dx2,

Ṽijkl = 〈il|jk〉, and Vijkl = 〈ij ||kl〉 = 〈ij |kl〉 − 〈ji|kl〉.
There are several ways to choose the adiabatic connection
path. Conventionally, the ph-RPA has been used in conjunc-
tion with the constant-density adiabatic connection path.14

In Subsections II B 1–II B 5, we formulate the constant-
density adiabatic connection path in terms of pairing matrix
fluctuations and explore more general integration schemes.
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1. Constant-density adiabatic connection path

The potential ûλ(r) can be a local potential, chosen so
that the density remains constant along the adiabatic connec-
tion path, ρ0 = ρλ = ρ, as in the formulation by Langreth
and Perdew.14 Equations (8) and (9) can then be simplified,
because

tr u0γ
0 + tr

∫ 1

0

∂uλ

∂λ
γ λdλ = tr u0ρ + tr (u1 − u0)ρ = 0

(10)

vanishes as û1 = 0 to be consistent with the physical Hamil-
tonian (Eq. (7)). The adiabatic connections (Eqs. (8) and (9))
then reduce to

Ec = tr
∫ 1

0
V(�λ − �0)dλ (11)

and

Ec = tr
∫ 1

0
Ṽ(Gλ − G0)dλ. (12)

The G-matrix can be derived from the polarization propagator
�, which describes density fluctuations

�(E)ijkl =
∑
n�=0

〈
�N

0

∣∣a†
i aj

∣∣�N
n

〉〈
�N

n

∣∣a†
l ak

∣∣�N
0

〉
E − ωN

n + iη

−
∑
n�=0

〈
�N

0

∣∣a†
i aj

∣∣�N
n

〉〈
�N

n

∣∣a†
l ak

∣∣�N
0

〉
E + ωN

n − iη

resulting in the well-known ACFD theorem

Ec = tr
∫ 1

0
Ṽ(Gλ − G0)dλ

= −1

2πi

∫ 1

0

∫ +i∞

−i∞
e−Eηtr Ṽ[�λ(E) − �0(E)]dEdλ

(13)

= −1

2πi

∫ 1

0

∫ +i∞

−i∞
e−Eη

∫
dxdx′

×
∫

�λ(x, x′, E) − �0(x, x′, E)

|r − r′| dEdλ. (14)

This equation has been extensively used in conjunction with
the ph-RPA, the lowest-order approximation to the polariza-
tion propagator �. The second-order density matrix can be
derived from the pp-propagator (3), resulting in an equiva-
lent adiabatic connection for the correlation energy in terms
of pairing matrix fluctuations:

Ec = tr
∫ 1

0
V(�λ − �0)dλ

= −1

2πi

∫ 1

0

∫ +i∞

−i∞
eEηtr V[Kλ(E) − K0(E)]dEdλ (15)

= −1

2πi

∫ 1

0

∫ +i∞

−i∞
eEη

×
∫

dxdx′ K
λ(x, x′, E) − K0(x, x′, E)

|r − r′| dE. (16)

This adiabatic connection formulates the correlation energy in
terms of dynamic pairing matrix fluctuations and is therefore
also a fluctuation-dissipation theorem.

2. Harris-Jones adiabatic connection path

The Harris-Jones adiabatic connection provides an al-
ternative to the constant-density adiabatic connection.36 The
potential ûλ is local and linear in lambda, ûλ = (1 − λ)û0,
such that Ĥλ = ĥ + (1 − λ)û0 + λV̂ . The density is not con-
strained except at the end points, ρ1 = ρ0. The one-electron
part in Eqs. (8) and (9) is then

tr u0γ
0 + tr

∫ 1

0

∂uλ

∂λ
γ λdλ = −tr

∫ 1

0
u0(ρλ − ρ0)dλ,

so that Eqs. (8) and (9) reduce to

Ec = tr
∫ 1

0
V(�λ − �0)dλ − tr

∫ 1

0
u0(ρλ − ρ0)dλ, (17)

Ec = tr
∫ 1

0
Ṽ(Gλ − G0)dλ −

∑
ijk

∫ 1

0
〈ij |ki〉(γ λ

jk − γ 0
jk

)
dλ

− tr
∫ 1

0
u0(ρλ − ρ0)dλ, (18)

where the density changes along the adiabatic connection
path.

3. Linear adiabatic connection path without
density constraints

The linear adiabatic connection path ûλ = (1 − λ)û0 can
also be used with a – possibly non-local – potential û0 for
which ρ0 �= ρ1. This makes it possible to establish an adia-
batic connection between the interacting system and any un-
correlated reference:

Ec = tr
∫ 1

0
V(�λ − �0)dλ − tr

∫ 1

0
u0(γ λ − γ 0)dλ, (19)

Ec = tr
∫ 1

0
Ṽ(Gλ − G0)dλ −

∑
ijk

∫ 1

0
〈ij |ki〉(γ λ

jk − γ 0
jk

)
dλ

− tr
∫ 1

0
u0(γ λ − γ 0)dλ. (20)

In contrast to the constant-density or the Harris-Jones adia-
batic connection, which requires the exact KS reference po-
tential to satisfy the density constraint ρ0 = ρ1, this adiabatic
connection is valid for any non-interacting reference.

4. Generalized adiabatic connection paths

The linear dependence of the Hamiltonian Eq. (7) on the
interaction strength can be further generalized: the electron-
electron interaction may have a nonlinear dependence on the
interaction strength λ37 as long as the end points 0 and b
correspond to the non-interacting reference system and the
fully interacting system.37 Assuming the form Ĥ = ĥ + ûλ
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+ Ŵλ, with ûb = 0, Ŵ0 = 0, and Ŵb = 1
r12

, the energy can be
expressed as

E − E0 =
∫ b

0
〈�λ|∂Ĥλ

∂λ
|�λ〉dλ

= tr
∫ b

0

∂Wλ

∂λ
�λdλ + tr

∫ b

0

∂uλ

∂λ
γ λdλ, (21)

E − EHF [γ 0] = tr
∫ b

0

∂Wλ

∂λ
�λdλ − tr V�0 + tr u0γ

0

+ tr
∫ b

0

∂uλ

∂λ
γ λdλ. (22)

If the potential ûλ is local and chosen to keep the density con-
stant along the adiabatic connection path, similar to Eq. (10),

tr
∫ b

0

∂uλ

∂λ
γ λdλ = −tr u0ρ

0,

so Eq. (22) simplifies to

E − EHF [γ 0] = tr
∫ b

0

∂Wλ

∂λ
�λdλ − tr V�0 (23)

= tr
∫ b

0

∂Wλ

∂λ
�λdλ − tr Wb�

0. (24)

A suitable choice for the nonlinear potential Ŵλ is, for exam-
ple, the error function, for which the fully interacting system
is obtained at b = 1,

Ŵ
erf

λ (r12) = erf
(

λ
1−λ

r12
)

r12

and the correlation energy expression (23) becomes

E − EHF [γ 0] = tr
∫ 1

0

∂Werf

λ

∂λ
�λdλ − tr V�0

with

∂Ŵ
erf

λ (r12)

∂λ
= 2e−( λ

1−λ
r12)2

√
π (1 − λ)2

.

5. Numerical illustrations on the adiabatic connection
in terms of pairing matrix fluctuations

From a practical point of view, the constant-density adia-
batic connection path is most useful as it only requires knowl-
edge of the pp-propagator Kλ along the adiabatic connection
path. We will use this form of the adiabatic connection in the
numerical illustrations of the lowest-order approximation to
the pp-propagator, the particle-particle random phase approx-
imation in Sec. IV. We will analyze the pp-RPA energy con-

tribution along the adiabatic connection, given by U(λ),

U (λ)pp = tr V(�λ − �0)

= −1

2πi

∫ +i∞

−i∞
eEηtr V[Kλ(E) − K0(E)]dE

=
∑

n

o+v∑
p<q,r<s

(
χn,N−2

rs

)∗
χn,N−2

pq Vpqrs −
o∑

i<j

Vijij ,

(25)

such that the area under the graph of U(λ) represents the
correlation energy, Ec = ∫ 1

0 U (λ)dλ. In the above equation
χ

n,N−2
ij = 〈�N−2

n |aiaj |�N
0 〉. For comparison, we will show

analogous plots for the ph-RPA correlation energy,

U (λ)ph = tr Ṽ(Gλ − G0)

= −1

2πi

∫ +i∞

−i∞
e−Eηtr Ṽ[�λ(E) − �0(E)]dE

=
∑

n

o∑
ij

v∑
ab

(
χn

jb

)∗
χn

iaṼiajb −
o∑
i

v∑
a

Ṽiaia, (26)

where χn
ia = 〈�N

n |a†
aai |�N

0 〉. The accurate reference calcula-
tions we will compare to are based on the variationally op-
timized second-order density matrix (v2DM) method under
two-positivity conditions,38–40

U (λ)v2DM = tr V(�λ − �0), (27)

where the density is assumed to be constant, just like in the
pp-RPA and ph-RPA calculation, although this assumption
is not generally valid. Unless the density is explicitly con-
strained along the adiabatic connection path, it changes with
the interaction strength, and only expression (19) is exact in
this case. We therefore also present v2DM reference calcula-
tions using expression (19)

U (λ)v2DM∗ = tr V(�λ − �0) − tr u0(γ λ − γ 0). (28)

Since this adiabatic connection makes no assumption on the
density along the path and the two-positivity conditions are
exact for two-electron systems, Eq. (28) yields exact refer-
ence values for two-electron systems and generally very ac-
curate values for three- and four-electron systems. Note that
the exact U(λ) along this adiabatic connection path is not nec-
essarily convex, unlike U(λ) along the constant-density adia-
batic connection path. The pp-RPA adiabatic connection path
is illustrated and further discussed in Figures 1–5 and Sec. IV.

C. The particle-particle random phase approximation

The adiabatic connection (16) is in principle exact, but –
just like the adiabatic connection in terms of the polarization
propagator – it requires an expression for the pp-propagator at
each interaction strength. The pp-RPA is the most straightfor-
ward approximation to the pp-propagator; it makes the propa-
gator’s dependence on the interaction strength explicit. It ap-
proximates the interacting propagator K, Eq. (3), in terms
of the uncorrelated propagator K0, Eq. (4), in the form of a
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FIG. 1. In H2 near equilibrium, the pp-RPA slightly underestimates the cor-
relation energy, given by the area under the curve of U(λ) along the constant-
density path, Eq. (25). The v2DM* curve shows the exact correlation energy,
obtained by the adiabatic connection of Eq. (28), while the v2DM curve as-
sumes a constant-density along the path as an approximation, Eq. (27).

Dyson-like equation, similar in form to the ph-RPA,

Kλ(E) = K0(E) + λK0(E)VKλ(E), (29)

where all operators are expressed in an anti-symmetrical basis
with restricted two-particle indices ij for which i < j. Since
the non-interacting propagator K0 only has particle-particle
and hole-hole terms the dimension of the matrices K0 and K
in the pp-RPA is o

2 (o − 1) + v
2 (v − 1), where o is the number

of holes (occupied orbitals) and v is the number of particles
(virtual orbitals). The Dyson-like approximation (29) makes
it possible to carry out the lambda-integration in (16) ana-
lytically and write the correlation energy in closed form by
recognizing that the Dyson-like equation generates an infinite
series equivalent to the Taylor expansion for ln(I − K0V):

Ec
pp = −1

2πi

∫ 1

0

∫ +i∞

−i∞
tr [Kλ(E)V − K0(E)V]dEdλ

= −1

2πi

∫ 1

0

∫ +i∞

−i∞

∞∑
n=2

λn−1tr [(K0V)n]dEdλ

= − 1

2πi

∫ +i∞

−i∞

∞∑
n=2

1

n
tr [(K0V)n]dE (30)
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FIG. 2. In H2 at 10 Å the pp-RPA and the ph-RPA significantly underesti-
mate the correlation energy, given by the area under their respective curves,
leading to the unphysical barrier in the dissociation graph for H2. The area
under the v2DM* curve shows the exact correlation energy and the v2DM
curve shows an approximate constant-density path.
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FIG. 3. For two H atoms separated by 10 000 Å the pp-RPA and the ph-RPA
correctly reproduce the strong static correlation energy, given by the area
under their respective curves. The area under the v2DM* curve shows the
exact correlation energy and the v2DM curve shows an approximate constant-
density path.

= 1

2πi

∫ +i∞

−i∞
tr [ln(I − K0V) + K0V]dE. (31)

This is just one way to characterize the pp-RPA correlation
energy. The Dyson-like equation can be reformulated as an
eigenvalue problem by multiplying each side of the equation
by (E − ωN−2

n ) and subsequently taking the limit E → ωN−2
n

to single out the terms that have (E − ωN−2
n ) in the denomi-

nator on each side of the Dyson-like equation. This reveals a
symplectic eigenvalue problem in the eigenvalues ωn and the
eigenvectors χn,∑

c<d

(
Vabcd + δacδbdω

0
ab

)
χn

cd +
∑
h<i

Vabhiχ
n
hi = ωnχ

n
ab,

∑
c<d

Vhicdχ
n
cd +

∑
j<k

(
Vhijk − δjhδikω

0
hi

)
χn

jk = −ωnχ
n
hi,

where ω0
pq = εp + εq − 2ν. The same set of equations

emerges for the double electron addition energies ωN+2
n .

These equations can be written in the form Rχ = ωMχ with

M =( 1 0
0 −1

)
or

(
A B

B† C

)(
X

Y

)
= ω

(
1 0

0 −1

)(
X

Y

)
(32)
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FIG. 4. The pp-RPA correctly adds no correlation energy to the exact ex-
change in H+

2 at 10 Å and is thus self-interaction free, while the ph-RPA has
a large self-interaction error, given by the area under its curve.
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FIG. 5. The pp-RPA correctly produces a small correlation energy for He+
2 at

10 Å, given by the area under the curve, while the ph-RPA adds such a large
correlation energy to the exact exchange that it fails to bind He+

2 . The area
under the v2DM* curve shows the exact correlation energy and the v2DM
curve shows an approximate constant-density path.

when the eigenvectors are divided up into pp-vectors x and
hh-vectors y and the matrix R is divided accordingly into sub-
matrices A, B, and C, defined as

Aabcd = 〈ab‖cd〉 + δacδbdω
0
ab,

Babij = 〈ab‖ij 〉, (33)

Cijkl = 〈ij‖kl〉 − δikδjlω
0
ij .

The indices a, b are particle indices and i, j are hole
indices restricted to a < b and i < j, and ν is the
chemical potential. While the inclusion of the chemical
potential is not strictly necessary, it conveniently shifts the
double electron addition energies ωN+2

n to be positive and the
double ionization energies ωN−2

n to be negative. Due to the
use of an antisymmetrized basis, the dimension of the ma-
trix A is Npp ≡ v

2 (v − 1) and the dimension of the matrix C
is Nhh ≡ o

2 (o − 1). The correlation energy (31) can then be
written in terms of the eigenvalues ωn (in a similar fashion to
the ph-RPA,17 see Ref. 28 for a full derivation),

Ec
pp =

Npp∑
n

ωN+2
n − tr A = −

Nhh∑
n

ωN−2
n − tr C. (34)

The symplectic eigenvalue problem (32) can also be de-
rived from the equations of motion (EOM) for the N + 2
(or N − 2) electron excited states generated by the oper-
ators Ôn = ∑

ab Xn
aba

†
ba

†
a − ∑

ij Y n
ij a

†
j a

†
i (or their Hermitian

conjugate).29 From the Schrödinger equation, an exact dou-
ble electron addition operator Ôn = |�N+2

n 〉〈�N
0 | must sat-

isfy [Â, [Ĥ , Ôn]] = (EN+2
n − EN

0 )[Â, Ôn] for any operator
Â. Projecting onto an uncorrelated reference wavefunction,
this leads to〈

�N
0

∣∣[apaq, [Ĥ , Ôn]]
∣∣�N

0

〉 = ωn

〈
�N

0

∣∣[apaq, Ô
n]

∣∣�N
0

〉
(35)

which is completely equivalent to Eq. (32), as the elements
〈�N

0 |[apaq, [Ĥ , a
†
s a

†
r ]]|�N

0 〉 in 〈�N
0 |[apaq, [Ĥ , Ôn]]|�N

0 〉 re-
duce to elements of the pp-RPA matrix R and the commuta-
tors 〈�N

0 |[apaq, a
†
s a

†
r ]|�N

0 〉 in 〈�N
0 |[apaq, Ô

n]|�N
0 〉 are either

zero or one depending on the pp- or hh-nature of the indices

pq and rs: 〈
�N

0

∣∣[apaq, [Ĥ , a†
s a

†
r ]]

∣∣�N
0

〉 = Rpqrs,〈
�N

0

∣∣[apaq, a
†
s a

†
r ]

∣∣�N
0

〉 = Mpqrs .

The pp-RPA energy can alternatively be interpreted as
the sum of all ladder diagrams: every term of the infinite se-
ries in Eq. (30) corresponds to a ladder diagram of increasing
order. As the summation of all ladder diagrams, the pp-RPA
is equivalent to the CCD restricted to ladder diagrams,10, 30, 32

Ec
pp = tr [TB],

where the CCD amplitude matrix T is a solution to the Riccati
equation

T†A + T†BT† + B† + CT† = 0. (36)

The matrices A, B, and C are equivalent to those in the sym-
plectic eigenvalue equation (32). This equation can be eas-
ily obtained from the eigenvalue equation (32) by identify-
ing T = (YX−1)†.31, 32 Since the ladder diagrams summed to
obtain the correlation energy are all connected diagrams, the
pp-RPA is size-extensive.35

D. Stability of the particle-particle random
phase approximation

The pp-RPA does not suffer from instabilities like the ph-
random phase approximation with exchange (RPAX), i.e., the
ph-RPA with exchange in the two-electron integrals. The ph-
RPA is almost exclusively used in its “direct” formulation,
which neglects the exchange terms in the two-electron inte-
grals, within the DFT community. This preference is moti-
vated by the inherent instability of the ph-RPAX, but neglect-
ing exchange terms also makes it easier to reduce its com-
putational cost via resolution-of-the-identity or density-fitting
techniques. Even though the pp-RPA fully accounts for the
anti-symmetry of the pp-propagator, it does not suffer from
such instabilities. In contrast to the ph-RPAX matrix, which
determines the stability of the reference wavefunction under
orbital rotations and therefore often breaks down in cases with
near-degeneracies, the pp-RPA matrix determines the stabil-
ity of the reference wavefunction under double ionization or
electron addition.

The energies for a physical system at integer electron
number decrease monotonically in a convex manner:

EN+2
0 − EN+1

0 ≥ EN+1
0 − EN

0

≥ EN
0 − EN−1

0 ≥ EN−1
0 − EN−2

0 . (37)

This means that the system is stable with respect to the
propornation reaction from two N-electron systems to an
N + 2 and an N − 2 electron system. Since the chemical po-
tential can be defined as either the left- or right-derivative of
the energy with respect to electron number,

ν+ = EN+1
0 − EN

0 ,

ν− = EN
0 − EN−1

0 ,
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the inequalities (37) can be written as

EN+2
0 − EN

0 − 2ν+ ≥ 0,

EN
0 − EN−2

0 − 2ν− ≤ 0,

so the double electron addition and removal energies defined
before are positive and negative, respectively,

ωN+2
n = EN+2

n − EN
0 − 2ν ≥ 0,

ωN−2
n = EN

0 − EN−2
n − 2ν ≤ 0,

where the chemical potential ν ∈ [ν+, ν−]. This physical
requirement on the wavefunction implies that the pp-RPA
matrix is positive-semidefinite. For any c = ∑

nanχ
i,∑

ijkl

c∗
kl

〈
�N

0

∣∣[akal, [H, a
†
j a

†
i ]]

∣∣�N
0

〉
cij

= c†Rc

=
Npp+Nhh∑

mn

a∗
n(χn)†Rχmam

=
Npp+Nhh∑

mn

ωma∗
n(χn)†Mχmam

=
Npp+Nhh∑

n

ωm|an|2(χn)†Mχn

=
Npp∑
n

ωN+2
n |an|2|(χn)†Mχn|

+
Nhh∑
n

( − ωN−2
n

)|an|2|(χn)†Mχn|

≥ 0.

Here we have used the orthogonality of the eigenvectors,
(χn)†Mχm = 0 for m �= n and the normalization of the eigen-
vectors: eigenvectors dominated by pp-elements involve the
(N + 2)-electron states, have a positive norm (χn)†Mχn > 0
and can thus be normalized to 1, whereas eigenvalues domi-
nated by hh-elements involve the (N − 2)-electron states, have
a negative norm (χn)†Mχn < 0 and can thus be normalized
to −1. So the stability of the state under double ionization
and electron addition implies that the pp-RPA matrix is pos-
itive semi-definite. Conversely, positive-semidefiniteness of
the pp-RPA matrix guarantees that the symplectic eigenvalue
problem produces Npp real positive double electron addition
energies and Nhh real negative double ionization energies50

and therefore assures that the correlation energy Eq. (34) is
real.

The Hartree-Fock ground state for systems described
by repulsive Coulombic interactions must satisfy the sta-
bility requirement. From the EOM perspective, Eq. (35),
it is clear that the elements of the pp-RPA matrix (32)
are the elements of the double commutator matrix Rklij

= 〈�N
0 |[akal, [H, a

†
j a

†
i ]]|�N

0 〉 which determines the second
derivative of the energy with respect to double ionization
or electron removal. Suppose eiû|�N

0 〉, with û a double

ionization/electron addition operator û = 1
2

∑
ij uij a

†
j a

†
i

+ u∗
ij aiaj , represents a small transformation of the uncor-

related wavefunction �N
0 that breaks the particle number

symmetry, since û does not commute with the electron
number operator N̂ . The second-order derivative of the
energy under such a transformation, evaluated at �N

0 is

∂2E

∂u∗
kl∂uij

∣∣∣∣
û=0

= ∂2

∂u∗
kl∂uij

〈
�N

0

∣∣e−iûĤ eiû
∣∣�N

0

〉∣∣∣∣
û=0

= 〈
�N

0

∣∣[akal, [Ĥ , a
†
j a

†
i ]]

∣∣�N
0

〉
.

If the double commutator matrix R is not positive-
semidefinite, the eigenvectors with negative eigenvalue
indicate that there exists a Bogoliubov transformation to a
superfluid state with 〈N̂〉2 �= 〈N̂2〉 and non-vanishing pairing
matrix with lower energy. This is impossible: the energy
contribution from the non-zero pairing matrix in such a state
is of the form

∑
p<q,r<s κ∗

pqVpqrsκrs
17 and is manifestly

positive for a repulsive interaction V̂ . The pp-RPA based
on a HF reference must therefore have real eigenvalues and
correlation energies.

III. COMPUTATIONAL DETAILS

The numerical illustrations on the pp-RPA in Sec. IV are
post-HF or post-KS calculations based on HF or KS reference
wavefunctions from Gaussian0341 for the dissociation graphs
and HF or KS reference wavefunctions from QM4D42 for the
weakly bound dimers. For the subsequent pp-RPA calcula-
tions, we used our own implementation. For the discussion of
the molecular dissociation graphs and the adiabatic connec-
tion, we used the local density approximation (LDA) refer-
ence, while for the weakly bonded dimers we used HF ref-
erences to enable comparison to second-order Möller-Plesset
perturbation theory (MP2). For the accurate reference calcu-
lations along the adiabatic connection path we used our own
semi-definite optimization algorithm to optimize the second-
order density matrix under two-positivity conditions.38 We
denote this method as “v2DM.”

We used a cc-pVDZ basis set for the calculations of the
dissociation graphs and adiabatic connection graphs, a carte-
sian d-aug-cc-pVTZ basis sets for the Ar dimer and aug-cc-
pVDZ for the other van der Waals systems, both limited to
f-angular momentum functions.

IV. NUMERICAL ILLUSTRATIONS ON THE pp-RPA

The adiabatic connection (31) provides a framework for
developing density functionals based on pairing matrix fluc-
tuations. The most straightforward functional is perhaps the
pp-RPA, the lowest order approximation to the pp-propagator,
which may serve as an illustration of this new path for devel-
oping density functionals. We therefore examine the pp-RPA
in this section with applications to molecular dissociation and
thermodynamic properties. We focus in particular on its com-
parison to the ph-RPA, since the two RPAs can be viewed
as representatives of the two different adiabatic connection
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perspectives for the exact exchange-correlation energy,
Eqs. (14) and (16).

The pp-RPA gives the correct dissociation limit for
the two paradigmatic cases for strong static correlation and
delocalization, H2 and H+

2 .28 The most commonly used
functionals today, local density approximations, generalized
gradient approximations, and hybrid density functional
approximations, fail to describe both dissociation limits well
within a restricted framework. The success of these DFAs
for many applications relies on error cancellations between
the exchange and correlation part of the functionals, so they
fail to describe the extremes of the spectrum, where either
correlation or exchange dominate. The H2 and H+

2 molecules
are paradigmatic examples of these extremes: describing the
dissociated H2 correctly requires strong left-right static corre-
lation, which DFAs typically underestimate, while describing
the dissociated H+

2 requires exact exchange but no correla-
tion, so even hybrid functionals that mix in a fraction of exact
exchange fail to describe the two extremes. The pp-RPA pro-
duces the correct dissociation limit for both H2 and H+

2 , while
the ph-RPA fails to bind the H+

2 ion.28 At shorter bond lengths,
near 10 Å, the pp-RPA energy for H2 shows an unphysical
repulsion, which is also present in the ph-RPA energy, albeit
to lesser extent. This unphysical barrier for dissociation
occurs for different references and its origin in the ph-RPA
has been the object of speculation, with some authors at-
tributing it to the lack of self-consistency43, 44 – although this
hypothesis has recently been rejected by actual self-consistent
implementations45 – and others attributing it to the lack of
higher order excitations in the ph-RPA.26 Unlike the ph-RPA,
the pp-RPA is self-interaction free: it reduces to the HF func-
tional for one-electron systems. So it has no delocalization
error for the dissociated H+

2 molecule and produces equally
good potential energy functions for less trivial odd-electron
systems.28 The ph-RPA has large self-interaction errors for
these systems; it adds such a large correlation energy to the
exact exchange that the H+

2 and He+
2 molecules are not bound.

The adiabatic connection provides an additional perspec-
tive on the pp-RPA energy contribution as a function of the
interaction strength. Figs. 1–3 illustrate the correlation energy
contribution in the pp-RPA along the adiabatic connection
path for H2. In the dissociation limit, the pp-RPA energy along
the constant-density adiabatic connection path approaches the
step function, much like the exact connection. Near equilib-
rium, the pp-RPA energy along the constant-density adiabatic
connection path has the exact initial slope but falls short in
the interacting limit and therefore slightly underestimates the
correlation energy. Such an energy profile along the adiabatic
connection path seems to be typical in molecules near equi-
librium geometry. Near 10 Å the pp-RPA and the ph-RPA
severely underestimate the correlation energy, resulting in the
unphysical barrier in the dissociation of H2. Figs. 4 and 5 il-
lustrate how the pp-RPA has no self-interaction error in H+

2
or He+

2 while the ph-RPA gives a much too large correlation
energy at any interaction strength.

The restricted dissociation of the N2 molecule proves an
even greater challenge than the dissociation of H2 because it
involves a simultaneous stretch of three bonds. The ph-RPA
prevails for such cases, as it has no static correlation error

for the stretched N2 molecule, while the pp-RPA energy is
much too low, similar to truncated coupled cluster methods
like coupled-cluster with singles and doubles (CCSD).28 The
failure of the pp-RPA for such cases, however, seems to have
little adverse effects on thermodynamic properties – even the
reaction energies surveyed in previous work are rather good46

– perhaps because chemical reactions rarely involve simulta-
neous multiple bond breaking.

One of the main reasons for the renewed interest in
the ph-RPA has been its ability to capture long-range inter-
actions in a seamless manner with the correct R−6 asymp-
totic decay.7, 23–25 It has served as a source of inspiration for
more empirical density functionals. Can the pp-RPA also de-
scribe this type of interactions? Perhaps surprisingly, the pp-
RPA gives very good interaction energies for several types
of non-bonded interactions, competitive with or even better
than the ph-RPA energies:46 the pp-RPA(PBE) has an over-
all mean signed error (MSE) and mean unsigned error (MUE)
of −0.28 and 0.60 kcal/mol while the ph-RPA(PBE) has an
MSE and MUE of 1.86 and 1.86 kcal/mol. A possible expla-
nation for these good results is the correct second-order en-
ergy term in the pp-RPA: the second-order term in Eq. (30)
is exact, equivalent to MP2 correlation energy. The ph-RPA
has a similar second-order energy term but neglects the ex-
change terms. Since the second-order energy term is the pre-
dominant term in describing weak interactions, this may ex-
plain why the pp-RPA gives surprisingly good non-bonded
interaction energies. Figure 6 supports this explanation: upon
dissociation, the pp-RPA interaction energy for the weakly in-
teracting noble gas dimer Ar2 nearly equals the MP2 interac-
tion energy, although MP2 binds the Ar dimer more strongly
(Fig. 7). Its correct second order energy term also ensures a
physically correct R−6 asymptotic decay of the interaction en-
ergy, as illustrated in Figure 6. Calculations on the van der
Waals database explored in previous work46 also demonstrate
that the second-order energy term constitutes the main part of
the interaction energy (Figure 8).

The pp-RPA gives much better atomization energies
than the ph-RPA and describes reaction barriers with sim-
ilar accuracy. While the adiabatic connection graphs (Fig-
ures 1–5) suggest that the pp-RPA tends to underestimate
the correlation energy in the interacting limit, it gives much
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FIG. 6. The pp-RPA interaction energy for the Ar dimer has an R−6 decay,
very similar to the second order energy in MP2, plotted here on a log-log
scale alongside an illustrative R−6 function.
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FIG. 7. The pp-RPA and the ph-RPA describe the van der Waals interactions
in the Ar dimer well. MP2 binds the dimer more strongly.

better atomization energies – which rely on relative, rather
than absolute, energies – than the ph-RPA. The current liter-
ature on ph-RPA molecular atomization energies mostly fo-
cuses on small molecules.12, 47, 48 The mean signed error in
the ph-RPA atomization energies for such few-atomic systems
is of the order of +10 kcal/mol. This phenomenon of under-
binding in the ph-RPA is well-known.12, 47 The ph-RPA typi-
cally overestimates correlation energies, but it over-correlates
atoms more strongly than molecules, such that it underesti-
mates atomization energies. For bigger molecules, this prob-
lem becomes even more pronounced: the error in the ph-RPA
atomization energies continues to grow with the number of
atoms in the molecule, which is reflected in its mean signed
error of 22.7 kcal/mol for the whole G2 set, equal to its mean
unsigned error. The pp-RPA does not suffer from this prob-

C2H2-C2H2
C2H2-ClF

C2H4-C2H4
C2H4-F2

C6H6-Ne
CH3Cl-HCl

CH3SH-HCl
CH4-CH4
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FIG. 8. The (counter-poise corrected) pp-RPA interaction energies (in
kcal/mol) are very similar to the MP2 interaction energies for a set of van
de Waals bonded molecules.

lem: its mean signed error for the whole G2 set is a mere
−1.9 kcal/mol and its mean unsigned error is 8.3 kcal/mol,
much lower than that for the ph-RPA.46 The pp-RPA and ph-
RPA give rather similar reaction energies. For reaction bar-
riers involving the molecules contained in the G2 set, the pp-
RPA and ph-RPA errors are 2.4 and 2.3 kcal/mol, respectively,
and for the DBH24 reaction enthalpy set their respective er-
rors are 3.2 and 2.5 kcal/mol. So while the pp-RPA generally
seems to underestimate absolute correlation energies, it de-
scribes thermodynamic properties well.

The computational cost of the pp-RPA scales as O(o2v4)
without making further approximations. While the full diag-
onalization of the pp-RPA matrix, Eq. (33), may seem to re-
quire O(v6) operations, not all of the eigenvalues are needed
to compute the correlation energy Ec = −∑

n ωN−2
n − tr C;

the O(o2) double ionization energies suffice. The lowest re-
quired computational cost is then O(o2v4). This agrees with
the cost of the equivalent ladder-CCD formulation, Eq. (36):
the term that dominates the floating point operation count
for the ladder-CCD formulation of the pp-RPA is the same
O(o2v4) term that dominates the operation count for CCSD.49

V. CONCLUSIONS

We have formulated an adiabatic connection for the
correlation energy in terms of pairing matrix fluctuations.
This adiabatic connection formalism is in principle exact,
but requires an expression for the pp-propagator at each
interaction strength. It thus lays the theoretical foundations
for approximate density functionals based on pairing matrix
fluctuations. The pp-RPA is the lowest-order approximation
to the pp-propagator. Judging from the numerical illustrations
on the pp-RPA, the adiabatic connection Eq. (16) may
lead to interesting new functionals: the pp-RPA captures
the strong static correlation in the dissociation limit of
H2 and other single bond systems, has no delocalization
error and is self-interaction free. Despite its tendency to
underestimate correlation energies, the pp-RPA gives good
relative energies and thermodynamic data – in fact, it gives
much better atomization energies than the ph-RPA because
it does not systematically underbind like the ph-RPA. Its
exact second-order energy ensures a correct description of
non-bonded interactions. It is size-extensive. Nonetheless,
it fails for the simultaneous multiple bond-breaking in N2,
and even though common chemical reactions rarely involve
simultaneous multiple bond breaking, this is an undesirable
feature that can perhaps be alleviated in further development
of DFAs derived from the pp-RPA or the pp-propagator.

The adiabatic connection allows for a wealth of approx-
imate density functionals based on pairing matrix fluctua-
tions and their computational scaling obviously depends on
the nature of the functional. The pp-RPA is, with its O(o2v4)
operation count, computationally expensive, especially due
to its high dependence on the virtual orbitals. Because of
the explicit antisymmetry of the pp-propagator its computa-
tional cost is not as straightforwardly reduced by resolution-
of-the-identity techniques as the ph-RPA, which neglects the
exchange terms in the two-electron integrals. We are cur-
rently exploring other approaches to reduce its computational



18A511-11 van Aggelen, Yang, and Yang J. Chem. Phys. 140, 18A511 (2014)

cost. The adiabatic connection framework opens the way for
further approximations to obtain density functionals based on
pairing matrix fluctuations with low computational scaling.
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