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We formulate an adiabatic connection for the exchange-correlation energy in terms of pairing matrix fluctuation.
This connection opens new channels for density functional approximations based on pairing interactions. Even
the simplest approximation to the pairing matrix fluctuation, the particle-particle random phase approximation
(pp-RPA), has some highly desirable properties. It has no delocalization error with a nearly linear energy behavior
for systems with fractional charges, describes van der Waals interactions similarly and thermodynamic properties
significantly better than particle-hole RPA, and eliminates static correlation error for single-bond systems. Most
significantly, the pp-RPA is the first known functional that has an explicit and closed-form dependence on the
occupied and unoccupied orbitals and captures the energy derivative discontinuity in strongly correlated systems.
These findings illustrate the potential of including pairing interactions within a density functional framework.
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The desire for systematic progress in density functional
approximations (DFA) has drawn attention to functionals
rooted in many-body perturbation theory [1–3], the most
popular of which is the random phase approximation (RPA).
The RPA originated in nuclear many-body theory in the 1950s
[4,5] but recently found new applications formulated as a DFA
of occupied and virtual orbitals [6]. The DFA perspective is
justified by the adiabatic connection fluctuation dissipation
(ACFD) theorem [7], which establishes a fundamental connec-
tion between density-functional theory (DFT) and many-body
perturbation theory. It formulates the exchange-correlation
energy in terms of the polarization propagator, for which
the RPA provides an approximation. The RPA overcomes
some persistent problems of classical DFA functionals. In
contrast to most classical DFA functionals, it describes static
correlation correctly and thus dissociates, for instance, H2

correctly [8]; it captures long-range interactions adequately
and is applicable to systems with vanishing gap [9]. These
desirable features have been the incentive to construct more
efficient algorithms, such that large-scale applications are now
feasible [10]. Nonetheless, the RPA still faces some major
theoretical challenges: It violates the Pauli principle, which
leads to a large delocalization error, as demonstrated in
the dissociation of H2

+ and other molecules [11]. The
second order screened exchange (SOSEX) [12] corrects this
problem [13], but fails in cases of static correlation such as
dissociating H2.

All of the RPA-related DFA methods are based on particle-
hole (p-h) interactions [9,10,14,15]. However, the second-
order Green function naturally leads to another channel
of interactions: particle-particle (pp) and hole-hole (hh)
interactions [16]. The present work establishes an adiabatic
connection [17,18] for the exchange-correlation energy in

terms of the dynamic paring matrix fluctuation or particle-
particle Green function, parallel to the ACFD theorem in terms
of the density fluctuation or polarization propagator. Like the
ACFD theorem, it is in principle exact, but requires the particle-
particle Green function as a function of the interaction strength.
The pp-RPA, a random phase approximation in the pp and
hh correlation channels, provides an approximation to the λ

dependence of the Green function that leads to a simple closed
expression for the exchange-correlation energy. In this Rapid
Communication we therefore explore the pp-RPA as a DFA
functional, based on the adiabatic connection we formulate,
to illustrate the potential of using pairing interactions in DFA.
Despite its close relationship to the ph-RPA, particle-particle
interactions have received limited attention only in spectral
calculations [19], but not as a DFA for ground state energies.
The theoretical framework underlying the pp-RPA is very
similar to that of ph-RPA, but its features as a DFA functional
are quite different, as we will illustrate with applications to
molecular dissociation and thermodynamic properties.

The exact exchange-correlation energy in Kohn-Sham DFT
(KS-DFT) can be related to paring matrix fluctuation K̄(E)
[or the particle-particle Green function K(E)] in many-body
perturbation theory via the adiabatic connection. The pairing
matrix fluctuation K̄(t − t ′) describes the linear response of the
pairing matrix κij (t) = 〈�N

0 |aHi
(t)aHj

(t)|�N
0 〉 to a perturba-

tion in the form of a pairing field, F̂ (t ′) = ∑
kl fkl(t ′)a

†
l a

†
kθ (t ′).

The operators a
†
Hi

(t) are the creation operators in the Heisen-

berg picture, a
†
Hi

(t) = e(i/h̄)(Ĥ−νN̂ )t a
†
i e

(−i/h̄)(Ĥ−νN̂ )t and the
term −νN̂ , with ν the chemical potential, is added to the
Hamiltonian such that the N -electron state is the minimum
under the total Hamiltonian Ĥ − νN̂ when the particle number
is allowed to change. In the energy domain, K̄(E) has the
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form

K̄(E)ijkl =
∑

n

〈
�N

0

∣∣aiaj

∣∣�N+2
n

〉〈
�N+2

n

∣∣a+
l a+

k

∣∣�N
0

〉
E − ωN+2

n + iη

−
∑

n

〈
�N

0

∣∣a+
l a+

k

∣∣�N−2
n

〉〈
�N−2

n

∣∣aiaj

∣∣�N
0

〉
E − ωN−2

n + iη

and therefore contains information on the two-electron addi-
tion and removal energies ωN+2

n and ωN−2
n and the correspond-

ing transition amplitudes. Moreover, these response functions
not only provide information on the N ± 2 electron excited
states, they also indirectly determine ground state properties.
The ground state correlation energy can be formulated in terms
of the pairing matrix fluctuation (or, equivalently, the pp-Green
function) through the adiabatic connection:

Ec = 1

2πi

∫ 1

0
dλ

∫ +i∞

−i∞
dE

×
∫

dx dx′ K̄
λ(x,x′,E) − K̄0(x,x′,E)

|r − r′| . (1)

Since the exchange energy is the exact exchange, we focus on
the correlation energy. Further background and full derivations
are presented in Secs. 1A–1C of the Supplemental Material
[20]. This formula can be considered the pairing interaction
counterpart of the ACFD theorem. Like the ACFD theorem,
formula (1) is in principle exact, but requires an approximation
to compute the pairing matrix fluctuation K̄λ. The simplest
approximation to the pairing matrix fluctuation is the particle-
particle RPA. In this Rapid Communication, we will focus on
the particle-particle RPA to illustrate the potential of including
pairing interactions in a DFT framework.

The pp-RPA approximates the dynamic pairing matrix
fluctuation K̄λ in terms of its noninteracting counterpart K̄0,

K̄λ = K̄0 + λK̄0VK̄λ,

where the Coulomb interaction is Vabcd = 〈ab‖cd〉 =
〈ab|cd〉 − 〈ba|cd〉, and 〈ab|cd〉 = ∫

φ∗
a (x)φ∗

b (x′) 1
|r−r′|φc(x)

φd (x′)dx dx′. Under this approximation, the integration over
the interaction strength λ in Eq. (1) can be carried out
analytically. The resulting expression for the correlation
energy in terms of the noninteracting Green function K0 is
equivalent to the sum of all ladder diagrams in the context of
many-body perturbation theory [16]

Ec = −1

2πi

∑
n=2

1

n

∫ +i∞

−i∞
tr[K̄0(E)V]n dE

= 1

2πi

∫ +i∞

−i∞
tr{ln[I − K̄0(E)V] + K̄0(E)V}dE. (2)

The pairing matrix fluctuation K̄(E) is antisymmetrical
under particle exchange, so Eqs. (1) and (2) are formulated
in an antisymmetrical basis, which includes only ordered
two-particle indices. While the correlation energy can be
computed directly from Eq. (2), it can also be cast in terms
of the solution to a generalized eigenvalue problem [see
Eq. (11) of Ref. [20]], which requires O(N2

hN4
p) operations to

evaluate,∑
c<d

(〈ab‖cd〉 + δacδbdω
0
ab

)
Xn

cd +
∑
i<j

〈ab‖ij 〉Yn
ij = ωnX

n
ab,

∑
a<b

〈ij‖ab〉Xn
ab +

∑
k<l

(〈ij‖kl〉 − δikδjlω
0
ij

)
Yn

kl = −ωnY
n
ij ,

(3)

where ω0
ab = εa + εb − 2ν. This eigenvalue problem is then

solved for the pp-RPA eigenvectors Xn,Yn and their corre-
sponding eigenvalues ωn. The generalized eigenvalues ωn have
a clear physical meaning: they are either positive two-electron
addition energies, ωN+2

n = EN+2
n − EN

0 − 2ν, or negative
two-electron removal energies, ωN−2

n = EN
0 − EN−2

n − 2ν.
The eigenvectors are the corresponding amplitudes, Xn

ab =
〈�N

0 |aaab|�N+2
n 〉 and Yn

ij = 〈�N
0 |aiaj |�N+2

n 〉 when ωn > 0;
Xn

ab = 〈�N
0 |a+

b a+
a |�N−2

n 〉 and Yn
ij = 〈�N

0 |a+
j a+

i |�N−2
n 〉 when

ωn < 0.
The pp-RPA correlation energy can be reformulated in

terms of the solution to this generalized eigenvalue system
(see Sec. 1C of Ref. [20]):

Ec =
∑

n

ωN+2
n −

∑
a<b

(εa + εb − 2ν + 〈ab‖ab〉) , (4)

where the summation over n runs over all two-electron addition
energies. Since Eq. (3) depends only on the orthonormal set of
orbitals {φi} and their occupations ni , the correlation energy
can be viewed as a functional E[{φi},ni]. The total pp-RPA
energy expression combines the Hartree-Fock (HF)-energy
functional with the pp-RPA correlation energy, Eq. (4).

The density functional perspective on the pp-RPA raises
some prominent questions: How does the pp-RPA behave
for systems with fractional spins or charges, which present
a major challenge for DFA? [1,21]. Most approximate density
functionals give physically incorrect properties for systems
that arise from an ensemble, such as molecule fragments with
fractional electron numbers or spins. Such systems naturally
arise, for instance, as the dissociation products of a molecule.
While the molecule as a whole has integer electron number and
(half) integer spin, each of its dissociation products may have
a fractional electron number or spin. The exact conditions on
density functionals for fractional charges [22,23], fractional
spins [24], and their combination [25] are now known.

The performance of density functionals for systems with
fractional occupation numbers has therefore become an im-
portant criterion in the development of DFA. The behavior of
the pp-RPA for such systems can be quantified by explicitly
taking the fractional orbital occupations into account in the
pp-RPA equations (Sec. 1E of Ref. [20]), following previous
work extending other DFAs to fractionals [11,24].

We computed the KS reference wave function with
GAUSSIAN03 [26] for the systems with integer electron number
and with the QM4D package for systems with fractional electron
number or spin [27]. For the subsequent pp-RPA calcula-
tion, we used our implementation, which diagonalizes the
pp-RPA matrix. Since the diagonalization is computationally
expensive, we used a cc-pVDZ basis set for all calculations,
except for the Ar and Ne atoms, for which we used an
aug-cc-pVDZ (frozen core) basis set. For the calculations
on thermodynamic properties, we used a cc-pVTZ basis set
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FIG. 1. (Color online) The pp-RPA [local-density approximation
(LDA)] energy for the H2 molecule approaches the correct value in
the dissociation limit, but has an unphysical “bump”, much more so
than ph-RPA (LDA). The dashed lines indicate the dissociation limits
from the fractional analysis of the H atom.

limited to F functions because the pp-RPA energy converges
slowly with the basis set size (Fig. 12 of Ref. [20]) and
geometries from the G2 test set [28]. Accurate potential energy
functions for the dimers of the noble gases have been taken
from the work of Ogilvie et al. [29,30] and the multireference
configuration interaction potential energy function for the
N2 in the cc-pVDZ basis set has been taken from previous
work [31].

The pp-RPA has negligible delocalization error and static
correlation error and thus produces the correct dissociation
limit for H2 and H2

+ (Fig. 1). The H2 and H2
+ molecules are

paradigmatic examples of challenges for DFA [21], because
few DFA functionals give the correct dissociation limit for
both H2 and H2

+. The ph-RPA dissociates H2 correctly,
but produces a huge delocalization error for H2

+ [11]. The
pp-RPA, however, gives the correct dissociation limit for H2

and H2
+, although the potential energy curve of H2 has an

unphysical local maximum around 10 Å (Figs. 1 and 2 of
Ref. [20]). While the dissociation of H2

+ is described correctly
by construction in pp-RPA—the pp-RPA energy reduces to the
HF functional for a one-electron system—it also gives a good
dissociation profile for He2

+, for instance (Fig. 2). Other RPA
methods have been constructed to dissociate these positively
charged molecules correctly, such as ph-RPA + SOSEX,
which a posteriori corrects for neglecting antisymmetry in
the ph-RPA. However, RPA + SOSEX gives a much too high
dissociation limit for H2 [13].

The pp-RPA satisfies the hydrogen test set [1]: It has no
delocalization error for H2

+ and almost no static correlation
error for H2 because it has a nearly physically correct
energy profile for the H atom with fractional charges and
fractional spins. Describing both cases correctly requires that
the functional has constant energy for all spin projections
between 0 and 1 [24,25], and that it has a linear energy
profile for electron numbers between 0 and 1 [23]. Most DFA
functionals do not have these features, which results in static

FIG. 2. (Color online) The pp-RPA (LDA) also gives a correct
energy profile for He2

+, in contrast to ph-RPA (LDA). The dashed
lines indicate the dissociation limits from the fractional analysis of
the He atom.

correlation errors and/or delocalization errors. The ph-RPA,
for instance, has a nearly constant energy for different spin
projections in the H atom, but has a significant delocalization
error for fractional electron numbers [11] (Figs. 4 and 5 of
Ref. [20]). It thus describes the dissociation of H2 correctly
but gives a much too low dissociation limit for H2

+. The
pp-RPA not only has a nearly constant energy for different spin
projections of the H atom but also has a nearly linear energy
between electron numbers of 0 and 1 (Fig. 4 of Ref. [20]).
These properties ensure that it gives the right dissociation limit
for H2 and H2

+.
Most significantly, the pp-RPA captures the energy deriva-

tive discontinuity for strongly correlated systems (SCS) at
integer electron numbers. Traditional DFA functionals have
a smooth dependence on the occupied orbitals and cannot
capture the required derivative discontinuities for SCS at
integer electron number [24,25]. Even the ph-RPA energy,
which is a functional of the occupied and the unoccupied
orbitals, does not have a derivative discontinuity at integer
electron numbers for SCS (Figs. 4 and 5 of Ref. [20])
[11]. However, the pp-RPA adequately captures the energy
derivative discontinuity and satisfies the flat-plane condition
[25], as Fig. 4 of Ref. [20] and Fig. 3 illustrate for the H atom
and Li atom.

The pp-RPA describes the ionization energies exceptionally
well, although in the present basis set the sign of some of
the very small electron affinities is wrong. Finite-difference
calculations on the pp-RPA chemical potential for a set of
second-period atoms (Table II of Ref. [20]) demonstrate the
superiority of the pp-RPA over the ph-RPA.

The pp-RPA has almost no static correlation error for
single-bond systems, and gives the proper dissociation limit
for ethane, for instance (Fig. 7 of Ref. [20]). However, it
has a substantial error for the dissociation of N2 (Fig. 8 of
Ref. [20]). Breaking multiple bonds like those in N2 within
a singlet description is problematic for pp-RPA because N2
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FIG. 3. (Color online) The pp-RPA (LDA) energy for the Li atom
is a nearly constant function of the fractional spin projection and a
nearly linear function of the fractional electron number. Like the exact
functional, its derivative has a discontinuity at N = 3.

dissociates into two spin-unpolarized spherical N atoms, which
have equal fractional numbers of α and β electrons distributed
evenly over the three p orbitals, and pp-RPA assigns much too
low energy to these spin-unpolarized spherical atoms (Fig. 9
of Ref. [20]).

The pp-RPA describes van der Waals interactions to a
very good extent, similar to ph-RPA and ph-RPA + SOSEX
[13,32]. One of the main strengths of ph-RPA is its ability
to capture noncovalent long-range interactions smoothly and
seamlessly. Although the nature of the interactions is different
in pp-RPA from that in ph-RPA, pp-RPA also well captures
the van der Waals interactions in Ar2 and NeAr (Figs. 4 and
11 of Ref. [20]).

The pp-RPA performs much better than ph-RPA on the
heats of formation for a set of small molecules. The mean
absolute errors (MAE) on the heats of formation computed
for a set of small molecules is 5.8 kcal/mol for the pp-RPA
and 10.4 kcal/mol—in good agreement with the results by

FIG. 4. (Color online) The ph-RPA (LDA) and pp-RPA (LDA)
both well describe the van der Waals interactions in the Ar dimer.

FIG. 5. (Color online) The ph-RPA [Perdew-Burke-Ernzerhof
(PBE)] enthalpies of formation for the molecules in the G2/97
database show a steadily increasing error with the number of atoms,
with a MAE of 22.7 kcal/mol, whereas the pp-RPA (PBE) enthalpies
show nearly constant errors with the number of atoms, with a MAE
of 8.3 kcal/mol.

Ren et al. [10]—for the ph-RPA (Table III of Ref. [20]). The
4.6 kcal/mol difference shows that the accuracy of the heats
of formation computed with pp-RPA is better than that of
ph-RPA. Furthermore, a test on the whole G2 set shows that
the errors in the ph-RPA heats of formation increase steadily
with the number of atoms in the molecules, whereas the errors
in the pp-RPA heats of formation remain nearly constant
(Fig. 5).

Finally, a perturbation theory analysis (Sec. 1D of Ref. [20])
shows that pp-PRA has the correct second-order energy, in
contrast to the ph-RPA, which contains only the direct terms
of the second-order energy.

To summarize, we have shown that the exact exchange-
correlation energy can be expressed in terms of the dynamic
paring matrix fluctuation via the adiabatic connection and
illustrated the potential of this approach with the pp-RPA. The
pp-RPA is a remarkable DFA, because it is the first functional
with an explicit and closed-form dependence on the occupied
and virtual orbitals that captures the derivative discontinuity
of the energy at integer electron numbers for the whole range
of spin polarizations in strongly correlated systems.

The pp-RPA meets the flat-plane energy requirement for
systems with fractional charges and spins [25]. This flat-plane
energy behavior has been actively pursued in recent years,
with limited success up to now [33]. It was shown that
explicit, differentiable functionals of the density or density
matrix cannot capture it [11,24]. Even the inclusion of
virtual orbitals in the ph-RPA does not prove helpful [11].
The discontinuity in the pp-RPA energy as shown presently
proves that this goal can be achieved in closed form with a
functional that depends on both the occupied and unoccupied
orbitals, or on the Green function of the noninteracting
(generalized) KS reference system, highlighting the path
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forward for development of functionals for strongly correlated
systems.

Note added. Rcently, two related papers, which explore the
pp-RPA for molecular calculations from the coupled-cluster
perspective, were brought to our attention [34,35].
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