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P. Garcı́a-González and R. W. Godby
Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom

!Received 27 September 2000; published 30 January 2001"

The performance of many-body perturbation theory for calculating ground-state properties is investigated.
We present fully numerical results for the electron gas in three and two dimensions in the framework of the
GW approximation. The overall agreement with very accurate Monte Carlo data is excellent, even for those
ranges of densities for which the GW approach is often supposed to be unsuitable. The latter seems to be due
to the fulfillment of general conservation rules. These results open further prospects for accurate calculations of
ground-state properties circumventing the limitations of standard density-functional theory.
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I. INTRODUCTION

Many-body perturbation theory !MBPT", particularly in
Hedin’s GW approximation,1 has been used extensively to
calculate quasiparticle !QP" energies and spectra of a wide
variety of electron systems.2 The GW method offers a simple
way to determine the one-electron Green’s function Ĝ from
which the QP properties can be easily extracted. However, Ĝ
also contains information about ground-state properties: the
expectation value of any one-particle operator can be ex-
pressed in terms of Ĝ , and by using the Galitskii-Migdal
formula3 the total energy may also be obtained. Nonetheless,
the capability of a Green’s function MBPT to provide reli-
able ground-state energies has not been fully explored so far.
The few available results are restricted to the spin-
unpolarized homogeneous electron gas !HEG" in the range
of metallic densities !i.e., rs!2–5 a.u.).4–6 These investiga-
tions suggested that the GW approach could produce accu-
rate electron total energies, but a deeper study is needed to
provide an overall assessment of this issue. This is an impor-
tant question because many of the limitations of the usual
implementations of density-functional theory !DFT",7 can be
circumvented by using MBPT total-energy calculations. In-
deed, well-recognized failures of the DFT in its usual ap-
proximations !for instance, when studying van der Waals
forces,8 chemical reactions,9 defects in semiconductors,10 or
quasi-two-dimensional systems11" are mainly due to the lim-
ited account of nonlocal effects that, on the contrary, are
included in the GW approximation. On the other hand, quan-
tum Monte Carlo !QMC" methods are being applied to more
and more systems,12 but they require a large computational
effort. In this context, MBPT has to be regarded as a good
candidate to supersede standard DFT schemes #like the local
density !LDA" and generalized gradient approximations$
without implying a prohibitive computational task. To pro-
vide insights into the above points, in this paper we present
GW results for the ground-state properties of the three-
dimensional HEG !covering a broad range of densities in
both spin-unpolarized and fully spin-polarized phases" and of
the two-dimensional HEG. To do so we have used the space-
time numerical procedure developed by Rojas et al.13 This
method permits an efficient and stable computation of the

full self-energy operator %̂ and the corresponding Green’s
function Ĝ ,14 with the precision needed for a converged
evaluation of the total energy.

II. THEORY

In MBPT, the Green’s function and the self-energy of a
system of N electrons under a external potential vext(r) are
linked through the Dyson equation

Ĝ"1!&"!Ĝ0
"1!&""#%̂!&"#!'v"'("1̂$ , !1"

where the usual matrix operations are implied. Ĝ0(&) is the
Green’s function of a fictitious system of N noninteracting
electrons under the potential v0(r)#'( , 'v!vH#vext
"v0 (vH being the exact Hartree potential", and '( is a
constant that aligns the chemical potential of the fictitious
system with the actual one, ( .15 In the GW framework, %̂ is
approximated by

%!1,2"!i G!1,2#"W!1,2", !2"

where the labels 1 and 2 symbolize space-time coordinates.
Ŵ is the screened Coulomb potential, which is related to the
bare Coulomb interaction w and the polarizability P̂ by

Ŵ!&"!ŵ#ŵ P̂!&"Ŵ!&". !3"

Finally, under the GW approach we have16

P!1,2"!"2i G!1,2"G!2,1#". !4"

Equations !1"–!4" may be solved iteratively to self-
consistency. We note that the choice of the fictitious non-
interacting system in Eq. !1" is arbitrary because the differ-
ences arising from different Ĝ0’s are canceled out by the
terms 'v and '( . Also, by including the shift '( we guar-
antee that at any step of the iteration, Ĝ verifies several exact
properties that have to be verified by any realistic Green’s
function,17 ensuring a smooth and stable convergence of the
iterative process. Furthermore, the Hartree potential has to be
updated after each iteration, and this is done by calculating
the electron density n(r) from Ĝ . To evaluate '( we need
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to obtain the chemical potential that is, by definition, the
energy of the highest occupied QP energy, calculated at each
iteration in terms of the self-energy by solving the QP Schrö-
dinger equation.
The above set of equations defines a conserving approxi-

mation in the Baym-Kadanoff sense.18 One consequence is
that the total number of particles given by the self-consistent
GW Green’s function does not change when an external per-
turbation acts on the system. In addition, it gives the right
number of particles for the HEG.19 The correctness of the
number of particles for an arbitrary inhomogeneous system
can thus be inferred by regarding the system as the result of
an adiabatic transform of the HEG. Another characteristic of
a conserving approximation is the absence of ambiguities
among different expressions for calculating the total energy.
This suggests that a MBPT evaluation of ground-state prop-
erties should employ a conserving approximation such as
self-consistent GW .
However, routine GW calculations are mainly concerned

with the QP properties of real materials, and do not attempt
self-consistency. Indeed, self-consistency implies a worsen-
ing in the description of the QP spectrum rather than an
improvement.6,20,21 Hence the usual non-self-consistent !and
nonconserving" GW approach !that we shall denoted as
G0W0, whereas GW will stand for the fully self-consistent
solution of Hedin’s equations" is clearly preferred in a spec-
tral context. This failing of GW can be understood in terms
of the spectral properties of Ĝ , but our present interest is
very different: issues as those described in the previous para-
graph are by far more important than the concrete shape of
Ĝ . Of course these two aspects are not independent, but the
development and application of a conserving theory giving at
the same time an accurate description of QP spectra is an
unsolved formidable challenge.
In G0W0, the self-energy is approximated by Eq. !2", sup-

posing that Ĝ!Ĝ0, whereas the screened Coulomb potential
was obtained from Eqs. !4" and !3" once #i.e., Ŵ has been
calculated in a random phase approximation !RPA" fashion$.
Eventually, the Dyson equation is solved, taking into account
that 'v!vLDA , where vLDA is the LDA exchange-
correlation !XC" potential. Although the term '( is often
neglected at this stage, in this paper we will keep this con-
tribution for the reasons explained above. Partial self-
consistency !denoted as GW0) may be achieved by keeping
the screened Coulomb potential Ŵ0 obtained from a G0W0
procedure and, hence, by solving only Eqs. !1" and !2"
iteratively.5,20 Although the GW0 is not a conserving ap-
proximation, it gives the right number of particles for the
HEG !thus meeting an important physical point of the GW
scheme".6 On the other hand, its description of QP properties
seems to be only marginally worse than G0W0.20 Finally,
there are many other schemes for implementation of the GW
equations, but essentially they are focused on the choice of
Ĝ0 for non-self-consistent calculations, and so are meaning-
less in an homogeneous system.
As mentioned above, we will apply the space-time

method13 to solve the GW equations. Each one is written in

the most favorable spatial representation !reciprocal or real",
going from one to other using Fourier transforms. However,
the most important issue is the evaluation of the dynamical
dependence on imaginary time or frequency domains. To
calculate ground-state properties, a contour deformation
avoids the need to obtain Ĝ for real frequencies. Concretely,
the expectation value of any one-particle operator b̂ is given
by

) b̂*!
2
+
Im"

C
d& Tr# b̂Ĝ!&"$ , !5"

where the frequency is measured from the chemical potential
( , and C is the integral path in the complex frequency plane
equal to the circular arc , from &!"- to &!"i- together
with the negative imaginary axis. In the same notation, the
Galitskii-Migdal formula for the total energy reads

E!
1
+
Im"

C
d& Tr#!&# ĥ0"Ĝ!&"$ , !6"

ĥ0 being the one-electron Hamiltonian with potential v
!vext"( . To deal with the evaluation of Eqs. !5" and !6" we
write the Green’s function as Ĝ!ĜX#.Ĝ , ĜX being the
solution of the Dyson’s equation !1", but substituting the full
self-energy %̂(&) by its frequency-independent part
%X(1,2)!iG(1,2#)w(1,2). Hence the frequency integrals
can be split into two parts. The contribution due to ĜX is
evaluated analytically, whereas for the remainder the only
nonzero contribution arises from the imaginary axis, which is
amenable for numerical calculation. We have used Gauss-
Legendre !GL" grids for imaginary times and frequencies,
and the contributions due to points outside the GL grids are
treated in an analytical fashion in accordance with the overall
numerical procedure given in Ref. 14. Usually, GL grids
with 128 points suffice for well-converged results !better
than 1 mHa". For the HEG, matrix inversions are not needed,
and a fully self-consistent resolution of the GW equations
only takes typically a few seconds on a standard workstation.

III. RESULTS AND DISCUSSION

Using different GW schemes, we have obtained the XC
energy per particle /XC !defined as the difference between
the energies of the interacting and noninteracting systems"
for the spin-unpolarized (0!0) HEG !Table I and Fig. 1".
We first compare our numerical results with the two of von
Barth and Holm.6 A small discrepancy (1 –2 mHa) appears,
but it is consistent with the error bar !about 3%" of the semi-
analytical procedure carried out by these authors.22 Focusing
on the accuracy of the MBPT procedure, we can see that the
agreement between the essentially exact diffusion Monte
Carlo23,24 and the self-consistent GW is almost perfect in the
limit of high densities. This is not a surprise because the
exchange is treated exactly by the GW and it is dominant in
this range of densities. However, the quality of the GW en-
ergies is striking for intermediate and low densities, where
the many-body effects not included in the GW framework
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might be expected to be evident. Partial self-consistency
(GW0) yields slightly inferior results, though the differences
are no more than a few mHa. The worst results !but, in any
case, with errors no greater than 10 mHa for metallic densi-
ties" are provided by the non-self-consistent G0W0 proce-
dure. G0W0 underestimates the total energy, and by achiev-
ing partial self-consistency, the spectral weight in the
Green’s function is blue-shifted, so increasing the total en-
ergy. After full self-consistency, such shift is slightly larger,
but the kinetic energy is smaller than in GW0. The presence
of these two opposite trends explains the small differences
between GW and GW0. We have also included !for com-
parison" the corresponding RPA values.25 Note that the RPA
dielectric function is the same than the G0W0 one, and the
huge discrepancies between them arise from the different
ways in which the evaluation of the total energy is per-
formed.
All the above trends also apply for the fully spin-

polarized (0!1) HEG !see Fig. 2", but in this case the errors

in the GW energies are marginally greater. !Although not at
all the objective of this paper, it is interesting to note that
using the self-consistent GW , the paramagnetic phase is
more stable than the ferromagnetic one up to rs!15120 in
fair agreement with the QMC value24 of rs!25–30, despite
the low density of the system."
Our results for the two-dimensional !2D" HEG are also

shown. In 2D systems, correlation effects are much more
important; in other words, the diagrams that are neglected in
the GW scheme play a relevant role in these low-
dimensional problems. As a consequence we cannot expect
here extremely accurate results using the GW approximation.
However, as we can see in Fig. 3, the GW gives energies
near the QMC values,26 resolving partially the inaccuracy of
the G0W0 approach and greatly improving the RPA energies.
We note that in the limit of low densities, GW0 fits the QMC
results slightly better than GW .
Finally, it is now very well known that G0W0 does not

give the right number of particles for an inhomogeneous
system.17,27 However there were certain doubts whether it
recovers the right density of the HEG or not. The use of the
space-time method allows us to affirm that G0W0 does not
give exactly the number of particles in the homogeneous
limit. Whereas the exact density and the G0W0 one are in-

TABLE I. Minus XC energies per particle !in Hartrees" for the spin-unpolarized phase of the 3D homo-
geneous electron gas obtained through several GW schemes. The second row in the GW entry corresponds
to Ref. 6. Also shown are the RPA results, and the QMC values from Ref. 23 !first row" and Ref. 24 !second
row". Parentheses indicate the numerical uncertainty in the last significant figure. For reference, the exchange
energy per particle /X is included.

rs 1 2 4 5 10 20

QMC 0.5180 0.2742 0.1464 0.1197 0.0644 0.0344
0.5127 0.2713 0.1201 0.0344

GW 0.5160!2" 0.2727!5" 0.1450!5" 0.1185!5" 0.0620!9" 0.032!1"
0.2741 0.1465

GW0 0.5218!1" 0.2736!1" 0.1428!1" 0.1158!1" 0.0605!4" 0.030!1"
G0W0 0.5272!1" 0.2821!1" 0.1523!1" 0.1247!1" 0.0665!2" 0.0363!5"
RPA 0.5370 0.2909 0.1613 0.1340 0.0764 0.0543
"/X 0.4582 0.2291 0.1145 0.0916 0.0458 0.0229

FIG. 1. XC energy per particle, /XC , for a spin-unpolarized 3D
homogeneous electron gas. The essentially exact Monte Carlo re-
sults !symbols" are compared with several GW , schemes !lines".
The excellent performance of the self-consistent GW , and !to a
lesser extent" the partially self-consistent GW0, is evident. Note
that the differences between several Monte Carlo results are less
than the symbol sizes.

FIG. 2. As in Fig. 1, for the fully spin-polarized (2!1) phase of
the 3D electron gas.
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distinguishable up to rs!4, for rs!5, the G0W0 overesti-
mates the density by 0.3%. The deviation increases when
going into the low density region, being 1.7% for rs!10,
and 6.1% for rs!20.
In summary, we have studied the performance of the GW

approximation for the evaluation of ground-state properties.
The accuracy of the results is correlated with the fulfillment
of conservation rules !that can be achieved by using a self-
consistent GW scheme", and the approximations inherent in
the GW scheme have much less importance than when cal-
culating QP properties. The dynamical dependences in the
GW equations are easy to handle using a representation in
imaginary time and frequency, that may be straightforwardly
generalized to arbitrary inhomogeneous systems. Hence the
results presented here can be the point of departure for future
accurate evaluations of ground-state properties of electron
systems without the limitations of DFT and the complexity
of the QMC method.
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FIG. 3. As in Fig. 1, for the spin-unpolarized 2D electron gas.
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