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A recently developed consistent third-order propagator method for the treatment of electronic
excitation in molecules is tested in first applications. The method referred to as third-order
algebraic-diagrammatic construction@ADC~3!# extends the existing second-order approximation
and aims at a more accurate computation of excitation energies and transition moments than
afforded at the second-order level. For a stringent test of the method we compare the ADC~3!
energies for over 40 singlet and triplet vertical transitions in H2O, HF, N2 , and Ne with the results
of recent full configuration interaction~FCI! and coupled cluster~CC! computations. The ADC~3!
results reflect a substantial and uniform improvement with respect to the second-order description.
The mean absolute deviation of the single excitation energies from the FCI results is below 0.2 eV.
Although this does not equal the accuracy of the third-order CC3 model, the ADC~3! method,
scaling as N6 with the number of orbitals, may be viewed as a good compromise between accuracy
and computational cost. ©2002 American Institute of Physics.@DOI: 10.1063/1.1504708#

I. INTRODUCTION

An adequate theoretical description of electronic excita-
tions in molecules is a basic requirement for the understand-
ing of photophysical and photochemical processes. In spite
of the ongoing growth of computer capabilities and impres-
sive methodological advances, the present state of the art
here is much less satisfactory than in the treatment of the
ground state, and it is still an urgent concern to improve
existing computational schemes or to develop new methods.

In recent years substantial efforts have been directed to
the development of methods extending the successful
coupled cluster~CC! parametrization of the ground state
to the treatment of excited states. Such developments com-
prise the coupled cluster linear-response~CCLR!1–3 and the
essentially equivalent equation-of-motion CC methods
~EOMCC!.4–6 Another method of that type is the symmetry-
adapted cluster configuration interaction~SACCI! approxi-
mation,7–9 which has been used for a long time in studies of
excited molecules. The CC approach establishes a frame-
work in which one can formulate a hierarchy of successively
more accurate computational schemes, including at present
the CCS, CC2, CCSD, CC3, and CCSDT models. Here the
acronyms S, D, and T denote the increasing configuration
space of single, double, and triple excitations, respectively,
with respect to the ground-state Hartree–Fock~HF! refer-
ence state. The CC2 and CC3 methods can be viewed as
approximations to the CCSD and CCSDT methods, respec-
tively. The CC methods yield size-consistent results for ex-
citation energies, thus being, by principle, superior to a~lim-
ited! configuration interaction~CI! treatment. Due to the

size-consistency property and their potential to be used as
‘‘black-box’’ applications, the CC methods have rapidly es-
tablished themselves as standard tools for the treatment of
electronic excitation in molecules. As constituent parts they
are included in major quantum chemistry program packages.

Among the more traditional methods for treating elec-
tronically excited states, one has to name the multireference
configuration interaction~MRCI! method.10 The MRCI
method can successfully be used for small molecules. How-
ever, in the application to larger molecules one encounters
problems due to the rapidly increasing configuration space
and, more on principle, due to the violation of size
consistency.11 Another important approach is based on the
multiconfiguration self-consistent field~MCSCF! treatment.
Combining the so-called complete active space~CAS! SCF
version of MCSCF with second-order perturbation theory
~PT!, Roos and collaborators12,13 have established the
CASPT2 method as a useful and versatile tool in excited
state electronic structure calculations. However, the CASPT2
method can hardly be applied as a black-box method, since a
careful choice of the active orbitals is crucial for reliable
results. It should also be noted that the originally claimed
accuracy standard has recently been challenged by very ac-
curate CC3 computations.14,15

For a long time also methods deriving from propagator
theory have been used successfully in the computation of
molecular excitation spectra. Most notable examples of
propagator methods beyond the first-order or random-phase
approximation level are the second-order polarization propa-
gator approach ~SOPPA!,16–18 and the second-order
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algebraic-diagrammatic construction@ADC~2!# method.19–21

These methods allow for a direct determination of excitation
energies and transition moments, and they share with the CC
methods the property of size consistency. While both the
SOPPA and ADC~2! methods are quite practical and effi-
cient, they are restricted to a consistent second-order treat-
ment of the single excitations, and the accuracy thereby af-
forded is only modest: The results for~single! excitation
energies are typically in error by60.5 eV. Aiming at a more
accurate description, the ADC method has recently been ex-
tended to the level of third-order consistency@ADC~3!#.22 In
the following we report on the implementation and first nu-
merical tests of the ADC~3! method in applications to several
small systems such as H2O, HF, N2, and Ne. For these sys-
tems an extensive set of data for both singlet and triplet
states has been generated recently based on CCS, CCSD,
CC2, CC3, and full configuration interaction~FCI!
computations23–26using reasonably large basis sets. The rep-
etition of these computations at the ADC~3! level allows for
stringent comparisons and a reliable evaluation of the accu-
racy. As will be seen, the ADC~3! results indicate a substan-
tial and uniform improvement with respect to the second-
order treatment, the mean deviations from the FCI~single!
excitation energies being below 0.2 eV.

II. THEORY

A. ADC „3… method

In the following we give a brief review of the ADC~3!
computational scheme and its properties. While the ADC ap-
proach was derived originally within the context of propaga-
tor methods, a more convenient and direct way of presenta-
tion is afforded by the concept of intermediate state
representations~ISR!. For more details the reader is referred
to Refs. 22 and 27.

In the ADC method the exact excited statesuCn& are
expanded according to

uCm&5(
J

XJmuC̃J& ~1!

in terms of so-called intermediate statesuC̃J& generated by a
specific orthonormalization procedure from the correlated
excited states,

uCJ
0&5ĈJuC0&. ~2!

HereuC0& denotes the exactN-electron ground state, andĈJ

denote ‘‘physical’’ excitation operators of particle-hole~ p-h!,
two-particle-two-hole~2p-2h!,... type:

$ĈJ%5$ca
†ck ;ca

†cb
†ckcl ,a,b,k, l ; ••• %. ~3!

The operatorscp
†(cp) of second quantization correspond to

~spin! orbitals as provided, e.g., by a ground-state Hartree–
Fock ~HF! calculation; the subscriptsa, b, c,••• and i, j, k,•••
label unoccupied~virtual! and occupied orbitals, respec-
tively. The intermediate states establish a representation of
the HamiltonianĤ or of the shifted HamiltonianĤ2E0 ,

MIJ5^C̃ I uĤ2E0uC̃J&, ~4!

and the associated secular equations take the form of a Her-
mitian eigenvalue problem,

MX 5XV, X†X51, ~5!

whereV and X denote the diagonal matrix of eigenvalues
and the eigenvector matrix, respectively. Obviously, the ei-
genvalues are the excitation energies,

Vn5En2E0 , ~6!

while the eigenvector components are the expansion coeffi-
cients in the ISR@Eq. ~1!# of the excited states. The transition
moments

Tn5^CnuD̂uC0&, ~7!

for a given~one-particle! operator

D̂5(
r ,s

drscr
†cs ~8!

are obtained as

Tn5(
I ,rs

XIn* f I ,rsdrs , ~9!

where the quantities

f I ,rs5^C̃ I ucr
†csuC0& ~10!

are referred to as intermediate state~or effective! transition
amplitudes.

Approximation schemes based on the ISR are obtained
by truncating the IS configuration space and by using con-
sistent perturbation expansions for the IS secular matrix ele-
ments and transition amplitudes:

M5M (0)1M (1)1M (2)1•••, ~11a!

f5f(0)1f(1)1f(2)1•••. ~11b!

The explicit perturbation expansions forM andf can in prin-
ciple be derived by using the familiar Rayleigh-Schro¨dinger
perturbation theory~RSPT! for the ground state and the
ground-state energy in the closed-form expressions for the
intermediate states.28 A more practical approach, however,
consists in the algebraic-diagrammatic construction~ADC!
operating on the diagrammatic perturbation expansion for the
polarization propagator.19 The ADC procedure, used previ-
ously in the derivation of the ADC~2! equations,19 could re-
cently be extended to the third-order level.22 Figure 1 shows
schematically the block structure ofM andf and the required
orders of perturbation theory for the respective blocks at the
ADC~n! levels,n51, 2, 3. The explicit ADC~3! expressions
for the secular matrix elements have been given in Appendix
C of Ref. 22; the third-order extensions for the IS transition
amplitudes29 are to be published in the near future. The
ADC~3! expressions extend the ADC~2! secular matrix by
third-, second-, and first-order contributions in thep-h diag-
onal block, thep-h/2p-2h coupling block, and the 2p-2h di-
agonal block, respectively. For further reference we note that
the first-order@ADC~1!# secular matrix is obtained as the
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representation ofĤ2E0(1) with respect to single excita-
tions, whereE0(1) is the HF ground-state energy.

The ADC methods combine the eigenvalue problem~di-
agonalization! of a Hermitian secular matrix and perturbation
theory for the secular matrix elements. The eigenvalue prob-
lem of the ADC~2! and ADC~3!, with an explicit configura-
tion space ofp-h ~single! and 2p-2h ~double! excitations, is
of the size of the familiar CI singles and doubles~SDCI!
treatment. The~finite! perturbation expansions used for the
matrix elements behave with respect to convergence like the
Rayleigh-Schro¨dinger ~RS! perturbation series for the
ground-state energy and wave function, respectively. At the
ADC~3! level, the single and double excitations are treated
consistently through third and first order, respectively. In
general, the truncation error~for single excitations! due to
restricting the explicit ADC configuration space to them
lowest excitation classesp-h, 2p-2h, ..., mp-mh is of the
order 2m ~compactness property!. This is a consequence of
the ‘‘canonical’’ order relations27 holding for the ADC ~or
ISR! secular matrices. Another basic property is thesepara-
bility of the ADC secular matrices:30 For a system consisting
of two noninteracting parts A and B, the ADC secular equa-
tions for local excitations, say on A, are strictly decoupled
from local excitations on B and from nonlocal excitations
~on A and B!. This property guarantees size-consistent~size-
intensive! excitation energies and transition moments, which
is a crucial requirement for the application to large systems.

B. Improved treatment of one-particle densities

For certain contributions to the secular matrix elements
the finite perturbation expansions are not always satisfactory,
and one has to go beyond the strict third-order expressions in

order to achieve a systematical improvement. This is the case
for contributions toM which can be written in terms of
~ground-state! one-particle density-matrix elements. For ex-
ample, the latter quantities do appear in the form of the so-
called static self-energy matrix elements,31

Spq~`!5(
r ,s

Vpr[qs]rsr
c , ~12!

where

rsr
c 5^C0ucr

†csuC0&2^F0ucr
†csuF0& ~13!

are the matrix elements of the correlation density, that is, the
differencerc5r2r(0) between the exact ground-state one-
particle density matrix and the HF density matrix,r rs

(o)

5nrd rs , andVpr[qs]5Vprqs2Vprsq denote antisymmetrized
Coulomb integrals in the ‘‘1212’’ notation. Contributions of
that type and the concomitant problems in their adequate
treatment are well known in the third-order one-particle
Green’s-function~electron propagator! computations of va-
lence electron ionization.32,33The diagonal elementsSkk(`)
have an obvious physical meaning: they account for the
ground-state correlation effect in the electrostatic interaction
between the electron in the orbitalk and the valence electron
charge distribution. As the zero- and first-order contributions
to rc vanish, the static self-energy matrix elements arise for
the first time in third order, however, in general being not
well approximated at that level. As the method of choice for
an improved treatment of the one-particle density matrix and
the static self-energy matrix elements the so-called Dyson
expansion method has proved successful in previous valence
ionization applications. The method has been amply de-
scribed in Ref. 32 and more recently in Sec. V of Ref. 34,
where the reader is referred to for details. In brief, the
method is based on the third-order approximation for the
electron propagator and the related self-energy. It provides a
consistent description of the one-particle density and the
static self-energy through third and fourth order, respectively,
and represents, moreover, an infinite, though incomplete,
summation of higher-order terms.

In the present case static self-energy terms arise in the
p-h diagonal block of the secular matrixM , more specifically
in the contributions Eqs.~C17!–~C20! of Ref. 22, which can
be collected in the form

(
m59

12

Cak,a8k8
(3,m)

52daa8Sk8k
(3)

~`!1dkk8Saa8
(3)

~`!. ~14!

An inspection of the remaining third-order terms shows, that
also the contributions~C24!, ~C25!, ~C27!, and~C28! of Ref.
22 can be expressed in terms of density matrix elements as
follows:

(
m516,17,19,20

Cak,a8k8
(3,m)

5(
i

Vik8[a8k]rai
(2)

1(
c

Vk8a[ca8]rck
(2)1h.c. ~15!

According to the preceding discussion, it is recommended to
replace the strict perturbation-theoretical expressions for

FIG. 1. Block structure of the secular matrixM ~a! and of the effective
transition amplitudesf ~b!; order of perturbation-theoretical expansions for
the matrix elements in the ADC~3! and lower-level ADC schemes~c!.
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S(`) and r in the right-hand side of Eqs.~14! and ~15!,
respectively, by the corresponding results of the Dyson
expansion method. A numerical test of the improvement
afforded by the Dyson expansion method is presented in
Sec. IV.

C. Comparison with coupled cluster methods

Since we will compare in Sec. IV ADC and CC results,
a brief survey of the CC methods for electronic excitation
~see Refs. 2, 3, and 6! should be in order. Also the CC meth-
ods can be viewed as specific intermediate state representa-
tions of the shifted HamiltonianĤ2E0 using two different
set of states, namely the correlated excited states in the form
uCJ

0&5ĈJe
T̂uF0& and the corresponding biorthogonal states

^C I
'u5^F0uĈI

†e2T̂. Here uC0&5eT̂uF0& with T̂5T̂11T̂2

1••• is the CC parametrization of the ground-state. The
secular matrix of the resulting biorthogonal coupled cluster
~bCC! representation

MIJ
cc5^C I

'uĤ2E0uCJ
0& ~16!

is non-Hermitian, giving rise to a right- and left-hand eigen-
value problem,

M ccX5XV, Y†M cc5VY†, Y†X51. ~17!

The CC model hierarchy is obtained by extending the con-
figuration space~S, SD, SDT! and by introducing approxi-
mations to the CC amplitudes and secular matrix elements.
The simplest approximation, CCS, is identical to other first-
order methods, such as the ADC~1! or Tamm-Dancoff ap-
proximation ~TDA!, and may be seen essentially as a CIS
approach. Both the CC2 and CCSD models extend the ex-
plicit configuration space to the double~2p-2h) configura-
tions, yielding a consistent second-order treatment of singly
excited states. Due to the use of first-order expressions for
the T̂2 amplitudes the CC2 and ADC~2! methods are essen-
tially equivalent. Some differences, being of third order
though, arise from the use of theT̂1 transformed Hamiltonian
in the CC2 model. As a consequence of the less stringent
order relations of the bCC secular matrix~see Refs. 27 and
35!, the CC configuration space must comprise the triple
excitations in order to have third-order consistency for the
singly excited states. This is the case in the CC3 approxima-
tion to the full CCSDT method. The third-order consistency
of the CC3 model~for singly excited states! is shared by the
less expensive ADC~3! method. However, the explicit con-
sideration of the double excitations in the CC3 configuration
space allows for a better, namely, a consistent second-order
treatment of the doubly excited states, which at the ADC~3!
level are treated consistently through first order only. In view
of the importance of the admixture of double excitations in
singly excited states, one has to expect that, in general, the
ADC~3! results will be less accurate than those of a CC3~or
CCSDT! treatment. A compilation of the characteristics of
the CC and ADC hierarchies is given in Table I.

III. COMPUTATIONS

A. Implementation of the ADC „3… method

The ADC~3! code used in the present study has been
written as an extension of the existing ADC~2! program.20

The required additions comprise third-order terms in thep-h
diagonal block (M11) and second-order terms in thep-h/
2p-2h coupling blocks (M12); the first-order 2p-2h diagonal
block (M22) was already available from the so-called ex-
tended second-order@ADC~2!-E# variant ~see Fig. 1!. The
most demanding task was the coding of third-order terms of
M11 involving four- and fivefold summations over orbital
indices. As a measure for reliability, the coding of the
ADC~3! extension was performed independently by two of
the authors, so that the two versions could be tested against
one another. Generally, the emphasis in the design of the
present code was laid on an utmost secure and error-free
realization. The development of a program version optimized
with respect to computational efficiency will be aimed at in a
successive step.

The explicit expressions for the ADC~3! secular matrix,
as given in Ref. 22, are formulated with respect to electron
configurations in the spin-orbital form, referred to as ‘‘primi-
tive’’ excitations. For an efficient computer code it is neces-
sary to generate spin-free working equations for the final-
state spin values of interest, that is,S50 and 1. This can be
achieved in a most straightforward way using standard angu-
lar momentum algebra techniques operating on the general
~spin-orbital! expressions. Basically, one forms spin-adapted
excitations as suitable linear combinations of the primitive
excitations and applies the corresponding unitary transforma-
tions to the original secular matrix. This leads to decoupled
secular equations of smaller size forS 5 0 and 1. The origi-
nal primitive configuration space~for MS50) is reduced
roughly by a factor of 1/3 and 1/2 for the singlet~S50! and
triplet ~S51! cases, respectively. Ensuing to the decoupling
step, one can perform the spin summations in the general
perturbation-theoretical expressions for the matrix elements,
yielding the desired spin-free expressions that involve only
spatial two-electron integrals and orbital energies. The task
of generating the spin-free expressions has been performed
in a semiautomatic way with the help of a specially devised
computer program. The spatial symmetry of a molecule is

TABLE I. Characteristics @explicit configuration space, perturbation-
theoretical consistency for ground- (E0) and excited-state (En) energies,
and scaling property# of members of the ADC and CC method hierarchies.

Method
Configuration

spacea

En
a

E0 S D Scaling

ADC~1!/CCS S 1 1 - N4

ADC~2! SD 2 2 0 N5

CC2 SD 2 2 0 N5

ADC~2!-E SD 2 2 1 N6

CCSD SD 3 2 1 N6

ADC~3! SD 3 3 1 N6

CC3 SDT 4 3 2 N7

aS, D, and T, denote single, double, and triple excitations, respectively.
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exploited in the present code only to the extent of Abelian
groups or subgroups, having only one-dimensional irreduc-
ible representations.

The present prototypical ADC~3! implementation still
follows the conventional strategy, in which one first com-
putes and stores the nonvanishing secular matrix elements
and then, in a second step, performs the~iterative! diagonal-
ization. This procedure results in an unfavorableN8 scaling
with the numberN of orbitals, sinceN8 operations are re-
quired to compute the third-order contributions in thep-h
block of the secular matrix.22 A more advantageous tech-
nique, which has been used for a long time in the CC
codes,36 consists in forming intermediate quantities along
with the matrix-vector multiplication in the iterative diago-
nalization. To be more specific, let us consider the procedure
for one of the second-order terms@Eq. ~C7! of Ref. 22#,

Mak,a8k8
(C)

5(
c,i

vk8 ia8cvacik

3~ 1
2~«k1«k82«a2«a8!1« i2«c!, ~18!

where

vabi j5
Vab[ i j ]

«a1«b2« i2« j
.

Obviously, the computation of these contributions for the
entire p-h block scales asN6, whereas the vector-matrix
product

Z̄ak5 (
a8k8

Mak,a8k8
(C) Za8k8 ~19!

for this part requiresN4 operations. The form of the contri-
butions@Eq. ~18!# suggests to compute theN2 intermediates

Yic5 (
a8k8

vk8 ia8cZa8k8 ~20a!

and

Yic8 5 (
a8k8

vk8 ia8c
1
2 ~«k82«a8!Za8k8 ~20b!

from which the final contributions to the ‘‘target’’ vector can
be obtained according to

Z̄ak5(
c,i

vacik$Yic8 1Yic@ 1
2 ~«k2«a!1« i2«c#%. ~21!

Both partial steps requireN4 operations, so that the overall
scaling reduces fromN6 to N4. The inspection of the
ADC~3! equations shows that using these techniques one can
reduce the overall scaling behavior toN6. The corresponding
scaling potential of the ADC~2! method isN5. In Table I we
compare the operation count characteristics for the ADC and
CC methods.

B. Computational details

In the present study the H2O, HF, N2 , Ne, CH2, and BH
systems have been considered. For the ground and the lowest

excited states of these systems the results of a new genera-
tion of FCI calculations using cc-pVDZ basis sets augmented
with diffuse functions, as well as CC results are avail-
able.23–26 For the sake of comparison we used in each case
the same input data~basis set, geometry and ‘‘frozen’’ 1s
orbitals! as in the FCI work. Except for HF, the singlet ex-
citations were computed as described in Refs. 23 and 24, the
triplet excitations as in Refs. 25 and 26. The HF singlet and
triplet computations were performed according to Ref. 25.
The compliance with the previous work implies slightly dif-
ferent input data for singlet and triplet excitations in the case
of Ne, CH2, and BH. The ADC calculations were performed
using the new ADC code interfaced to theMOLCAS program
package.37,38 For the conversion to eV the conversion factor
1 hartree527.211 606 eV has been used throughout.

The consistency of our input data with those used in the
FCI calculations was controlled by checking the HF ground-
state energies, as far as they were available,23,24,26or by in-
specting the CIS energies in the case of Ne, HF, and BH.25

Here our HF ground-state energies are2128.496 350,
2100.033 466 and225.126 476 hartree, respectively. We
could not reproduce the HF ground-state energy of
238.884 254 hartree reported for CH2 in Ref. 26~our result
is 238.884 244 hartree!. This inconsistency affects the CIS
energies to the order of 0.01 eV. Similar discrepancies occur
in the CIS energies of BH. In the case of CH2 we note a
confusion between theB1 andB2 irreducible representations
of the C2v point group in the assignment of excited states. In
Refs. 24 and 26 theB1 andB2 labels should be interchanged,
in order to be consistent with the established nomenclature
for the CH2 ground state, which is3B1 rather than3B2 ~see,
for example, Ref. 39 and the literature cited therein!. A simi-
lar problem occurs for the singlet excited states of H2O.25

Finally, it appears that the CCS results for 13S and 13D
states of Ne in Table 1 of Ref. 25 should be interchanged.

IV. RESULTS AND DISCUSSION

In Table II we compare the ADC~1!, ADC~2!, and
ADC~3! results for the lowest singlet and triplet excitations
energies in H2O, HF, N2, and Ne with the corresponding
results obtained using full CI~FCI! and coupled cluster
methods.23–26We here refrain from comparing the computed
excitation energies to experiment~for experimental data the
reader is referred to Refs. 20, 24, and 25 and references
therein!. To get an idea of the quality of the FCI description
one may compare the experimental value of the lowest sin-
glet excitation in Ne~16.84 eV! with the FCI result of 16.40
eV. Altogether Table II contains 43 transitions, of which 41
transitions are considered in the evaluation of statistical
quantities. The two exempted data sets correspond to inner-
shell transitions in Ne.

At the first-order approximation level the CC and ADC
methods for the excitation energies are identical, so that the
CCS and ADC~1! results are listed under the same heading in
Table II. Obviously, the accuracy here is rather poor: The
mean absolute error~for the sample of 41 transitions consid-
ered in Table II! amounts to 1.16 eV, the maximal deviation
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being 2.51 eV. It should be noted that double excitation are
not considered at all at the first-order level.

A distinctly better description is obtained using the
second-order methods. The mean absolute errors are reduced
to 0.64 and 0.53 eV in the ADC~2! and CC2 treatments,
respectively. Besides the similarity of the mean errors, one
finds good agreement also for the individual ADC~2! and
CC2 results, especially distinct in the case of N2. The simi-
larity of the results reflects, of course, the essential equiva-
lence of the two methods. The small remaining discrepancies

arise from third-order contributions due to the use of theT1

similarity-transformed Hamiltonian in the CC2 method.
A distinct, uniform improvement with respect to the

second-order description is achieved at the ADC~3! level.
The mean absolute error here is below 0.2 eV, the largest
deviation being 0.37 eV. The quality of the ADC~3! results
for the excitation energies, as inferred from the present com-
putations, is comparable to the established accuracy standard
of 60.2 eV in the related third-order electron propagator
methods for electron ionization. A most impressive accuracy

TABLE II. FCI, ADC, and CC results for vertical excitation energies~eV! of H2O, HF, N2 , and Ne. The ADC and CC results are given relative to the FCI

values. The last two lines give the mean absolute error (D̄abs) and the maximum absolute error (Dmax), respectively, relative to FCIa ~eV!.

Transition FCIb ADC~1!/CCS ADC~2! ADC~3! CC2b CCSDb CC3b

H2O 11A1→
2 1A1 9.87 1.11 20.50 0.14 20.42 20.07 20.02
1 1B1 7.45 1.22 20.50 0.13 20.41 20.07 20.02
1 1B2 11.61 1.03 20.64 0.18 20.56 20.09 20.02
1 1A2 9.21 1.15 20.63 0.17 20.55 20.09 20.02
1 3B1 7.06 0.95 20.45 0.09 20.37 20.08 20.02
1 3A2 9.04 0.99 20.58 0.14 20.50 20.08 20.02
1 3A1 9.44 0.70 20.44 0.10 20.36 20.08 20.01
2 3A1 10.83 0.61 20.35 0.01 20.29 20.11 20.01
2 3B1 11.05 0.93 20.48 0.11 20.40 20.09 20.01
1 3B2 11.32 0.58 20.55 0.13 20.47 20.08 20.01
HF 11S1→
1 1P 10.44 1.32 20.81 0.18 20.62 20.14 20.02
2 1P 14.21 1.27 20.87 0.19 20.68 20.15 20.02
2 1S1 14.58 0.84 20.67 0.10 20.48 20.11 20.01
1 1D 15.20 1.18 20.74 0.12 20.53 20.17 20.01
1 1S2 15.28 1.09 20.74 0.12 20.54 20.18 20.01
3 1P 15.77 1.47 20.85 0.23 20.67 20.18 20.02
3 1S1 16.43 1.41 21.10 0.37 20.85 20.14 20.04
1 3P 10.04 1.02 20.75 0.14 20.56 20.15 20.02
1 3S1 13.54 0.05 20.49 0.05 20.33 20.13 0.00
2 3P 14.01 1.17 20.87 0.19 20.69 20.16 20.02
2 3S1 14.46 0.78 20.66 0.07 20.49 20.21 20.01
1 3D 14.93 0.96 20.70 0.10 20.52 20.19 20.01
1 3S2 15.25 1.12 20.73 0.12 20.54 20.18 20.01
3 3P 15.57 1.34 20.85 0.22 20.67 20.19 20.02
N2 1 1Sg

1→
1 1Pg 9.58 0.49 0.17 20.17 0.14 0.08 0.03
1 1Su

2 10.33 21.68 0.29 20.33 0.34 0.14 0.01
1 1Du 10.72 21.49 0.45 20.37 0.52 0.18 0.01
1 1Pu 13.61 2.51 0.95 20.23 0.93 0.40 0.18
1 3Su

1 7.90 21.53 0.41 20.19 0.44 20.02 20.03
1 3Pg 8.16 20.11 0.17 20.29 0.15 0.06 0.02
1 3Du 9.19 21.72 0.33 20.27 0.36 0.07 0.00
1 3Su

2 10.00 21.35 0.54 20.29 0.58 0.19 0.03
1 3Pu 11.44 0.59 0.29 20.19 0.28 0.10 0.07
Ne 1 1S→
1 1P 16.40 1.69 20.78 0.17 20.66 20.24 0.01
1 1D 18.21 1.74 20.92 0.18 20.80 20.25 0.02
2 1P 18.26 1.72 20.92 0.18 20.80 20.25 0.02
2 1S 18.48 1.93 21.05 0.27 20.92 20.24 0.01
3 1S 44.05 3.73 20.49 0.35 20.25 20.17 20.10
1 3P 18.70 1.25 20.71 0.13 20.50 20.24 20.01
1 3S 19.96 0.94 20.74 0.10 20.55 20.26 0.00
1 3D 20.62 1.17 20.79 0.13 20.58 20.23 0.00
2 3P 20.97 1.30 20.83 0.13 20.61 20.24 20.01
2 3S 45.43 3.04 20.32 0.40 20.13 20.10 20.04

D̄abs
1.16 0.64 0.17 0.53 0.15 0.02

Dmax 2.51 1.10 0.37 0.93 0.40 0.18

aTransitions to the 21,3S (2s12p63s1) inner-shell excited states of Ne are exempted.
bResults from Refs. 23–26.
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record is seen for the CC3 results in Table II, yielding a mean
absolute error of only 0.02 eV with 0.18 eV maximal devia-
tion ~for the 1Pu state in N2). In comparing the two third-
order methods one should, however, keep in mind that the
CC3 method is considerably more expensive than the
ADC~3! method. The explicit CC3 configuration space ex-
tends to the 3p-3h ~triple! excitations, which leads to an
overall N7 scaling of the method as compared to theN6

scaling of the ADC~3! scheme. The CCSD energies in Table
II seem to lie systematically between the CC2 and CC3 re-
sults. Both with respect to the mean absolute error and the
size of the maximal deviation the CCSD and ADC~3! results
are quite similar. Nevertheless, one finds considerable dis-
crepancies for the individual excitation energies.

For most of the transitions in Table II one sees a typical
oscillatory convergence pattern with increasing order of the
method. The ADC~1! or CCS excitation energies~for low-
lying single excitations! are too large as the coupling to the
energetically higher 2p-2h ~double! excitations is not taken
into account. At the second-order level thep-h/2p-2h cou-
pling comes into play, leading to a substantial and usually
overshooting lowering of the excitation energies, which in
turn is corrected at the third-order level by an improved de-

scription of thep-h/2p-2h coupling and of the 2p-2h ener-
gies.

According to the discussion in Sec. II B, for two distinct
types of contributions to thep-h block of the secular matrix
the evaluation of the strict perturbation-theoretical ADC~3!
expressions has to be replaced by an improved treatment
using the so-called Dyson expansion method for one-particle
density-matrix elements and the related matrix elements of
the static self-energy. To demonstrate the effect of these
modifications we compare in Table III the results of several
ADC variants for HF and N2. A typical behavior is seen in
the case of HF, where the major improvement with respect to
the strict ADC~3! version results from the use of the Dyson
expansion method for the static self-energy terms, while the
second amendment concerning the one-particle densities in
Eq. ~15! has almost no effect. The overall improvement due
to the Dyson expansion method is reflected by the distinct
reduction of the mean absolute error by about 0.3 eV. A less
typical example is N2. Here the improvement of the static
self-energy terms does not change much, but the improved
one-particle densities play a role. The overall improvement
of the N2 results is significant, though not as large as in HF.

Table III allows also for a comparison of the standard

TABLE III. Comparison of different ADC schemes for HF and N2 . The individual ADC results, the mean absolute error (D̄abs), and the maximum absolute
error (Dmax) are given relative to the FCI vertical excitation energies~eV!.

ADC~3!

Transition FCIa ADC~1! ADC~2! ADC~2!-E Strict S~`!b Fullc

HF 1 1S1→
1 1P 10.44 1.32 20.81 20.96 0.52 0.20 0.18
2 1P 14.21 1.27 20.87 20.94 0.53 0.21 0.19
2 1S1 14.58 0.84 20.67 20.81 0.42 0.13 0.10
1 1D 15.20 1.18 20.74 20.91 0.45 0.14 0.12
1 1S2 15.28 1.09 20.74 20.92 0.44 0.12 0.12
3 1P 15.77 1.47 20.85 20.98 0.58 0.26 0.23
3 1S1 16.43 1.41 21.10 21.09 0.70 0.38 0.37
1 3P 10.04 1.02 20.75 20.92 0.46 0.15 0.14
1 3S1 13.54 0.05 20.49 20.67 0.26 0.00 0.05
2 3P 14.01 1.17 20.87 20.93 0.51 0.20 0.19
2 3S1 14.46 0.78 20.66 20.87 0.36 0.05 0.07
1 3D 14.93 0.96 20.70 20.90 0.40 0.09 0.10
1 3S2 15.25 1.12 20.73 20.91 0.44 0.12 0.12
3 3P 15.57 1.34 20.85 20.98 0.56 0.24 0.22

D̄abs
1.07 0.77 0.91 0.47 0.16 0.16

Dmax 1.47 1.10 1.09 0.70 0.38 0.37
N2 1 1Sg

1 →
1 1Pg 9.58 0.49 0.17 20.70 20.14 20.15 20.17
1 1Su

2 10.33 21.68 0.29 20.10 20.48 20.49 20.33
1 1Du 10.72 21.49 0.45 20.05 20.47 20.49 20.37
1 1Pu 13.61 2.51 0.95 21.26 20.17 20.20 20.23
1 3Su

1 7.90 21.53 0.41 0.07 20.38 20.40 20.19
1 3Pg 8.16 20.11 0.17 20.55 20.23 20.25 20.29
1 3Du 9.19 21.72 0.33 20.03 20.44 20.45 20.27
1 3Su

2 10.00 21.35 0.54 20.01 20.43 20.45 20.29
1 3Pu 11.44 0.59 0.29 20.93 20.15 20.20 20.19

D̄abs
1.27 0.40 0.41 0.32 0.34 0.26

Dmax 2.51 0.95 1.26 0.48 0.49 0.37

aResults of Refs. 23–26.
bDyson expansion method for third-order self-energy terms only~see Sec. III B!.
cDyson expansion method for all terms with density-matrix elements~see Sec. III B!.
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ADC~2! method and the so-called extended version
@ADC~2!-E#, in which the 2p-2h diagonal block of the secu-
lar matrix is expanded through first order. While this leads to
an improved treatment of the doubly excited states, the effect
for the single excitations rather seems to be inconsistent and
a change to the worse. Particularly large individual energy
changes can be seen in the case of N2 .

The systems considered so far have in common that their
ground-states can fairly well be treated in terms of RS per-
turbation theory, which also is the precondition for the appli-
cability of the ADC methods. In Table IV we take a look at
the performance of the method in cases such as CH2 and BH,
where that requirement is not fulfilled. Both systems are of
quasi-open-shell type, lacking a distinct energy gap between
occupied and virtual orbitals, which is reflected by unusually
low excitation energies. Due to the choice of the 11A1 state
as the reference state in the case of CH2, one even has a
negative excitation energy with respect to the true 13B1

ground state. The ADC~2! and CC2 second-order results for
the single excitations are surprisingly good; the mean abso-
lute error is below 0.14. However, the nonregular behavior in
both CH2 and BH becomes apparent in the deterioration of
the results at the third-order ADC level, where the mean
absolute error jumps to 0.38 and 0.51 eV, respectively; for
the double excitations the deviations from FCI are in the
order of21 eV.

V. SUMMARY AND CONCLUSIONS

The numerical tests of the recently derived ADC~3!
method presented here have shown a significantly improved
accuracy for the excitation energies of single excitations with
respect to the previous second-order@ADC~2!# treatment.
The mean absolute error, as calibrated versus the FCI results
for 41 singlet and triplet transitions, has been found to be
smaller than 0.2 eV. The quality of the results seems to be

TABLE IV. Comparison of FCI, ADC, and CC results for systems with ‘‘none-RSPT’’ character in the ground state: CH2 and BH. The ADC and CC results
are given relative to the FCI vertical excitation energies~eV!. Only transitions with dominant single-excitation character have been considered in the

determination of the mean absolute error (D̄abs) and the maximum absolute error (Dmax) ~eV!.

Transition FCIa ADC~1!/CCS ADC~2! ADC~3! CC2a CCSDa CC3a

CH2 1 1A1→
2 1A1

b 4.66 21.10 1.46 0.47
3 1A1 6.51 0.44 20.09 20.31 20.10 20.01 20.01
41A1 8.48 0.38 20.20 20.29 20.21 20.02 20.01
1 1B2 7.70 0.41 20.11 20.24 20.13 0.01 0.02
2 1B2

b 8.02 21.10 1.60 0.52
1 1B1 1.79 20.15 20.14 20.55 20.13 20.01 20.01
2 1B1

b 8.91 20.61 1.80 0.57
3 1B1

b 10.55 20.53 1.82 0.61
1 1A2 5.85 0.22 0.04 20.42 0.04 0.01 0.01
2 1A2

b 9.41 0.00 2.42 1.17
1 3A1 6.39 0.30 20.12 20.31 20.11 20.01 20.01
2 3A1 8.23 20.11 20.16 20.38 20.17 20.03 20.01
3 3A1 9.84 0.34 20.12 20.31 20.11 0.01 0.00
1 3B2

b 6.41 21.13 21.84 20.65
2 3B2 7.70 0.17 20.19 20.31 20.18 20.06 0.01
1 3B1 20.01 20.49 20.16 20.61 20.15 20.03 20.01
2 3B1 8.38 0.39 20.09 20.41 20.08 0.01 0.01
1 3A2 4.79 20.13 20.01 20.44 0.00 0.00 0.00

D̄abs
0.29 0.12 0.38 0.12 0.02 0.01

Dmax 0.49 0.20 0.61 0.21 0.06 0.02
BH 1 1S1→
1 1P 2.94 20.10 20.09 20.61 20.08 0.02 0.01
1 1Db 5.88 21.19 0.79 0.31
2 1S1 6.38 20.01 20.08 20.43 20.09 0.04 0.02
3 1S1b 7.00 21.54 0.39 0.18
2 1P 7.47 20.10 20.12 20.51 20.13 0.04 0.01
4 1S1 7.56 20.16 20.20 20.54 20.21 0.19 0.05
3 1P 8.24 20.12 20.13 20.50 20.14 0.04 0.02
1 3P 1.31 20.76 20.29 20.62 20.28 20.01 0.00
1 3S2 b 4.69 21.19 0.89 0.39
1 3S1 6.26 20.24 20.12 20.47 20.13 0.03 0.01
2 3S1 7.20 20.35 20.19 20.49 20.20 0.02 0.01
2 3P 7.43 20.22 20.18 20.51 20.18 0.00 20.01
3 3S1 7.62 20.22 20.08 20.52 20.09 0.05 0.02
3 3P 7.92 20.15 0.00 20.45 20.01 0.08 0.05

D̄abs
0.22 0.13 0.51 0.14 0.05 0.02

Dmax 0.76 0.29 0.62 0.28 0.19 0.05

aResults from Refs. 23–26.
bTransitions with strong or dominant double-excitation character.
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comparable or even superior to that of the CCSD method,
not fully qualifying for third-order consistency, but it does
not match the impressive accuracy of the CC3 computations,
which, however, are substantially more expensive. At the
second-order level, the present results confirm the essential
equivalence of the ADC~2! and CC2 methods.

Let us reiterate that the computational concept of the
ADC~3! method is simple. It combines diagonalization of a
Hermitian secular matrix with perturbation theory for the
matrix elements. The explicit configuration space, spanned
by p-h and 2p-2h excitations, is of the size of the SDCI
treatment. As a consequence of the so-calledcompactness
property, the ADC~3! results for the single excitations are
consistent through third order in the residual electronic re-
pulsion. The ADC~3! secular matrix isseparable, which
leads to size-intensive results both for excitation energies and
transition moments. In principle, the method scales asN6

with the number of molecular orbitals, yet that potential is
not exhausted in the present prototypical ADC~3! computer
code. As discussed in Sec. II B, an essential factor in the
performance of the ADC~3! method is the improved treat-
ment of one-particle density contributions using the Dyson
expansion method. Like the CC methods the ADC~3! allows
for black-box computations avoiding adjustments for indi-
vidual states or groups of states, which may be the source of
unbalances.

Of course, the use of perturbation theory causes limita-
tions to the applicability of the method. The perturbation
expansions for the secular matrix elements behave essen-
tially like the corresponding RS ground-state and ground-
state energy expansions, which means that whenever the
ground state RSPT fails, e.g., in the case of large ‘‘static’’
correlation, the ADC methods can no longer reasonably be
applied. This restriction also applies to systems with degen-
erate~open-shell! ground states. Similar limitations also af-
fect the usual CC methods.

In the present study we have not considered transition
moments, as the full third-order consistency here does not
appear to be of utmost importance. Rather we recommend to
combine the ADC~3! eigenvectors with the ADC~2! interme-
diate state transition moments. The performance of the latter
quantities at the consistent ADC~2! level has been demon-
strated in Ref. 20. It should be emphasized that the ADC
size-consistency property and truncation error characteristics
apply as well to the transition moments. Moreover, let us
note that the method is not restricted to the treatment of
excitation energies and transition moments. The ISR formu-
lation, as outlined in Sec. II A, allows one to exploit the full
potential of a wave-function approach: the method can
readily be extended to the computation of excited-state prop-
erties and excited-state transition moments.40
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