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A recently developed consistent third-order propagator method for the treatment of electronic
excitation in molecules is tested in first applications. The method referred to as third-order
algebraic-diagrammatic constructipADC(3)] extends the existing second-order approximation
and aims at a more accurate computation of excitation energies and transition moments than
afforded at the second-order level. For a stringent test of the method we compare tt{g) ADC
energies for over 40 singlet and triplet vertical transitions 3©HHF, N,, and Ne with the results

of recent full configuration interactio(FCl) and coupled clustefCC) computations. The AD®)

results reflect a substantial and uniform improvement with respect to the second-order description.
The mean absolute deviation of the single excitation energies from the FCI results is below 0.2 eV.
Although this does not equal the accuracy of the third-order CC3 model, the(3D@ethod,
scaling as K with the number of orbitals, may be viewed as a good compromise between accuracy
and computational cost. @002 American Institute of Physic§DOI: 10.1063/1.1504708

I. INTRODUCTION size-consistency property and their potential to be used as
“black-box” applications, the CC methods have rapidly es-

An adequate theoretical description of electronic excita- _, ..
tions in molecules is a basic requirement for the understanot?lb“ShE(.j themse}vesl as standard tools for. the treatment of
lectronic excitation in molecules. As constituent parts they

ing of photophysical and photochemical processes. In spitg : ) . .
of the ongoing growth of computer capabilities and impres_are included in major quantum chemistry program packages.
Among the more traditional methods for treating elec-

sive methodological advances, the present state of the art X .
here is much less satisfactory than in the treatment of thionically excited states, one has to name the multireference

ground state, and it is still an urgent concern to improveconfiguration interaction(MRCI) method:® The MRCI
existing computational schemes or to develop new method&n€thod can successfully be used for small molecules. How-
In recent years substantial efforts have been directed tgV€": in the application to larger molecules one encounters
the development of methods extending the successflfoPlems due to the rapidly increasing configuration space
coupled cluster(CC) parametrization of the ground state @"d, more on principle, due to the violation of size
to the treatment of excited states. Such developments coanQ”S'Stenc)]’- Another important approach is based on the
prise the coupled cluster linear-respo€€LR)' 3 and the multiconfiguration self-consistent fieldCSCB treatment.
essentially equivalent equation-of-motion CC methodsCombining the so-called complete active spaCAS) SCF
(EOMCC).*~® Another method of that type is the symmetry- version of MCSCF with second-order perturbation theory
adapted cluster configuration interacti®ACCI) approxi- ~ (PT), Roos and collaboratofs'® have established the
mation’~° which has been used for a long time in studies of CASPT2 method as a useful and versatile tool in excited
excited molecules. The CC approach establishes a framétate electronic structure calculations. However, the CASPT2
work in which one can formulate a hierarchy of successivelymethod can hardly be applied as a black-box method, since a
more accurate computational schemes, including at presef@reful choice of the active orbitals is crucial for reliable
the CCS, CC2, CCSD, CC3, and CCSDT models. Here thé&esults. It should also be noted that the originally claimed
acronyms S, D, and T denote the increasing configuratio@ccuracy standard has recently been challenged by very ac-
space of single, double, and triple excitations, respectivelygurate CC3 computatiorté:*®
with respect to the ground-state Hartree—F@El) refer- For a long time also methods deriving from propagator
ence state. The CC2 and CC3 methods can be viewed #3eory have been used successfully in the computation of
approximations to the CCSD and CCSDT methods, respeagnolecular excitation spectra. Most notable examples of
tively. The CC methods yield size-consistent results for exfropagator methods beyond the first-order or random-phase
citation energies, thus being, by principle, superior ttra- approximation level are the second-order polarization propa-
ited) configuration interaction(Cl) treatment. Due to the gator approach (SOPPA,'*'8 and the second-order
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algebraic-diagrammatic constructipADC(2)] method!®?!  and the associated secular equations take the form of a Her-
These methods allow for a direct determination of excitationmitian eigenvalue problem,

energies and transition moments, and they share with the CC N

methods the property of size consistency. While both the MX=XQ, X'X=1, ®)

SOPPA and AD() methods are quite practical and effi- where ) and X denote the diagonal matrix of eigenvalues

cient, they are restricted to a consistent second-order treaty§ ihe eigenvector matrix, respectively. Obviously, the ei-
ment of the single excitations, and the accuracy thereby af

. . e genvalues are the excitation energies,
forded is only modest: The results f@single excitation
energies are typically in error by 0.5 eV. Aiming at a more Q,=E,—Ey, (6)
accurate description, the ADC method has recently been ex- ) ) ]
tended to the level of third-order consisted&DC(3)].2 In whlle t_he eigenvector componentg are the expansion _c_oeff|-
the following we report on the implementation and first nu-Cients in the ISREq. (1)] of the excited states. The transition
merical tests of the AD@) method in applications to several moments
small systems such as,@, HF, N,, and Ne. For these sys- ~
tems an extensive set of data for both singlet and triplet To=(W¥n|D[¥o), @
states has been generated r_ecentl_y ba_sed on_CCS, CCSBy a given (one-particlé operator
CC2, CC3, and full configuration interactioFClI)
computation&~?°using reasonably large basis sets. The rep- . )
etition of these computations at the A[BE level allows for D:rzs dysC; 'Cs ®)
stringent comparisons and a reliable evaluation of the accu- ’
racy. As will be seen, the AD@) results indicate a substan- are obtained as
tial and uniform improvement with respect to the second-
order treatment, the mean deviations from the F&ngle Tn:E XE ) e, )
excitation energies being below 0.2 eV. irs ’

where the quantities
Il. THEORY

fis=(W|c,Ted ¥ 10
A. ADC (3) method Lis=(Wilc:"eg Wo) (10)

In the following we give a brief review of the ADG) g:ﬁprlﬁfﬁgid to as intermediate stébe effective transition

computational scheme and its properties. While the ADC ap- Approximation schemes based on the ISR are obtained

proach was derived originally within the context of propaga- : ) . .

. : by truncating the IS configuration space and by using con-
tor methods, a more convenient and direct way of presenta-; . . .
) : . . sistent perturbation expansions for the IS secular matrix ele-
tion is afforded by the concept of intermediate state

representationdSR). For more details the reader is referred ments and transition amplitudes:

to Refs. 22 and 27. M=MO+MD4M@4... (119
In the ADC method the exact excited staids,) are
expanded according to f=fO+ D 4§24 ... (11b
_ 3 The explicit perturbation expansions figr andf can in prin-
V=2 Xym| P 1 -
Vo) 2 al V) @) ciple be derived by using the familiar Rayleigh-Saiirmer

_ ) ) ~ perturbation theory(RSPT) for the ground state and the
in terms of so-called intermediate staf#ls;) generated by @ ground-state energy in the closed-form expressions for the
specific orthonormalization procedure from the correlatecﬁ]termediate staté€. A more practical approach, however,
excited states, consists in the algebraic-diagrammatic constructia®C)
|q,o> - W) ) operating on the diagrammatic perturbation expansion for the
J I polarization propagatdf The ADC procedure, used previ-
Here| W) denotes the exad-electron ground state, aife,  ously in the derivation of the AD@) equations;’ could re-
denote “physical” excitation operators of particle-hdle-h),  cently be extended to the third-order leveFigure 1 shows

two-particle-two-holg(2p-2h),... type: schematically the block structure bf andf and the required
- bt _ orders of perturbation theory for the respective blocks at the
{Cat={cack;caChlrci,a<b,k<l; - }. (3 ADC(n) levels,n=1, 2, 3. The explicit ADC3) expressions

The Operators:g(cp) of second quantization Correspond to for the secular matrix elements have been given in Appendix
(Spin) orbitals as provided, e.g., by a ground-sta‘[e Hartree_c of Ref. 22; the third-order extensions for the IS transition
label unoccupied(virtual) and occupied orbitals, respec- ADC(3) expressions extend the ARR) secular matrix by
tively. The intermediate states establish a representation @fird-, second-, and first-order contributions in i diag-

the HamiltonianH or of the shifted Hamiltoniar — Eq, onal block, thep-h/2p-2h coupling block, and the22h di-
agonal block, respectively. For further reference we note that

M,;=(¥|H—Eq|¥,), (4)  the first-orderADC(1)] secular matrix is obtained as the
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p—h 2p—-2h ph hp PP hh order to achieve a systematical improvement. This is the case
for contributions toM which can be written in terms of
(ground-statg one-particle density-matrix elements. For ex-
p=h M?‘f) M?f? fl(,g ample, the latter quantities do appear in the form of the so-
called static self-energy matrix elemerits,
— Cc
2p-2h h.c. M(ﬁ) fé?lr)s qu(oo) FES Vpr[qs]psr: (12)
where
@) ® pS=(Wolc ey Wo) —(Polc]cy Do) (13
are the matrix elements of the correlation density, that is, the
Scheme yzi v A K ¥ .
differencep®= p— p© between the exact ground-state one-
ADCE  |0-3]1-210-1]0-3)1~2 particle density matrix and the HF density matrip(2
ADC@)}E |0-2| 1 Jo-1]0-2] 1 =N s, ANAVy 149 = Vprgs— Vprsq denote antisymmetrized
Coulomb integrals in the “1212" notation. Contributions of
ADC(2) |0-2] 1 | 0 0-2] 1 that type and the concomitant problems in their adequate
ADC(1) 0o-1| - _lo-1] - treatment are well known in the third-order one-particle
Green's-function(electron propagatprcomputations of va-
oAES [0-1) - | -} O] - lence electron ionizatiof?**The diagonal elements,, (=)

have an obvious physical meaning: they account for the
ground-state correlation effect in the electrostatic interaction
FIG. 1. Block structure of the secular mati® (a) and of the effective  petween the electron in the orbitabnd the valence electron
Eg‘zg‘t’rri‘xagpg'r"tggt‘?irgbt)r;]é’f&g’;gsrltg\;f’e"’:‘_'l‘;cgr‘zgg‘fg']:;Fég)‘s'0”5 for charge distribution. As the zero- and first-order contributions
' to p° vanish, the static self-energy matrix elements arise for
the first time in third order, however, in general being not
representation ofi —E,(1) with respect to single excita- weI_I approximated at that level. As the_ method .Of choic_:e for
tions, whereEq(1) is the HF ground-state energy. an |mprc_>ved treatment of the one-particle density matrix and
The ADC methods combine the eigenvalue problein the static self-energy matrix elements thg so—ca}lled Dyson
agonalizationof a Hermitian secular matrix and perturbation 8XPansion method has proved successful in previous valence
theory for the secular matrix elements. The eigenvalue prog©nization applications. The method has been amply de-
lem of the AD@2) and ADQ3), with an explicit configura- scribed in Ref. 32 Qnd more recently in Sgc. V of Ref. 34,
tion space ofp-h (single and 2-2h (double excitations, is where the reader is referrgd to for detalls_. In_ brief, the
of the size of the familiar CI singles and doublégDCI) method is based on the third-order approximation fo_r the
treatment. Thefinite) perturbation expansions used for the €lectron propagator and the related self-energy. It provides a
matrix elements behave with respect to convergence like theonsistent description of the one-particle density and the
Rayleigh-Schidinger (RS perturbation series for the static self-energy through third ar}d fo.urth order, rgspectlvely,
ground-state energy and wave function, respectively. At th&nd represents, moreover, an infinite, though incomplete,
ADC(3) level, the single and double excitations are treate®immation of higher-order terms. o
consistently through third and first order, respectively. In N the present case static self-energy terms arise in the
general, the truncation errdgfor single excitationsdue to  P-h diagonal block of the secular matri, more specifically
restricting the explicit ADC configuration space to tpe N the contributions Eq4C17)—~(C20) of Ref. 22, which can
lowest excitation classeg-h, 2p-2h, ..., up-uh is of the P€ collected in the form

©)

order 2« (compactness propeltyThis is a consequence of 12
the “canonical” order relatiorfs holding for the ADC (or > ClH = 5,38 () + 5kk,2;32,(oo)_ (14)
ISR) secular matrices. Another basic property is separa- n=9 '

bility of the ADC secular matrice§:For a system consisting s inspection of the remaining third-order terms shows, that
of two noninteracting parts A and B, the ADC secular equa-|sg the contributionéC24), (C25), (C27), and(C28) of Ref.

tions for local excitations, say on A, are strictly decoupledys can pe expressed in terms of density matrix elements as
from local excitations on B and from nonlocal excitations fg|jows:

(on A and B. This property guarantees size-consisi@ize-

intensive excitation energies and transition moments, which cBm S v, )

is a crucial requirement for the application to large systems. ,—1¢741020 2@’k ~ 4 ViK/[2'KPai

B. Improved treatment of one-particle densities +> Vk'a[ca']P(ci)+ h.c. (15)
Cc

For certain contributions to the secular matrix elements
the finite perturbation expansions are not always satisfactorfccording to the preceding discussion, it is recommended to
and one has to go beyond the strict third-order expressions ireplace the strict perturbation-theoretical expressions for
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E(OC) and p in the right-hand side of Eqs{14) and (15), TABLE_ I Characteristics[explicit configuratiqn space, perturbz_ation-
. . theoretical consistency for groundg{) and excited-stateH,) energies,
respectively, by the corresponding results of the Dysorhnd scaling properfyof members of the ADC and CC method hierarchies.

expansion method. A numerical test of the improvement

afforded by the Dyson expansion method is presented in Configuration E,?
Sec. IV. Method spac@ E, S D Scaling
C. Comparison with coupled cluster methods ADC(1)/CCS s 1 1 _ N4
. . . ADC(2 D 2 2 N®
Since we will compare in Sec. IV ADC and CC results, ch( ) SéD 5 5 % NS
a brief survey of the CC methods for electronic excitationapc(2)-e sD 2 2 1 NG
(see Refs. 2, 3, and 8hould be in order. Also the CC meth- ccsb SD 3 2 1 NS
ods can be viewed as specific intermediate state represen?PC(3) SD 3 3 1 N®
cc3 SDT 4 3 2 NE

tions of the shifted HamiltoniaH—Eo using two different
set of states, namely the correlated excited states in the forfs, D, and T, denote single, double, and triple excitations, respectively.
|w9=C,e"|®y) and the corresponding biorthogonal states

(Wl |=(Dy|Cle™T. Here |Wo)=eT|dy) with T=T,+T,

+--. is the CC parametrization of the ground-state. The

secular matrix of the resulting biorthogonal coupled clustedll. COMPUTATIONS

(bCC) representation A. Implementation of the ADC  (3) method

A The AD(Q(3) code used in the present study has been
o= (W |H—Eo|¥Y) (16)  written as an extension of the existing ADXL program?°
The required additions comprise third-order terms ine
diagonal block M,;) and second-order terms in thgeh/
"2p-2h coupling blocks M,); the first-order p-2h diagonal
block (M5, was already available from the so-called ex-
tended second-ord¢ADC(2)-E] variant (see Fig. 1 The
MeX=XQ, YM=QY' VYiXx=1 (17 most demanding task was the coding of third-order terms of
M, involving four- and fivefold summations over orbital
_ ) _ ) indices. As a measure for reliability, the coding of the
The QC model hierarchy is obtamed_by exte_ndmg the CONADC(3) extension was performed independently by two of
figuration spacéS, SD, SD7 and by introducing approxi- he authors, so that the two versions could be tested against
mations to the CC amplitudes and secular matrix element$,e another. Generally, the emphasis in the design of the
The simplest approximation, CCS, is identical to other ﬁrSt‘present code was laid on an utmost secure and error-free
order methods, such as the ADIC or Tamm-Dancoff ap-  regjization. The development of a program version optimized

proximation (TDA), and may be seen essentially as a CISith respect to computational efficiency will be aimed at in a
approach. Both the CC2 and CCSD models extend the eXs,ccessive step.

plicit configuration space to the doubi@p-2h) configura- The explicit expressions for the AGB) secular matrix,
tions, yielding a consistent second-order treatment of singlys given in Ref. 22, are formulated with respect to electron
excited states. Due to the use of first-order expressions fQfgnfigurations in the spin-orbital form, referred to as “primi-
the T, amplitudes the CC2 and ADR) methods are essen- tjve” excitations. For an efficient computer code it is neces-
tially equivalent. Some differences, being of third ordersary to generate spin-free working equations for the final-
though, arise from the use of tﬁ'q transformed Hamiltonian state spin values of interest, that 0 and 1. This can be

in the CC2 model. As a consequence of the less stringerachieved in a most straightforward way using standard angu-
order relations of the bCC secular matfsee Refs. 27 and lar momentum algebra techniques operating on the general
35), the CC configuration space must comprise the triplgspin-orbita) expressions. Basically, one forms spin-adapted
excitations in order to have third-order consistency for theexcitations as suitable linear combinations of the primitive
singly excited states. This is the case in the CC3 approximaexcitations and applies the corresponding unitary transforma-
tion to the full CCSDT method. The third-order consistencytions to the original secular matrix. This leads to decoupled
of the CC3 modelfor singly excited statgds shared by the secular equations of smaller size 8= 0 and 1. The origi-
less expensive AD@) method. However, the explicit con- nal primitive configuration spacé&or Mg=0) is reduced
sideration of the double excitations in the CC3 configuratiorroughly by a factor of 1/3 and 1/2 for the singl&=0) and
space allows for a better, namely, a consistent second-ordéiplet (S=1) cases, respectively. Ensuing to the decoupling
treatment of the doubly excited states, which at the AD)C step, one can perform the spin summations in the general
level are treated consistently through first order only. In viewperturbation-theoretical expressions for the matrix elements,
of the importance of the admixture of double excitations inyielding the desired spin-free expressions that involve only
singly excited states, one has to expect that, in general, thepatial two-electron integrals and orbital energies. The task
ADC(3) results will be less accurate than those of a @3 of generating the spin-free expressions has been performed
CCSDT) treatment. A compilation of the characteristics of in a semiautomatic way with the help of a specially devised
the CC and ADC hierarchies is given in Table I. computer program. The spatial symmetry of a molecule is

is non-Hermitian, giving rise to a right- and left-hand eigen
value problem,
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exploited in the present code only to the extent of Abelianexcited states of these systems the results of a new genera-
groups or subgroups, having only one-dimensional irreduction of FCI calculations using cc-pVDZ basis sets augmented
ible representations. with diffuse functions, as well as CC results are avail-
The present prototypical AD@) implementation still able?®~2¢ For the sake of comparison we used in each case
follows the conventional strategy, in which one first com-the same input datéasis set, geometry and “frozen”sl
putes and stores the nonvanishing secular matrix elementsbital9 as in the FCI work. Except for HF, the singlet ex-
and then, in a second step, performs (iterative) diagonal-  citations were computed as described in Refs. 23 and 24, the
ization. This procedure results in an unfavoralféscaling triplet excitations as in Refs. 25 and 26. The HF singlet and
with the numberN of orbitals, sinceN® operations are re- triplet computations were performed according to Ref. 25.
quired to compute the third-order contributions in fn  The compliance with the previous work implies slightly dif-
block of the secular matri$ A more advantageous tech- ferent input data for singlet and triplet excitations in the case
nigue, which has been used for a long time in the CCof Ne, CH,, and BH. The ADC calculations were performed
codes®® consists in forming intermediate quantities alongusing the new ADC code interfaced to thieLcAs program
with the matrix-vector multiplication in the iterative diago- package’’*® For the conversion to eV the conversion factor
nalization. To be more specific, let us consider the procedurg hartree=27.211 606 eV has been used throughout.

for one of the second-order terrfigq. (C7) of Ref. 27, The consistency of our input data with those used in the
FCI calculations was controlled by checking the HF ground-
M;(Ii,)a’k’:; Viriar el acik state energies, as far as they were availabt&?®or by in-

specting the CIS energies in the case of Ne, HF, andBH.
Here our HF ground-state energies arel28.496 350,

X (3ot o0 —saear) T o0, (18 _100.033 466 and-25.126 476 hartree, respectively. We
where could not reproduce the HF ground-state energy of
—38.884 254 hartree reported for ¢l Ref. 26 (our result
D abij = Vanlij] _ is —38.884 244 hartree This inconsistency affects the CIS
€atep— €~ ¢ energies to the order of 0.01 eV. Similar discrepancies occur

in the CIS energies of BH. In the case of €Me note a
confusion between thB, andB, irreducible representations
of the G, point group in the assignment of excited states. In

Obviously, the computation of these contributions for the
entire p-h block scales asN®, whereas the vector-matrix

product )
Refs. 24 and 26 thB; andB, labels should be interchanged,
7 - 2 MO (19 in order to be consistent with the established nomenclature
ak™ <, MakakCarke for the CH, ground state, which i8B; rather thar’B, (see,

for thi . 4 . he f ¢ th . for example, Ref. 39 and the literature cited therefsimi-
or this part requireN” operations. The form of the contri- |, 1 ohlem occurs for the singlet excited states gDH®

butions[Eq. (18)] suggests to compute ti? intermediates Finally, it appears that the CCS results fo?Sland £D
states of Ne in Table 1 of Ref. 25 should be interchanged.

Yic= 2 ViriarcZark! (203
a'k’
and
IV. RESULTS AND DISCUSSION
r_ Lig _
Yic_;;f, Viriare 2 (8~ 8ar)Zarks (20D In Table Il we compare the AD@), ADC(2), and

ADC(3) results for the lowest singlet and triplet excitations
from which the final contributions to the “target” vector can energies in HO, HF, N,, and Ne with the corresponding

be obtained according to results obtained using full C(FCI) and coupled cluster
- methods>~2®We here refrain from comparing the computed
Zak=2 Vacid Yot Yic[5(ex—ea) +ei—ecl} (21) excitation energies to experimeffor experimental data the
ci

reader is referred to Refs. 20, 24, and 25 and references
Both partial steps requirtl* operations, so that the overall therein. To get an idea of the quality of the FCI description
scaling reduces fromN® to N* The inspection of the one may compare the experimental value of the lowest sin-
ADC(3) equations shows that using these techniques one caiet excitation in N&(16.84 eVf with the FCI result of 16.40
reduce the overall scaling behaviorN8. The corresponding eV. Altogether Table Il contains 43 transitions, of which 41
scaling potential of the AD@) method isN°. In Table | we  transitions are considered in the evaluation of statistical
compare the operation count characteristics for the ADC anduantities. The two exempted data sets correspond to inner-
CC methods. shell transitions in Ne.

At the first-order approximation level the CC and ADC
methods for the excitation energies are identical, so that the
CCS and AD@1) results are listed under the same heading in
Table Il. Obviously, the accuracy here is rather poor: The

In the present study the @, HF, N,, Ne, CH,, and BH  mean absolute errdfor the sample of 41 transitions consid-
systems have been considered. For the ground and the lowesed in Table Il amounts to 1.16 eV, the maximal deviation

B. Computational details
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TABLE Il. FCI, ADC, and CC results for vertical excitation energie¥) of H,0, HF, N,, and Ne. The ADC and CC results are given relative to the FCI
values. The last two lines give the mean absolute erqp) and the maximum absolute errak {,,), respectively, relative to FEleV).

Transition FCh ADC(1)/CCS ADQ?2) ADC(3) cc? ccs cc?
H,O 1'A,—

21A; 9.87 1.11 —0.50 0.14 -0.42 —-0.07 —-0.02
11B, 7.45 1.22 —0.50 0.13 —0.41 -0.07 —0.02
11B, 11.61 1.03 —0.64 0.18 —-0.56 —0.09 —0.02
1A, 9.21 1.15 -0.63 0.17 -0.55 —0.09 —-0.02
13B, 7.06 0.95 —0.45 0.09 -0.37 —0.08 —0.02
13A, 9.04 0.99 —-0.58 0.14 —-0.50 —-0.08 —-0.02
137, 9.44 0.70 —0.44 0.10 -0.36 —-0.08 —-0.01
2 %A, 10.83 0.61 -0.35 0.01 —-0.29 -0.11 —-0.01
2 3B, 11.05 0.93 —0.48 0.11 —0.40 —0.09 —-0.01
1°3B, 11.32 0.58 —0.55 0.13 —0.47 —0.08 —0.01
HF 113 % —

11 10.44 1.32 -0.81 0.18 -0.62 -0.14 —0.02
2 14.21 1.27 -0.87 0.19 —-0.68 -0.15 —-0.02
213" 14.58 0.84 -0.67 0.10 —-0.48 -0.11 —-0.01
1A 15.20 1.18 -0.74 0.12 —-0.53 -0.17 —-0.01
113- 15.28 1.09 -0.74 0.12 —0.54 —-0.18 —-0.01
31 15.77 1.47 -0.85 0.23 -0.67 —-0.18 —0.02
313" 16.43 1.41 -1.10 0.37 -0.85 -0.14 -0.04
1311 10.04 1.02 -0.75 0.14 —-0.56 —-0.15 —0.02
135% 13.54 0.05 —0.49 0.05 -0.33 -0.13 0.00
2°%M 14.01 1.17 -0.87 0.19 —0.69 —-0.16 —-0.02
2337 14.46 0.78 —0.66 0.07 —0.49 -0.21 —-0.01
1°3A 14.93 0.96 —-0.70 0.10 -0.52 -0.19 -0.01
135 15.25 1.12 -0.73 0.12 -0.54 -0.18 —0.01
3% 15.57 1.34 -0.85 0.22 —-0.67 -0.19 —-0.02
N, 1135 —

1M1, 9.58 0.49 0.17 -0.17 0.14 0.08 0.03
113, 10.33 —1.68 0.29 —-0.33 0.34 0.14 0.01
1A, 10.72 —1.49 0.45 -0.37 0.52 0.18 0.01
11, 13.61 2.51 0.95 -0.23 0.93 0.40 0.18
1837 7.90 —-1.53 0.41 -0.19 0.44 —-0.02 —-0.03
1311, 8.16 -0.11 0.17 -0.29 0.15 0.06 0.02
134, 9.19 -1.72 0.33 -0.27 0.36 0.07 0.00
1335, 10.00 -1.35 0.54 -0.29 0.58 0.19 0.03
131, 11.44 0.59 0.29 -0.19 0.28 0.10 0.07
Ne 11S—

1'p 16.40 1.69 -0.78 0.17 —-0.66 -0.24 0.01
1D 18.21 1.74 -0.92 0.18 -0.80 —-0.25 0.02
21p 18.26 1.72 -0.92 0.18 —-0.80 —-0.25 0.02
21s 18.48 1.93 —1.05 0.27 -0.92 -0.24 0.01
31s 44.05 3.73 —0.49 0.35 -0.25 -0.17 -0.10
1%p 18.70 1.25 -0.71 0.13 —-0.50 -0.24 —-0.01
13 19.96 0.94 -0.74 0.10 —0.55 —0.26 0.00
1°D 20.62 1.17 -0.79 0.13 -0.58 -0.23 0.00
2°%p 20.97 1.30 -0.83 0.13 -0.61 —-0.24 —0.01
23s 45.43 3.04 -0.32 0.40 -0.13 -0.10 —-0.04
Aus 1.16 0.64 0.17 0.53 0.15 0.02
Anax 2.51 1.10 0.37 0.93 0.40 0.18

Transitions to the 235 (2s'2p®3s?) inner-shell excited states of Ne are exempted.
PResults from Refs. 23—26.

being 2.51 eV. It should be noted that double excitation ararise from third-order contributions due to the use of The
not considered at all at the first-order level. similarity-transformed Hamiltonian in the CC2 method.

A distinctly better description is obtained using the A distinct, uniform improvement with respect to the
second-order methods. The mean absolute errors are reducsgtond-order description is achieved at the ABdevel.
to 0.64 and 0.53 eV in the AD@) and CC2 treatments, The mean absolute error here is below 0.2 eV, the largest
respectively. Besides the similarity of the mean errors, oneleviation being 0.37 eV. The quality of the AD®} results
finds good agreement also for the individual AQCand for the excitation energies, as inferred from the present com-
CC2 results, especially distinct in the case of Nhe simi-  putations, is comparable to the established accuracy standard
larity of the results reflects, of course, the essential equivaef 0.2 eV in the related third-order electron propagator
lence of the two methods. The small remaining discrepanciesiethods for electron ionization. A most impressive accuracy
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TABLE IIl. Comparison of different ADC schemes for HF ang NThe individual ADC results, the mean absolute ermyy), and the maximum absolute
error (A are given relative to the FCI vertical excitation enerdies).

ADC(3)
Transition FCt ADC(1) ADC(2) ADC(2)-E Strict 3, (0)P Full®
HF 113+
11 10.44 1.32 -0.81 —0.96 0.52 0.20 0.18
21 14.21 1.27 -0.87 —-0.94 0.53 0.21 0.19
2137 14.58 0.84 —-0.67 —-0.81 0.42 0.13 0.10
1A 15.20 1.18 —-0.74 -0.91 0.45 0.14 0.12
13- 15.28 1.09 —-0.74 -0.92 0.44 0.12 0.12
31 15.77 1.47 -0.85 —-0.98 0.58 0.26 0.23
3zt 16.43 1.41 -1.10 —-1.09 0.70 0.38 0.37
1311 10.04 1.02 -0.75 -0.92 0.46 0.15 0.14
1357 13.54 0.05 —0.49 —-0.67 0.26 0.00 0.05
2311 14.01 1.17 -0.87 -0.93 0.51 0.20 0.19
233 14.46 0.78 —0.66 -0.87 0.36 0.05 0.07
1°%A 14.93 0.96 -0.70 —-0.90 0.40 0.09 0.10
13- 15.25 1.12 -0.73 -0.91 0.44 0.12 0.12
3% 15.57 1.34 -0.85 —-0.98 0.56 0.24 0.22
Dot 1.07 0.77 0.91 0.47 0.16 0.16
Amax 1.47 1.10 1.09 0.70 0.38 0.37
N, 115, —
111, 9.58 0.49 0.17 -0.70 -0.14 -0.15 -0.17
113, 10.33 —1.68 0.29 -0.10 —0.48 -0.49 -0.33
1A, 10.72 —1.49 0.45 —0.05 —0.47 —0.49 -0.37
111, 13.61 2.51 0.95 -1.26 —-0.17 -0.20 -0.23
1357 7.90 —-1.53 0.41 0.07 —-0.38 -0.40 -0.19
1311, 8.16 -0.11 0.17 —-0.55 -0.23 -0.25 —-0.29
134, 9.19 -1.72 0.33 -0.03 —0.44 -0.45 —-0.27
1335, 10.00 -1.35 0.54 —-0.01 —0.43 —-0.45 —-0.29
1 311, 11.44 0.59 0.29 -0.93 —-0.15 -0.20 -0.19
Aoe 1.27 0.40 0.41 0.32 0.34 0.26
Anax 2,51 0.95 1.26 0.48 0.49 0.37

dResults of Refs. 23-26.
PDyson expansion method for third-order self-energy terms ¢seg Sec. Il B.
‘Dyson expansion method for all terms with density-matrix elemésge Sec. Il B.

record is seen for the CC3 results in Table I, yielding a mearscription of thep-h/2p-2h coupling and of the @2h ener-
absolute error of only 0.02 eV with 0.18 eV maximal devia- gies.
tion (for the 111, state in N). In comparing the two third- According to the discussion in Sec. Il B, for two distinct
order methods one should, however, keep in mind that théypes of contributions to thp-h block of the secular matrix
CC3 method is considerably more expensive than thé¢he evaluation of the strict perturbation-theoretical ABC
ADC(3) method. The explicit CC3 configuration space ex-expressions has to be replaced by an improved treatment
tends to the @-3h (triple) excitations, which leads to an using the so-called Dyson expansion method for one-particle
overall N’ scaling of the method as compared to t&  density-matrix elements and the related matrix elements of
scaling of the AD@3) scheme. The CCSD energies in Tablethe static self-energy. To demonstrate the effect of these
Il seem to lie systematically between the CC2 and CC3 remodifications we compare in Table Il the results of several
sults. Both with respect to the mean absolute error and thADC variants for HF and B A typical behavior is seen in
size of the maximal deviation the CCSD and AB@Cresults  the case of HF, where the major improvement with respect to
are quite similar. Nevertheless, one finds considerable dighe strict ADG3) version results from the use of the Dyson
crepancies for the individual excitation energies. expansion method for the static self-energy terms, while the
For most of the transitions in Table Il one sees a typicalsecond amendment concerning the one-particle densities in
oscillatory convergence pattern with increasing order of theéEq. (15) has almost no effect. The overall improvement due
method. The ADCL) or CCS excitation energiedor low-  to the Dyson expansion method is reflected by the distinct
lying single excitationsare too large as the coupling to the reduction of the mean absolute error by about 0.3 eV. A less
energetically higher 22h (double excitations is not taken typical example is Bl Here the improvement of the static
into account. At the second-order level theén/2p-2h cou-  self-energy terms does not change much, but the improved
pling comes into play, leading to a substantial and usuallyone-particle densities play a role. The overall improvement
overshooting lowering of the excitation energies, which inof the N, results is significant, though not as large as in HF.
turn is corrected at the third-order level by an improved de-  Table Il allows also for a comparison of the standard
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TABLE IV. Comparison of FCI, ADC, and CC results for systems with “none-RSPT” character in the ground staten@HBH. The ADC and CC results
are given relative to the FCI vertical excitation energie¥). Only transitions with dominant single-excitation character have been considered in the

determination of the mean absolute errar,() and the maximum absolute errak {,,) (eV).

Transition FCt ADC(1)/CCS ADQ?2) ADC(3) cc2 CCSD* cc3
CH, 1 *A;—

21A.° 4.66 -1.10 1.46 0.47
31a, 6.51 0.44 —-0.09 -0.31 -0.10 -0.01 —-0.01
4p, 8.48 0.38 —-0.20 -0.29 -0.21 —-0.02 —-0.01
11B, 7.70 0.41 -0.11 —0.24 —-0.13 0.01 0.02
21B,° 8.02 -1.10 1.60 0.52
1'B,; 1.79 -0.15 —-0.14 -0.55 -0.13 -0.01 —-0.01
21B,° 8.91 -0.61 1.80 0.57
31" 10.55 —-0.53 1.82 0.61
1A, 5.85 0.22 0.04 -0.42 0.04 0.01 0.01
21A,° 9.41 0.00 2.42 1.17
13%A, 6.39 0.30 -0.12 -0.31 -0.11 -0.01 —-0.01
23A, 8.23 -0.11 —-0.16 —-0.38 -0.17 —-0.03 —-0.01
33, 9.84 0.34 -0.12 -0.31 -0.11 0.01 0.00
13B,° 6.41 -1.13 -1.84 —0.65
238, 7.70 0.17 -0.19 -0.31 -0.18 —0.06 0.01
138, -0.01 —-0.49 -0.16 -0.61 -0.15 -0.03 —-0.01
23B, 8.38 0.39 —0.09 -0.41 —0.08 0.01 0.01
1°3A, 4.79 -0.13 -0.01 —0.44 0.00 0.00 0.00
A 0.29 0.12 0.38 0.12 0.02 0.01
Anax 0.49 0.20 0.61 0.21 0.06 0.02
BH1%"—

11 2.94 -0.10 —-0.09 -0.61 —0.08 0.02 0.01
11AP 5.88 -1.19 0.79 0.31
213" 6.38 —-0.01 —0.08 -0.43 —0.09 0.04 0.02
31y *p 7.00 —-1.54 0.39 0.18
21 7.47 -0.10 -0.12 —-0.51 -0.13 0.04 0.01
413+ 7.56 -0.16 —-0.20 —0.54 -0.21 0.19 0.05
3 8.24 -0.12 —-0.13 —0.50 —-0.14 0.04 0.02
1311 1.31 —-0.76 -0.29 —-0.62 —-0.28 -0.01 0.00
1330 4.69 -1.19 0.89 0.39
133+ 6.26 —0.24 -0.12 —-0.47 -0.13 0.03 0.01
233+ 7.20 -0.35 -0.19 —-0.49 —-0.20 0.02 0.01
2311 7.43 -0.22 -0.18 —-0.51 -0.18 0.00 —-0.01
3%y * 7.62 -0.22 -0.08 -0.52 —0.09 0.05 0.02
3311 7.92 -0.15 0.00 —0.45 —-0.01 0.08 0.05
Ace 0.22 0.13 0.51 0.14 0.05 0.02
Aoy 0.76 0.29 0.62 0.28 0.19 0.05

@Results from Refs. 23-26.
bTransitions with strong or dominant double-excitation character.

ADC(2) method and the so-called extended versionground state. The AD@) and CC2 second-order results for

[ADC(2)-E], in which the ®-2h diagonal block of the secu- the single excitations are surprisingly good; the mean abso-

lar matrix is expanded through first order. While this leads tdute error is below 0.14. However, the nonregular behavior in

an improved treatment of the doubly excited states, the effedioth CH, and BH becomes apparent in the deterioration of

for the single excitations rather seems to be inconsistent artthe results at the third-order ADC level, where the mean

a change to the worse. Particularly large individual energyabsolute error jumps to 0.38 and 0.51 eV, respectively; for

changes can be seen in the case of N the double excitations the deviations from FCI are in the
The systems considered so far have in common that theorder of —1 eV.

ground-states can fairly well be treated in terms of RS per-

turbation theory, which also is the precondition for the appli-v SUMMARY AND CONCLUSIONS

cability of the ADC methods. In Table IV we take a look at

the performance of the method in cases such as&id BH, The numerical tests of the recently derived ABLC

where that requirement is not fulfilled. Both systems are ofmethod presented here have shown a significantly improved

quasi-open-shell type, lacking a distinct energy gap betweeaccuracy for the excitation energies of single excitations with

occupied and virtual orbitals, which is reflected by unusuallyrespect to the previous second-ord&DC(2)] treatment.

low excitation energies. Due to the choice of the\] state  The mean absolute error, as calibrated versus the FCI results

as the reference state in the case of,Cldne even has a for 41 singlet and triplet transitions, has been found to be

negative excitation energy with respect to the tru#8,  smaller than 0.2 eV. The quality of the results seems to be
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comparable or even superior to that of the CCSD methodsupported by the Deutsche Forschungsgemeins¢b&i6)
not fully qualifying for third-order consistency, but it does and by a grant of the Russian Foundation for Basic Research
not match the impressive accuracy of the CC3 computation§RFBR).
which, however, are substantially more expensive. At the
second-order level, the present results confirm the essential
equivalence of the AD@) and CC2 methods.
Let us reiterate that the computational concept of the
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