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Spectra and total energies from self-consistent many-body perturbation theory
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With the aim of identifying universal trends, we compare fully self-consistent electronic spectra and total
energies obtained from theGW approximation with those from an extendedGWG scheme that includes a
nontrivial vertex function and the fundamentally distinct Bethe-Goldstone approach based on theT matrix. The
self-consistent Green’s functionG, as derived from Dyson’s equation, is used not only in the self-energy but
also to construct the screened interactionW for a model system. For all approximations we observe a similar
deterioration of the spectrum, which is not removed by vertex corrections. In particular, satellite peaks are
systematically broadened and move closer to the chemical potential. The corresponding total energies are
universally raised, independent of the system parameters. Our results, therefore, suggest that any improvement
in total energy due to self-consistency, such as for the electron gas in theGW approximation, may be
fortuitous.@S0163-1829~98!05040-1#
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I. INTRODUCTION

Thanks to advances in modern computer technology
an increasingly efficient treatment of the underlying on
electron structure, many-body corrections to the quasipar
band energies and spectral functions of solids can now
obtained from first principles using many-body perturbat
theory. Most calculations for real materials employ theGW
approximation,1 which owes its name to the fact that it mo
els the electron self-energy as the productSGW5 iGW of the
Green’s functionG and the dynamically screened Coulom
interactionW. By explicitly including polarization effects in
the exchange term it describes the dynamic correlation
tween the electrons and so can be physically motivated a
extension of the static Hartree-Fock treatment.

The Green’s function of the interacting electron system
linked to the self-energy by means of Dyson’s equati

symbolically written asG215GH21
2S, whereGH indicates

the Hartree approximation that neglects both exchange
correlation. It is immediately clear that one faces a se
consistency problem, because the self-energy in turn dep
on the Green’s function. Hence, both propagators mus
determined simultaneously. The latter functional depende
is, of course, nonlinear due to the dynamic properties of
screened interaction, which is related to the bare Coulo
potential v and the polarizabilityP through W215v21

2P. In a manner consistent with theGW approximation the
neglect of vertex corrections in the polarizability yields t
random-phase approximationPRPA522iGG, which ig-
nores the interaction between the screening electrons
holes.

To obtain full self-consistency the above four equatio
have to be solved iteratively starting from a zeroth-ord
noninteracting Green’s function until the results stabiliz
Although self-consistentGW calculations for real material
are now within reach,2 the associated computational cost
PRB 580163-1829/98/58~19!/12684~7!/$15.00
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still enormous. Therefore, in practice, the outcome of
first iteration is instead taken as the final spectrum. In t
formulation theGW approximation has been applied to
wide range of materials including semiconductors3–5 and al-
kali metals,6 as well as transition metals7 and their oxides.8

For all these diverse systems the predicted quasiparticle b
structures agree very well with the experimental resu
while optical spectra, which include satellite features res
ing from collective excitations such as plasmons, are gen
ally less satisfactory and require the addition of so-cal
vertex corrections. However, systematic progress in this
rection is still limited.9

Despite the apparent success of conventional calculati
the neglect of self-consistency remains problematic, in p
because it implies a certain ambiguity with respect to
choice of a starting point. The zeroth-order Green’s funct
is usually constructed from the local-density approximat
~LDA !, but in principle it is equally possible to start from
any other initial approximation such as the Hartree-Fo
treatment.5 The resulting spectra will in general differ.10 Fur-
thermore, the non-self-consistentGW scheme violates the
Baym-Kadanoff criteria for conserving approximations.11 As
a result, the total particle number, energy, and momentum
the system are not conserved under the influence of exte
perturbations. Even without such perturbations, the in
grated spectral weight no longer corresponds to the num
of physical particles.12

In order to address these issues, past implementat
have occasionally incorporated modifications aimed at in
ducing a higher degree of self-consistency. In particular,
band energies of the zeroth-order Green’s function use
evaluate the self-energy are sometimes shifted such a
improve agreement with those obtained from Dyso
equation.3,6,8 This approach assumes that the true quasipa
cle orbitals are virtually indistinguishable from the corr
sponding LDA wave functions, which has only been expl
itly proven for states close to the band edge of sim
12 684 ©1998 The American Physical Society
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PRB 58 12 685SPECTRA AND TOTAL ENERGIES FROM SELF- . . .
semiconductors, however.3 Moreover, it entirely ignores the
transfer of spectral weight to satellite peaks, which typica
account for between 10% and 50% of the total spectrum

More properly self-consistent results for model syste
were recently reported, although most realizations still
strict the computational expense by fixing the screen
function W either at the zeroth-order random-pha
approximation13–15 or a simpler plasmon-pole model.16

Comprehensive, fully self-consistent calculations have b
performed for a quasi-one-dimensional semiconduct
wire17,18and the homogeneous electron gas.19,20For the elec-
tron gas, the system most studied so far,14–16,19,20 self-
consistency, was found toworsen the agreement betwee
calculated spectra and exact results by~i! increasing the oc-
cupied bandwidth,~ii ! transferring weight from the plasmo
satellites to the corresponding quasiparticle peaks,~iii ! nar-
rowing the quasiparticle resonance widths, thereby incre
ing the lifetime, and~iv! broadening the plasmon satellite
while moving them closer to the Fermi surface. Some
these effects have also been observed for the quasi-
dimensional wire,18 and there is evidence that the report
increase in the band gap extends to real semiconductors2 In
contrast, self-consistencyimprovesthe agreement of quas
particle energies of localized semicore states with exp
mental data.13

Because of the small number of models studied so far
results quoted above cannot readily be assumed for o
systems without further quantitative investigations, nor is
clear whether they are peculiar to theGW approximation or
of a more general nature. Previous partially self-consis
calculations that include vertex corrections have done li
to clarify the situation, since they only consider modific
tions of theGW scheme in the form of additional self-energ
diagrams of second order inW: depending on the choice o
diagrams and the model screening function used, these
restore the occupied bandwidth of the electron gas to its
perior non-self-consistent value16 or leave it unchanged.15

In order to shed more light on these numerical aspects
this paper we present fully self-consistent calculations fo
model system using a wide range of conserving self-ene
approximations. Besides theGW approximation and an ex
tendedGWG scheme that is derived from time-depende
Hartree-Fock rather than Hartree theory, and includes m
tiple particle-hole scattering,21 we also consider the funda
mentally distinct Bethe-Goldstone approach22 based on theT
matrix. Our first objective is to compare the resulting spec
and thereby identify universal trends.

In the second part of this paper we then focus on to
energies. A very interesting outcome of recent fully se
consistent calculations for the electron gas was that the
energy derived from the Green’s function is strikingly clo
to values obtained from quantum Monte Carlo simulation19

which are presumed accurate. It has been speculated tha
unexpected result is related to the fact that the self-consis
GW scheme conserves energy,23 but the basis of this connec
tion is not immediately obvious. Rather, we will show he
that self-consistency in fact systematically raises the t
energy. Our results, therefore, suggest that the improvem
for the electron gas may be fortuitous.

This paper is organized as follows. In Sec. II we pres
the model system and its exact numerical solution. In Sec
y
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we discuss the self-energy approximations considered he
more detail. In Secs. IV and V we give results for spect
functions and total energies, respectively. Finally, in Sec.
we summarize our conclusions.

II. MODEL DESCRIPTION

In order to limit the computational cost of fully self
consistent calculations with vertex corrections beyond
GW approximation, which so far have never been attemp
for real materials, we consider a Hubbard model that
scribes the dynamics of electrons on a lattice with stro
short-range interaction. The Hamiltonian is sufficien
simple that it can be diagonalized exactly for small clus
sizes using standard numerical techniques, yet its phys
behavior is nontrivial and reflects many properties of r
materials. The model geometry we employ is a finite two-
ladder with open boundary conditions. Each of theM lattice
sites contains one orbital that can accommodate up to
electrons with opposite spin. Doubly occupied orbitals a
penalized by a repulsive on-site interactionU, while the hop-
ping of transient electrons between neighboring sites yie
an energy gain of2t. The full Hamiltonian is

H52t (
^R,R8&,s

cRs
† cR8s1U(

R
n̂R↑n̂R↓ , ~1!

wherecRs
† , cRs are the creation and annihilation operato

for an electron at siteR with spin s, n̂Rs[cRs
† cRs is the

particle number operator, and^R,R8& indicates a sum ove
nearest neighbors only. We choose the energy norm by
ting t51. The total electron number is denoted byN.

The exact one-particle Green’s function at zero tempe
ture is defined as

GRR8~ t2t8!52 i ^NuT$cRs~ t !cR8s
†

~ t8!%uN&, ~2!

where uN& is the ground state of the interacting man
electron system,T is Wick’s time-ordering operator, and
cRs(t)[exp(iHt)cRsexp(2iHt) denotes the time-depende
wave-field operator in the Heisenberg picture. We have s
pressed the spin index inG because the Green’s function
diagonal and degenerate ins.

The Green’s function can, in principle, be written in term
of the eigenstates featuring an additional electron or hol24

but this representation is disadvantageous because the
set grows exponentially with the system size. While t
Hamiltonian matrix contains mostly zeros and so may
stored in a compressed format, the same is not possible
the eigenvector matrix since it is not in general sparse. F
reasonable system size the memory requirements thus re
this procedure infeasible. Instead, we Fourier transform
~2! to the energy domain and rewrite the Green’s function
the form

GRR8~v!5^NucRs

1

v2H11EN1 id
cR8s

† uN&

1^NucR8s
† 1

v1H22EN2 id
cRsuN&. ~3!
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Here EN is the ground-state energy corresponding touN&,
which we compute by simultaneous subspace iteration,25 and
H6 denotes the Hamiltonian matrix forN61 electrons. The
parameterd is positive and tends to zero. In practice we u
a finite but small value ofd50.05. The diagonal elements o
G, in which we are most interested, may now be calcula
without full matrix inversion by transformingv7(H6

2EN2 id) to a chain using the recursion method26 and start-
ing with the vectorcR8s

† uN& or cRsuN&. Once the diagona
elementsan and off-diagonal elementsbn of the tridiagonal
matrix are determined up to a suitable chain lengthD, the
elements of the Green’s function are obtained from

GRR~v!5
1

v2a02
b1

2

v2a12•••2
bD

2

v2aD

. ~4!

For nondiagonal elements ofG an analogous block recursio
must be performed. As the Hamiltonians considered h
have many highly degenerate eigenvalues, the chain lengD
can be chosen substantially lower than the order ofH6. In
practice, a few recursions per actual spectral feature are
ficient to achieve full convergence. To check the accur
we have also calculated the total particle number for all s
tems discussed in the following by summing the diago
elements ofG and integrating the spectral weight below t
chemical potentialm. The numerical deviation from the ex
act values is of the order of 0.1%.

III. SELF-ENERGY APPROXIMATIONS

In many-body perturbation theory the effect of the Co
lomb force on the propagation of quasiparticles is rigorou
described by an effective potential. Following establish
conventions we distinguish between the Hartree contribu

VRR8
H

5U~^n̂R↑&1^n̂R↓&!dRR8 ~5!

and the remaining exchange-correlation part, which we
the self-energyS. It is in general, both nonlocal and energ
dependent. Although the exact self-energy functional
mains elusive, physically motivated approximations can
obtained by truncating its diagrammatic series expansion
the following we describe the three distinct schemes con
ered in this paper.

The GW approximation renormalizes the nonlocal Fo
potential by including dynamic screening in the exchan
interaction, as shown diagrammatically in Fig. 1~a!. The
screening function is modeled in the RPA and includes r
diagrams to all orders. In the spirit of the space-tim
method27 we avoid costly convolutions by switching be
tween the real time and energy domains as appropriate, u
fast Fourier transforms with 32 768 sampling points ove
range of 160 energy units. This procedure also guarante
high degree of numerical accuracy, because we do not n
to repeatedly fit the propagators to analytic functions. Giv
a Green’s functionG we hence compute the self-energy
solving the defining equations
e
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PRR8
RPA

~ t !522iGRR8~ t !GR8R~2t !, ~6!

WRR8
21

~v!5
1

U
dRR82PRR8

RPA
~v!, ~7!

SRR8
GW

~ t !5 iGRR8~ t !WRR8~ t !. ~8!

The factor 2 in the polarization propagator is due to s
summation.

While theGW approximation accurately describes ma
rials that are governed by the screening of free carriers, s
as the homogeneous electron gas, vertex corrections ar
general, necessary for more complex systems. Such ex
sions are often referred to asGWG schemes. A particular
approximation that we consider here includes a vertex fu
tion derived from time-dependent Hartree-Fock theory,
shown in Fig. 1~b!. It contains multiple scattering in the
particle-hole channel, which is most significant in atomic a
molecular systems with partially filled shells.28 Nontrivial
vertex functions usually increase the computational cost d
matically, but due to the short-range interaction in the Hu
bard model the self-energy in this case is still given by
expression of the form~8!, albeit with a modified screene
interaction

W̃RR8
21

~v!5
1

U
dRR82

1

2
PRR8

RPA
~v!. ~9!

The Bethe-Goldstone approach constitutes a fundam
tally distinct approximation based on the so-called transit
or T matrix, which describes multiple scattering in th
particle-particle and hole-hole channels to all orders. T
process dominates in the low-density limit of the electr
gas,29 but it also predicts the specific behavior of syste
with localized orbitals and strong electronic correlation su
as the transition metals.30 As the self-energy, shown as a su
of ladder diagrams in Fig. 1~c!, contains exchange contribu
tions in the two-particle propagator, we designate it by

FIG. 1. Diagrammatic representation of~a! theGW approxima-
tion, ~b! a GWG scheme with vertex corrections that describe m
tiple particle-hole scattering, and~c! the Bethe-Goldstone approac
based on theT matrix. Arrows represent Green’s functions; th
Coulomb interaction is indicated by a broken line.
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label Tx . For the Hubbard model the corresponding dire
and exchange terms are in fact identical except for a pre
tor of 2 due to the spin summation in the former, so t
self-energy is given by

GRR8
2

~ t !5 iGRR8~ t !GRR8~ t !, ~10!

TRR8
21

~v!5
1

U
dRR82GRR8

2
~v!, ~11!

S
RR8

Tx ~ t !52 iTRR8~ t !GR8R~2t !2VRR8
H d~ t !. ~12!

In the last equation we have subtracted the Hartree pote
because it is already dealt with separately.

By tuning the parameters of the Hamiltonian~1! we can
create configurations geared to the particular strengths of
ferent self-energy approximations within the same mod
independent of the Coulomb integralU theT matrix becomes
increasingly accurate for a very low or, because of partic
hole symmetry, very high fractional band fillingN/(2M ),
while theGW schemes perform best for medium site occ
pancies and a not too strong interaction.10

IV. SELF-CONSISTENT SPECTRA

In order to study the effects of self-consistency in a g
eral perspective, we compare calculations using all
many-body approximations described in the previous s
tion. As a convenient starting point we choose the Hart
Green’s functionGH, which only includes the electrostati
potentialVH generated by the total electron charge. The
cupation numberŝn̂Rs& are determined self-consistently b
a simple iterative procedure. After evaluating the self-ene
S we obtain an updated, dressed Green’s function from D
on’s equation

GRR8
21

~v!5GRR8
H21

~v!2SRR8~v!, ~13!

which in a conventional treatment is taken as the final sp
trum. In a self-consistent calculation we instead use it
compute a new Hartree potential and self-energy and c
tinue the iteration until the results stabilize. To guarantee
correct analytic time-ordering of the spectrum obtained fr
Dyson’s equation it is necessary to shift the Hartree Gree
function rigidly on the energy axis by an amount^S(mH)&
before evaluating the self-energy in Eq.~13!. Here mH de-
notes the chemical potential, which we identify with th
highest occupied quasiparticle state, and the matrix elem
is formed with the corresponding orbital. As this shift mu
tend to zero for the self-consistent solution, we decrease
a factor of e21 in every subsequent iteration. To achie
convergence we typically perform at least ten iterations, a
which the shift is reduced to a negligible value without i
fluence on the spectral features or total energy. We us
very small initial resonance width ofd50.05 throughout the
calculations in order to avoid systematic errors, and only
final spectra are broadened through convolution with
Lorentzian of width 0.5 for visual display. We have aga
checked the numerical reliability by calculating the total p
t
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ticle number from the self-consistent Green’s function a
generally find the same high level of accuracy as for
exact solution.

In Fig. 2 we compare an ordinaryGW spectral function,
obtained from a single iteration of Dyson’s equation, w
the result of a converged, self-consistent calculation after
iterations. Like all other figures in this section it shows t
diagonal element for a corner site of the cluster, which
have confirmed to be representative. The following obser
tions, therefore, apply equally to other matrix elements.
setting the model parameters toM510 andN52 with a
medium interaction strength ofU54 we have deliberately
chosen a small band filling of 10% for which theGW ap-
proximation is not optimal, so that possible improveme
should be more obvious. The exact spectrum is shown
comparison.

To examine the effects of self-consistency we distingu
between quasiparticles and their satellites. The former ar
fact little affected, mainly by small shifts in position and
marginal narrowing of the resonance width for states clos
the chemical potential. In contrast, the satellite spectrum
teriorates significantly. The most striking change is t
broadening of satellite peaks. By fitting the spectrum to a
of Lorentzians we find that the resonance widths appro
mately double. As the spectral weight is smeared out
peaks merge, individual features are hardly discernible ab
the spectral background, particularly isolated satellites
high energies. One such example is indicated by an arr
Furthermore, it can be seen that the satellites move clo
toward the chemical potential. All of these observations
in agreement with previous self-consistent calculations.14,19

We now address the relation between self-consistency
the simultaneous inclusion of vertex corrections. To this e
we show the results of a correspondingGWG calculation in
Fig. 3. It is evident that the vertex function in the latter fa
to prevent the deterioration of spectral features when brou
to full self-consistency. In particular, we do not observe
restoration of the well-defined structure. This point is furth
underlined by our investigation of the Bethe-Goldstone
proach. A typical calculation usingN56, which corresponds
to a band filling of 30%, is illustrated in Fig. 4: althoug

FIG. 2. Comparison between an ordinary and a convergedGW
calculation after ten iterations. The most striking effect of se
consistency is the broadening of satellite peaks, which are ha
discernible in a diffuse background. This is particularly obvious
high energies, as indicated by an arrow.
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unrelated to theGW approximation, theTx scheme effects
the same changes in quasiparticle and satellite peaks
converged, self-consistent spectrum.

The general success of ordinaryGW calculations for most
systems suggests that the sum of all neglected self-en
diagrams is small. A thorough understanding of this proc
is invaluable for the design of superior approximations,
despite continuing efforts the nature of this cancellation
mains elusive. On the one hand, there is strong evidence
a certain mutual cancellation between corresponding ve
corrections in the polarizability and self-energy.31–33 If we
assume that this argument still holds for the true vertex fu
tion, then by extension the remaining contributions, i.e.,
self-consistent renormalization of propagators in the pola
ability and self-energy, must also cancel. However, the d
turbing deterioration of spectral features in the se
consistentGW approximation,19 particularly when compared
to a partially self-consistent calculation with a fixed zero
order dielectric function,14 suggests that this is not the cas
at least when a trivial vertex is used. Consequently,
would also expect a certain mutual cancellation between s
consistency and vertex diagrams. Recently reported num
cal evidence16 to this end is circumstantial, however, sin
only quasiparticle properties were considered and the
sponse function was replaced by a plasmon-pole mode

FIG. 3. The vertex function in theGWG approximation fails to
prevent the deterioration of spectral features when brought to
self-consistency.

FIG. 4. Although unrelated to theGW approximation, theTx

scheme effects the same changes in quasiparticle and satellite
in a converged, self-consistent spectrum.
a

gy
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t
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e
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-
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e
lf-
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e-
of

unclear diagrammatic structure. In this context our resu
alongside those from a partially self-consistent cumulant
pansion that also examined complete spectral functions,15 in-
dicate that this cancellation is a very subtle process and
mutually balancing contributions may be hard to identify.

V. TOTAL ENERGIES

One of the notable features of self-consistency in
many-body perturbation theory is that the total energy
comes a proper, uniquely defined quantity. In practice, to
energies are most often obtained from the one-part
Green’s function using the Galitskii-Migdal formula,34

which may of course be applied to any approximateG.
However, it is important to note that other definitions, f
instance through the two-particle Green’s function or an
tegral of the interaction strength, in general yield differe
numerical values. Full self-consistency removes this ambi
ity. Moreover, the total energy is then also properly co
served under the influence of external perturbations.11

For the Hubbard model an analogous expression for
total energy

E5
1

p (
^R,R8&

E
2`

m

~vdRR82t ! Im GRR8~v! dv ~14!

in terms of the one-particle Green’s function can be deriv
from the equation of motion of the wave-field operator. D
spite formal similarities to the Galitskii-Migdal formula thi
expression also contains contributions from nondiagonal
ements of the Green’s function. The reason for this appa
discrepancy is that the site indexR does not represent
spatial coordinate. Instead, it is introduced in second qua
zation to label a set of overlapping Wannier orbitals. As t
creation and annihilation operators are transformed se
rately, local operators in real space become nondiagona
the site index, a point that was previously noted in conju
tion with the proper parametrization of the charge density35

Analogously the local kinetic-energy operator and exter
potential correspond to the nondiagonal hopping term of
Hubbard Hamiltonian, which resurfaces here.

Unlike the calculation of the particle number, a dire
evaluation of the frequency integral in Eq.~14! proved quite
sensitive to the initial resonance widthd. In order to obtain
reliable results, we therefore fit the elements of the Gree
function to a model of the form

GRR8~v!5(
n

aRR8
n

v2bRR8
n

2 idRR8
n 1(

m

aRR8
m

v2bRR8
m

1 idRR8
m ,

~15!

which of course becomes exact asd tends to zero. The fre-
quency integration can now be performed analytically in
proper limit dRR8

n →0, and so for the total energy we eve
tually obtain

E5 (
^R,R8&

(
n

~bRR8
n dRR82t !aRR8

n . ~16!

We have confirmed the reliability of our procedure by co
paring total energies derived from the true Green’s funct
with the exact numerical valueEN , which we obtained ear-
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lier by diagonalizing the Hamiltonian matrix. The fit accor
ing to Eq.~15! is very accurate. Unfortunately it is also com
putationally expensive, so that all results in this section re
to a reduced model size ofM56.

In Figs. 5 and 6 we show calculated total energies a
function of the interaction strengthU for N52, which cor-
responds to a low band filling of 17%, andN54, equivalent
to an intermediate band filling of 33%. Results obtained fr
the GW, the GWG, and theTx scheme are indicated b
circles, diamonds, and squares, respectively. Open sym
refer to ordinary, non-self-consistent Green’s functio
while filled symbols refer to self-consistent ones. The cur
are not perfectly smooth due to unresolved converge
problems for individual values ofU. As these do not obscur
overall trends, however, we have decided to retain the
responding energies for reasons of completeness. The
line shows the exact total energy for comparison.

As a first result we note that the quality of total-ener
predictions correlates with that of spectral functions in
same parameter range, i.e., the Bethe-Goldstone appr
works best for low particle numbers, while the twoGW
schemes perform optimally for intermediate band filling
where screening effects dominate. Of the latter, theGWG

FIG. 5. Total energies calculated from~a! the GW and GWG
approximations, indicated by circles and diamonds, respectiv
and~b! theTx scheme as a function of the interaction strengthU for
a low band filling of 17%. Open symbols refer to ordinary, no
self-consistent Green’s functions, while filled symbols refer to s
consistent ones. The solid line shows the exact total energy
comparison.

FIG. 6. Corresponding values for the same model with an in
mediate band filling of 33%. Self-consistency systematically rai
the total energy for all approximations.
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approximation is superior due to the prominence of excha
in the Hubbard model. The drop in theGW total energy after
reaching a plateau is, in part, an artifact of the model sp
fication: as the interaction is short range, the true ene
converges to a finite value in the limitU→` as long asN
<M , indicating a complete spatial separation of the el
trons. The tendency of theGW approximation to underesti
mate the total energy eventually causes the downward tr
Such an unphysical behavior does not occur for the lo
range Coulomb interaction, where the energy diverges as
correlation strength approaches infinity.

When comparing the total energies obtained from or
nary, with those obtained from self-consistent, Green’s fu
tions, we find that the latter are systematically raised. Thi
a general feature valid for all approximations at all ba
fillings that we investigated. It can be understood as follow
self-consistency modifies the Green’s function in two wa
namely, by rescaling and moving individual resonances re
tive to the chemical potential, and by an overall rigid sh
caused by a redefinition of the chemical potential itself. T
first effect may influence the total energy in either way, d
pending on the balance of opposite trends. For the homo
neous electron gas, for instance, the increase in the b
width, which moves quasiparticles to lower energies relat
to the Fermi surface, competes with the upward transfe
spectral weight from low-lying plasmon satellites to the co
responding main peaks.19 In contrast, the second contributio
is always positive. It results from a relocation of the chem
cal potential, which in an ordinary treatment is given bym
5mH1^S(mH)&, equivalent to that of the shifted Hartre
Green’s function in Dyson’s equation. In a self-consiste
approach the chemical potential instead becomesm5mH

1Z^S(mH)&, where Z is the quasiparticle renormalizatio
factor. For the sake of the argument we ignore small dev
tions in the underlying Hartree potentials and the self-ene
matrix elements, which are, of course, calculated from d
ferent Green’s functions. It is then clear that in the se
consistent case the self-energy correction, which is alw
negative, is scaled down byZ, leading to a higher referenc
chemical potential. Unless compensated by other factors,
effect, therefore, always raises the total energy.

Although the argument makes the increase in total ene
for the electron gas plausible, it does not explain the exc
lent numerical agreement with results from quantum Mo
Carlo simulations, which are presumed accurate. In light
our calculations this appears rather fortuitous, howev
While the increase in theGW total energy for our mode
system with two and four electrons indeed constitutes
quantitative improvement, in Fig. 7 we present results fo
larger band filling of 67%, corresponding toN58, to dem-
onstrate that this is not always so: as the ordinaryGW ap-
proximation already predicts the true energies rather wel
this case, self-consistency leads to a substantial overest
tion.

VI. CONCLUSIONS

In this paper we have presented self-consistent ma
body calculations of the spectra and total energies fo
model system. The self-consistency was not restricted
extends to the construction of the screened interaction in
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random-phase approximation. By comparing theGW ap-
proximation with an extendedGWG scheme that includes
nontrivial vertex function, as well as the unrelated Beth
Goldstone approach based on theT matrix, we were able to
identify universal trends. We have demonstrated that the
terioration of spectral features due to self-consistency, pr
ously observed inGW calculations, also occurs in mor

FIG. 7. Total energy in theGW approximation for a larger band
filling of 67%. As the ordinaryGW approximation already predict
the true energies rather well in this case, self-consistency leads
substantial overestimation.
n

-

e-
i-

elaborate treatments and is not removed by vertex cor
tions. The most important effect is the broadening of satel
peaks, particularly at high energies, and their simultane
shift towards the chemical potential. For all approximatio
the corresponding total energies are systematically rai
This trend, which we made plausible on the basis of phys
arguments, is independent of the system parameters suc
correlation strength and band filling. Our results, therefo
suggest that the recently reported improvement in theGW
total energy for the electron gas due to self-consistency m
be fortuitous.
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