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With the aim of identifying universal trends, we compare fully self-consistent electronic spectra and total
energies obtained from th& W approximation with those from an extende€N" scheme that includes a
nontrivial vertex function and the fundamentally distinct Bethe-Goldstone approach basedlamaitréx. The
self-consistent Green'’s functid®, as derived from Dyson’s equation, is used not only in the self-energy but
also to construct the screened interactirfor a model system. For all approximations we observe a similar
deterioration of the spectrum, which is not removed by vertex corrections. In particular, satellite peaks are
systematically broadened and move closer to the chemical potential. The corresponding total energies are
universally raised, independent of the system parameters. Our results, therefore, suggest that any improvement
in total energy due to self-consistency, such as for the electron gas i WMeapproximation, may be
fortuitous.[S0163-18208)05040-]

[. INTRODUCTION still enormous. Therefore, in practice, the outcome of the
first iteration is instead taken as the final spectrum. In this
Thanks to advances in modern computer technology antbrmulation theGW approximation has been applied to a
an increasingly efficient treatment of the underlying one-wide range of materials including semiconductorsand al-
electron structure, many-body corrections to the quasiparticliali metals® as well as transition metdlsind their oxide$.
band energies and spectral functions of solids can now bEor all these diverse systems the predicted quasiparticle band
obtained from first principles using many-body perturbationstructures agree very well with the experimental results,
theory. Most calculations for real materials employ @&/  While optical spectra, which include satellite features result-
approximatiort, which owes its name to the fact that it mod- ing from collective excitations such as plasmons, are gener-
els the electron self-energy as the prodtiét¥=iGW of the  ally less satisfactory and require the addition of so-called
Green’s functionG and the dynamically screened Coulomb Vertex corrections. However, systematic progress in this di-

interactionW. By explicitly including polarization effects in  rection is still limited: _ _
the exchange term it describes the dynamic correlation be- Despite the apparent success of cc_>nvent|onal ca}lcullat|ons,
He neglect of self-consistency remains problematic, in part

tween the electrons and so can be physically motivated as EL I . Lo .
phy y ecause it implies a certain ambiguity with respect to the

extension of the static Hartree-Fock treatment. . ) ; ; .

The Green's function of the interacting electron system isch0|ce of a starting point. The zeroth-order_ Green’s f_unct_lon
. X . 1Is usually constructed from the local-density approximation
linked to the self-energy by means of Dyson’s equation

1 (LDA), but in principle it is equally possible to start from
symbolically written ass~*=G" "—X, whereG" indicates  any other initial approximation such as the Hartree-Fock
the Hartree approximation that neglects both exchange angeatment The resulting spectra will in general diff&tFur-
correlation. It is immediately clear that one faces a selfthermore, the non-self-consiste®W scheme violates the
consistency problem, because the self-energy in turn depen@aym-Kadanoff criteria for conserving approximatidh#s
on the Green’s function. Hence, both propagators must be result, the total particle number, energy, and momentum of
determined simultaneously. The latter functional dependencene system are not conserved under the influence of external
is, of course, nonlinear due to the dynamic properties of th@erturbations. Even without such perturbations, the inte-
screened interaction, which is related to the bare Coulomigrated spectral weight no longer corresponds to the number
potential v and the polarizabilityP through W=y~  of physical particles?
—P. In a manner consistent with tl&W approximation the In order to address these issues, past implementations
neglect of vertex corrections in the polarizability yields the have occasionally incorporated modifications aimed at intro-
random-phase approximatioRR"A=—2iGG, which ig- ducing a higher degree of self-consistency. In particular, the
nores the interaction between the screening electrons arlzhnd energies of the zeroth-order Green’s function used to
holes. evaluate the self-energy are sometimes shifted such as to
To obtain full self-consistency the above four equationsimprove agreement with those obtained from Dyson’s
have to be solved iteratively starting from a zeroth-orderequatior®®® This approach assumes that the true quasiparti-
noninteracting Green’s function until the results stabilize.cle orbitals are virtually indistinguishable from the corre-
Although self-consistenG W calculations for real materials sponding LDA wave functions, which has only been explic-
are now within reacli,the associated computational cost isitly proven for states close to the band edge of simple
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semiconductors, howevémMoreover, it entirely ignores the we discuss the self-energy approximations considered here in
transfer of spectral weight to satellite peaks, which typicallymore detail. In Secs. IV and V we give results for spectral
account for between 10% and 50% of the total spectrum. functions and total energies, respectively. Finally, in Sec. VI

More properly self-consistent results for model systemgve summarize our conclusions.
were recently reported, although most realizations still re-
strict the computational expense by fixing the screening Il. MODEL DESCRIPTION
function W either at the zeroth-order random-phase
approximation®=> or a simpler plasmon-pole mod¥l.
Comprehensive, fully self-consistent calculations have bee
performed for a quasi-one-dimensional semiconductin
wire!”*8and the homogeneous electron §&& For the elec-
tron gas, the system most studied so faré1%20 self-
consistency, was found tworsenthe agreement between
calculated spectra and exact results(byincreasing the oc-
cupied bandwidth(ii) transferring weight from the plasmon
satellites to the corresponding quasiparticle peé&ks, nar-
rowing the quasiparticle resonance widths, thereby increa
ing the lifetime, and(iv) broadening the plasmon satellites
while moving them closer to the Fermi surface. Some o
these effects have also been observed for the quasi-on
dimensional wiré® and there is evidence that the reported
increase in the band gap extends to real semiconductars.
contrast, self-consistendynprovesthe agreement of quasi-
particle engggies of localized semicore states with experi-
mental data: - _ T o + Ao

Because of the small number of models studied so far the " tw%a CRoCRI U; MRTIR @
results quoted above cannot readily be assumed for other " ] o
systems without further quantitative investigations, nor is itWherecg,, Cr. are the creation and annihilation operators
clear whether they are peculiar to tBaV approximation or  for an electron at sit® with spin o, nRUEcEUcRU is the
of a more general nature. Previous partially self-consistenparticle number operator, ard@,R’) indicates a sum over
calculations that include vertex corrections have done littlenearest neighbors only. We choose the energy norm by set-
to clarify the situation, since they only consider modifica-ting t=1. The total electron number is denoted Ky
tions of theGW scheme in the form of additional self-energy =~ The exact one-particle Green'’s function at zero tempera-
diagrams of second order W: depending on the choice of ture is defined as
diagrams and the model screening function used, these may
restore the occupied bandwidth of the electron gas to its su- Ggrr/(t—t")= _i<N|T{CRa(t)CJ};10(t,)}|N>r 2
perior non-self-consistent valtfeor leave it unchanget?.

In order to shed more light on these numerical aspects, iwhere |[N) is the ground state of the interacting many-
this paper we present fully self-consistent calculations for alectron system7 is Wick’s time-ordering operator, and
model system using a wide range of conserving self-energygg, (t) =exp(Ht)cg,exp(—iHt) denotes the time-dependent
approximations. Besides ti@W approximation and an ex- wave-field operator in the Heisenberg picture. We have sup-
tendedGWI' scheme that is derived from time-dependentpressed the spin index i@ because the Green’s function is
Hartree-Fock rather than Hartree theory, and includes muldiagonal and degenerate én
tiple particle-hole scatterintf, we also consider the funda- The Green'’s function can, in principle, be written in terms
mentally distinct Bethe-Goldstone appro&chased on th&  of the eigenstates featuring an additional electron or fble,
matrix. Our first objective is to compare the resulting spectrebut this representation is disadvantageous because the basis
and thereby identify universal trends. set grows exponentially with the system size. While the

In the second part of this paper we then focus on totaHamiltonian matrix contains mostly zeros and so may be
energies. A very interesting outcome of recent fully self-stored in a compressed format, the same is not possible for
consistent calculations for the electron gas was that the totahe eigenvector matrix since it is not in general sparse. For a
energy derived from the Green’s function is strikingly closereasonable system size the memory requirements thus render
to values obtained from quantum Monte Carlo simulatiths, this procedure infeasible. Instead, we Fourier transform Eq.
which are presumed accurate. It has been speculated that th® to the energy domain and rewrite the Green'’s function in
unexpected result is related to the fact that the self-consistettie form
GW scheme conserves energhut the basis of this connec-
tion is not immediately obvious. Rather, we will show here

In order to limit the computational cost of fully self-
onsistent calculations with vertex corrections beyond the
W approximation, which so far have never been attempted
or real materials, we consider a Hubbard model that de-
scribes the dynamics of electrons on a lattice with strong,
short-range interaction. The Hamiltonian is sufficiently
simple that it can be diagonalized exactly for small cluster
sizes using standard numerical techniques, yet its physical
behavior is nontrivial and reflects many properties of real
naterials. The model geometry we employ is a finite two-leg
adder with open boundary conditions. Each of Mdattice

ites contains one orbital that can accommodate up to two
gl_ectrons with opposite spin. Doubly occupied orbitals are
penalized by a repulsive on-site interactidnwhile the hop-
ping of transient electrons between neighboring sites yields
an energy gain of-t. The full Hamiltonian is

that self-consistency in fact systematically raises the total Grr/(@)=(N|Cr, " . c;,0|N>
energy. Our results, therefore, suggest that the improvement w—H"+ENtIS
for the electron gas may be fortuitous. 1
This paper is organized as follows. In Sec. Il we present +<N|c;, CroIN).  (3)
the model system and its exact numerical solution. In Sec. llI “w+H —Ey—ié
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Here Ey is the ground-state energy corresponding N, o
which we compute by simultaneous subspace iterafiamd (a) ZGW = o+ @ + @ @ + ...
H * denotes the Hamiltonian matrix fdé+ 1 electrons. The
parameters is positive and tends to zero. In practice we use .
a finite but small value o6=0.05. The diagonal elements of GWI_ 77 @ @ @

: : . b X" =, S L+ Lt ..
G, in which we are most interested, may now be calculated . ® ® ®
without full matrix inversion by transformingw ¥ (H ™

~En—id) to achainTusing the recursion metﬁ%dnq start- with ( _ ( R
ing with the vectorcy, |N) or cg,|N). Once the diagonal
elementsa,, and off-diagonal elements, of the tridiagonal
matrix are determined up to a suitable chain lenDththe Ty />\ />\
elements of the Green’s function are obtained from () Z = E Pt : P
1
Crele)= b? - @ + R TR T+
®w—ap— - 2
bp

FIG. 1. Diagrammatic representation @j the GW approxima-

w—ap tion, (b) aGWI' scheme with vertex corrections that describe mul-
tiple particle-hole scattering, ard) the Bethe-Goldstone approach

For nondiagonal elements Gf an analogous block recursion pased on thel matrix. Arrows represent Green's functions; the

must be performed. As the Hamiltonians considered her€oulomb interaction is indicated by a broken line.

have many highly degenerate eigenvalues, the chain léhgth

can be chosen substantially lower than the ordeHdf. In ngf\(t)= —2iGra (1)Grip(—1), (6)

practice, a few recursions per actual spectral feature are suf-

ficient to achieve full convergence. To check the accuracy

we have also calculated the total particle number for all sys- w2l ()= ig ,— pRPA(w) (7)
. . . . . RR’ §] RR RR’ !

tems discussed in the following by summing the diagonal

elements ofG and integrating the spectral weight below the oW _

chemical potentiak.. The numerical deviation from the ex- Spr (D =1Grr () Wrg(1). 8

act values is of the order of 0.1%. _ . . )
The factor 2 in the polarization propagator is due to spin

summation.
IIl. SELF-ENERGY APPROXIMATIONS While the GW approximation accurately describes mate-
rials that are governed by the screening of free carriers, such
In many-body perturbation theory the effect of the Cou-as the homogeneous electron gas, vertex corrections are, in
lomb force on the propagation of quasiparticles is rigorouslygeneral, necessary for more complex systems. Such exten-
described by an effective potential. Following establishedsions are often referred to &WI' schemes. A particular
conventions we distinguish between the Hartree contributiompproximation that we consider here includes a vertex func-
tion derived from time-dependent Hartree-Fock theory, as
VgRr:U(<ﬁRT>+<ﬁR1>)5RR’ (5  shown in Fig. 1b). It contains multiple scattering in the
particle-hole channel, which is most significant in atomic and
and the remaining exchange-correlation part, which we calmolecular systems with partially filled sheffs.Nontrivial
the self-energy.. It is in general, both nonlocal and energy Vertex functions usually increase the computational cost dra-
dependent. Although the exact self-energy functional rematically, but due to the short-range interaction in the Hub-
mains elusive, physically motivated approximations can b&ard model the self-energy in this case is still given by an
obtained by truncating its diagrammatic series expansion. I@xpression of the forn(8), albeit with a modified screened
the following we describe the three distinct schemes considinteraction
ered in this paper.
The GW approximation renormalizes the nonlocal Fock
potential by including dynamic screening in the exchange
interaction, as shown diagrammatically in Fig@l The
screening function is modeled in the RPA and includes ring The Bethe-Goldstone approach constitutes a fundamen-
diagrams to all orders. In the spirit of the space-timetally distinct approximation based on the so-called transition
method’ we avoid costly convolutions by switching be- or T matrix, which describes multiple scattering in the
tween the real time and energy domains as appropriate, usinggrticle-particle and hole-hole channels to all orders. This
fast Fourier transforms with 32 768 sampling points over gorocess dominates in the low-density limit of the electron
range of 160 energy units. This procedure also guaranteesgas?® but it also predicts the specific behavior of systems
high degree of numerical accuracy, because we do not neewth localized orbitals and strong electronic correlation such
to repeatedly fit the propagators to analytic functions. Giveras the transition metaf8.As the self-energy, shown as a sum
a Green'’s functiorG we hence compute the self-energy by of ladder diagrams in Fig.(&), contains exchange contribu-
solving the defining equations tions in the two-particle propagator, we designate it by the

_ 1 1
WR;,(w)zagRR,—EPEE’?(w). (9)
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label T,. For the Hubbard model the corresponding direct
and exchange terms are in fact identical except for a prefac-
tor of 2 due to the spin summation in the former, so the
self-energy is given by

GW, 1 iteration

GW, 10 iterations

2
GéR’(t):iGRR’(t)GRR’(t): (10 Ugg
1 g exact
T};é’(w): UéRRI_GZRR’(w)’ (11)
T i L L
3 o (0=~ Trr (D GriR(—1) ~ Vg 8(1).  (12) 50 o - o

[0)
In the last equation we have subtracted the Hartree potential
because it is already dealt with separately.

By tuning the parameters of the Hamiltoniél) we can
create configurations geared to the particular strengths of di
ferent self-energy approximations within the same model
independent of the Coulomb integkdlthe T matrix becomes
increasingly accurate for a very low or, because of particle- ) )
hole symmetry, very high fractional band filling/(2M), ticle numbt_ar from the self—_conS|stent Green’s function and
while the GW schemes perform best for medium site occu-9enerally find the same high level of accuracy as for the

pancies and a not too strong interactidn. exact solution. _ _
In Fig. 2 we compare an ordina@W spectral function,

obtained from a single iteration of Dyson’s equation, with
IV. SELF-CONSISTENT SPECTRA the result of a converged, self-consistent calculation after ten
In order to study the effects of self-consistency in a g(_m_it_erations. Like all other figures i_n this section it shov_vs the
eral perspective, we compare calculations using all th&diagonal e_zlement for a corner site of the cluste_r, which we
many-body approximations described in the previous Secl;nave confirmed to be representative. The fo!lowmg observa-
tion. As a convenient starting point we choose the Hartredions, therefore, apply equally to other matrix elements. By
Green’s functionG", which only includes the electrostatic S€tting the model parameters k=10 andN=2 with a
potentialVH generated by the total electron charge. The ocMmedium interaction strength d§=4 we have deliberately

. - . . chosen a small band filling of 10% for which tl&wW ap-
cupation _numt_)er$nRU) are determined se!f-consmtently by roximation is not optimalg so that possible improver?*nents
a simple iterative procedure. After evaluating the self-energ)ghOuld be more obvious 'The exact spectrum is shown for
3, we obtain an updated, dressed Green’s function from Dys- '

on’s equation comparison.
q To examine the effects of self-consistency we distinguish

. between quasiparticles and their satellites. The former are in
G;é,(w):G:R,(w)_ERRr((D), (13)  fact little affected, mainly by small shifts in position and a
marginal narrowing of the resonance width for states close to
which in a conventional treatment is taken as the final specthe chemical potential. In contrast, the satellite spectrum de-
trum. In a self-consistent calculation we instead use it taeriorates significantly. The most striking change is the
compute a new Hartree potential and self-energy and corbroadening of satellite peaks. By fitting the spectrum to a set
tinue the iteration until the results stabilize. To guarantee thef Lorentzians we find that the resonance widths approxi-
correct analytic time-ordering of the spectrum obtained frommately double. As the spectral weight is smeared out and
Dyson’s equation it is necessary to shift the Hartree Green’peaks merge, individual features are hardly discernible above
function rigidly on the energy axis by an amoui#(x"))  the spectral background, particularly isolated satellites at
before evaluating the self-energy in Ed.3). Here ut' de-  high energies. One such example is indicated by an arrow.
notes the chemical potential, which we identify with the Furthermore, it can be seen that the satellites move closer
highest occupied quasiparticle state, and the matrix elememdward the chemical potential. All of these observations are
is formed with the corresponding orbital. As this shift mustin agreement with previous self-consistent calculatigris.
tend to zero for the self-consistent solution, we decrease it by We now address the relation between self-consistency and
a factor ofe™ ! in every subsequent iteration. To achieve the simultaneous inclusion of vertex corrections. To this end
convergence we typically perform at least ten iterations, aftewe show the results of a correspondiByVI" calculation in
which the shift is reduced to a negligible value without in- Fig. 3. It is evident that the vertex function in the latter fails
fluence on the spectral features or total energy. We use @ prevent the deterioration of spectral features when brought
very small initial resonance width af=0.05 throughout the to full self-consistency. In particular, we do not observe a
calculations in order to avoid systematic errors, and only the&estoration of the well-defined structure. This point is further
final spectra are broadened through convolution with ainderlined by our investigation of the Bethe-Goldstone ap-
Lorentzian of width 0.5 for visual display. We have again proach. A typical calculation using= 6, which corresponds
checked the numerical reliability by calculating the total par-to a band filling of 30%, is illustrated in Fig. 4: although

FIG. 2. Comparison between an ordinary and a convefg@d
calculation after ten iterations. The most striking effect of self-
f:_onsistency is the broadening of satellite peaks, which are hardly
discernible in a diffuse background. This is particularly obvious at
high energies, as indicated by an arrow.
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unclear diagrammatic structure. In this context our results,

GWT, 1 iteration alongside those from a partially self-consistent cumulant ex-
W pansion that also examined complete spectral functivirs,
dicate that this cancellation is a very subtle process and that
W mutually balancing contributions may be hard to identify.

V. TOTAL ENERGIES

I G ()

exact
One of the notable features of self-consistency in the
many-body perturbation theory is that the total energy be-
comes a proper, uniquely defined quantity. In practice, total
. . energies are most often obtained from the one-particle
-5.0 0.0 50 10.0 Green's function using the Galitskii-Migdal formuta,
o which may of course be applied to any approxim&e
FIG. 3. The vertex function in th&WI" approximation fails to _However, it is important to npte that ot’her def_initions, fc_)r
prevent the deterioration of spectral features when brought to funstance throggh the_two-partlcle G_reen S funcFlon or an in-
self-consistency. tegral _of the interaction strengt_h, in general yleld_ d|ﬁer¢nt
numerical values. Full self-consistency removes this ambigu-
ity. Moreover, the total energy is then also properly con-
served under the influence of external perturbations.
4 For the Hubbard model an analogous expression for the
total energy

unrelated to the5W approximation, theT, scheme effects
the same changes in quasiparticle and satellite peaks in
converged, self-consistent spectrum.

The general success of ordinaByV calculations for most
systems suggests that the sum of all neglected self-energy 1 w
diagrams is small. A thorough understanding of this process E=— > (wdrpr—1) IM Ggrr(w)dw (14)
is invaluable for the design of superior approximations, but (RR) = 7%
despite continuing efforts the nature of this cancellation rein terms of the one-particle Green’s function can be derived
mains elusive. On the one hand, there is strong evidence fdrom the equation of motion of the wave-field operator. De-
a certain mutual cancellation between corresponding vertexpite formal similarities to the Galitskii-Migdal formula this
corrections in the polarizability and self-energy>® If we expression also contains contributions from nondiagonal el-
assume that this argument still holds for the true vertex funcements of the Green’s function. The reason for this apparent
tion, then by extension the remaining contributions, i.e., thaliscrepancy is that the site indéX does not represent a
self-consistent renormalization of propagators in the polarizspatial coordinate. Instead, it is introduced in second quanti-
ability and self-energy, must also cancel. However, the diszation to label a set of overlapping Wannier orbitals. As the
turbing deterioration of spectral features in the self-creation and annihilation operators are transformed sepa-
consistenG W approximatiort;? particularly when compared rately, local operators in real space become nondiagonal in
to a partially self-consistent calculation with a fixed zeroth-the site index, a point that was previously noted in conjunc-
order dielectric functiort} suggests that this is not the case, tion with the proper parametrization of the charge deriSity.
at least when a trivial vertex is used. Consequently, onénalogously the local kinetic-energy operator and external
would also expect a certain mutual cancellation between selfpotential correspond to the nondiagonal hopping term of the
consistency and vertex diagrams. Recently reported numerHubbard Hamiltonian, which resurfaces here.
cal evidenc® to this end is circumstantial, however, since  Unlike the calculation of the particle number, a direct
only quasiparticle properties were considered and the reevaluation of the frequency integral in Ed.4) proved quite
sponse function was replaced by a plasmon-pole model ddensitive to the initial resonance widéh In order to obtain
reliable results, we therefore fit the elements of the Green’s
function to a model of the form

T, 1 iteration
ane,
AN Grrr(@)=2, nRR — + PR
N w—bgg —i0gry M w—Dbgr tidgp
(15
which of course becomes exact &dends to zero. The fre-
exact quency integration can now be performed analytically in the
proper limit 62R,—>0, and so for the total energy we even-
tually obtain

m
aggr

T, 10 iterations

I G ()

-5.0 0.0 5.0 100 E= 2 2 (bgR,gRR,_t)agR, ) (16)
o (RR") N
FIG. 4. Although unrelated to th&W approximation, thel, ~ We have confirmed the reliability of our procedure by com-
scheme effects the same changes in quasiparticle and satellite pegk@ring total energies derived from the true Green’s function
in a converged, self-consistent spectrum. with the exact numerical valugy, which we obtained ear-
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-5.2 , -5.2 ' approximation is superior due to the prominence of exchange
@ (b) . in the Hubbard model. The drop in ti&W total energy after

54 | 54 . r_eac_hing a plategu is, in_ part, an artifact of the model speci-

Ve " fication: as the interaction is short range, the true energy

converges to a finite value in the limii—o as long asN

oo 1 56 ] <M, indicating a complete spatial separation of the elec-
° trons. The tendency of th@ W approximation to underesti-
mate the total energy eventually causes the downward trend.

Total energy E
I
w
[=)%

o0
S8 fre 0t -8 Such an unphysical behavior does not occur for the long-
° range Coulomb interaction, where the energy diverges as the
260 . 6.0 . correlation strength approaches infinity.
00 4;) 80 00 45) 80 When comparing the total energies obtained from ordi-

nary, with those obtained from self-consistent, Green'’s func-
FIG. 5. Total energies calculated frofe) the GW andGWr'  tions, we find that the latter are systematically raised. This is
approximations, indicated by circles and diamonds, respectively@ general feature valid for all approximations at all band
and(b) the T, scheme as a function of the interaction strerigttor fl”lngS that we investigated. It can be understood as follows:
a low band filling of 17%. Open symbols refer to ordinary, non- self-consistency modifies the Green'’s function in two ways,
self-consistent Green’s functions, while filled symbols refer to self-namely, by rescaling and moving individual resonances rela-
consistent ones. The solid line shows the exact total energy fotive to the chemical potential, and by an overall rigid shift
comparison. caused by a redefinition of the chemical potential itself. The
first effect may influence the total energy in either way, de-
lier by diagonalizing the Hamiltonian matrix. The fit accord- pending on the balance of opposite trends. For the homoge-
ing to Eq.(15) is very accurate. Unfortunately it is also com- neous electron gas, for instance, the increase in the band-
putationally expensive, so that all results in this section refewidth, which moves quasiparticles to lower energies relative
to a reduced model size & =6. to the Fermi surface, competes with the upward transfer of
In Figs. 5 and 6 we show calculated total energies as apectral weight from low-lying plasmon satellites to the cor-
function of the interaction strengtd for N=2, which cor-  responding main peakSin contrast, the second contribution
responds to a low band filling of 17%, aft=4, equivalent is always positive. It results from a relocation of the chemi-
to an intermediate band filling of 33%. Results obtained fromcal potential, which in an ordinary treatment is given fy
the GW, the GWI', and theT, scheme are indicated by =u"+(3(u")), equivalent to that of the shifted Hartree
circles, diamonds, and squares, respectively. Open symbofBreen’s function in Dyson’s equation. In a self-consistent
refer to ordinary, non-self-consistent Green’s functionsapproach the chemical potential instead becomesu!
while filled symbols refer to self-consistent ones. The curvest Z(3 (u")), whereZ is the quasiparticle renormalization
are not perfectly smooth due to unresolved convergencéactor. For the sake of the argument we ignore small devia-
problems for individual values df. As these do not obscure tions in the underlying Hartree potentials and the self-energy
overall trends, however, we have decided to retain the comatrix elements, which are, of course, calculated from dif-
responding energies for reasons of completeness. The solfdrent Green’s functions. It is then clear that in the self-
line shows the exact total energy for comparison. consistent case the self-energy correction, which is always
As a first result we note that the quality of total-energynegative, is scaled down 1%, leading to a higher reference
predictions correlates with that of spectral functions in thechemical potential. Unless compensated by other factors, this
same parameter range, i.e., the Bethe-Goldstone approaeffect, therefore, always raises the total energy.
works best for low particle numbers, while the tvid@W Although the argument makes the increase in total energy
schemes perform optimally for intermediate band fillings,for the electron gas plausible, it does not explain the excel-
where screening effects dominate. Of the latter, @I lent numerical agreement with results from quantum Monte
Carlo simulations, which are presumed accurate. In light of

4.0 : -40 : our calculations this appears rather fortuitous, however.
@ ) While the increase in th&W total energy for our model
o system with two and four electrons indeed constitutes a
-5.0 1 50t u T P
" e . guantitative improvement, in Fig. 7 we present results for a
B . o larger band filling of 67%, corresponding =28, to dem-
2 60 . 1 60 =g 1 onstrate that this is not always so: as the ordinamy ap-
g % proximation already predicts the true energies rather well in
& go°” - this case, self-consistency leads to a substantial overestima-
10 g° 1 =70t . tion.
-8.0 s -8.0 .
0.0 40 80 00 4.0 8.0 VI. CONCLUSIONS
U U

In this paper we have presented self-consistent many-

FIG. 6. Corresponding values for the same model with an interbody calculations of the spectra and total energies for a
mediate band filling of 33%. Self-consistency systematically raisegnodel system. The self-consistency was not restricted and
the total energy for all approximations. extends to the construction of the screened interaction in the
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16.0 elaborate treatments and is not removed by vertex correc-
tions. The most important effect is the broadening of satellite
20 L peaks, particularly at high energies, and their simultaneous
o 801 . ] shift towards the chemical potential. For all approximations
B o the corresponding total energies are systematically raised.
E 40 | ] This trend, which we made plausible on the basis of physical
g 2 arguments, is independent of the system parameters such as
B 00 1 correlation strength and band filling. Our results, therefore,
suggest that the recently reported improvement in G
40y total energy for the electron gas due to self-consistency may
80 , ‘ , be fortuitous.
0.0 2.0 40 6.0 8.0
U
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