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In this article, we develop systematically second random phase approximations (RPA) and Tamm-
Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molec-
ular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed
by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while
the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations
missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second
RPAs and TDAs have a formal scaling of only O(N4). The restricted versions of second RPAs and
TDAs are tested with various small molecules to show some positive results. Data suggest that the
restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation
coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may
be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the
r2ph-TDA is recommended to study systems with both single and some low-lying double excitations
with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈Ŝ2〉 are
also developed and tested. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901716]

I. INTRODUCTION

The particle-hole random phase approximation (ph-
RPA)1, 2 has been a convenient method to study particle-
hole excitations and correlation energies for nuclei,3–8

molecules9–12 and solid.13–17 The ph-RPA can be viewed as
a response in time-dependent Hartree theory where the ex-
change correlation contribution is omitted in time-dependent
density-functional theory (TDDFT),18 as the correlation en-
ergies of all ring diagrams,7 or alternatively as a ring ap-
proximation in coupled-cluster doubles.19 Viewed as a cor-
relation energy functional from the adiabatic connection in
density-functional theory (DFT),10 there is a renaissance of
the ph-RPA in quantum chemistry community due to its
good description of van der Waals interactions10 and the cor-
rect dissociation limit of H2.20 These features have incen-
tivized developments of fast algorithms for ph-RPA correla-
tion energies.12, 17 Nonetheless, the ph-RPA has formidable
fractional charge errors which prohibit the applications of the
ph-RPA to many systems.21

On the other hand, the pp-RPA,22–27 also known as
Brueckner’s theory,28–30 has been a textbook method in nu-
clear physics to study pairing vibrations.7, 8 The pp-RPA can
be interpreted as time-dependent Hartree-Fock-Bogoliubov
approximation,7 as linear-response time-dependent density-
functional theory with pairing field at the zero pairing field
limit,31 as the adiabatic connection of the pairing matrix
fluctuations,32, 33 as sum of all ladder diagrams,7 or as a ladder
approximation in coupled-cluster doubles.34–36 Recent appli-
cations of the pp-RPA in molecular systems reveal that the
pp-RPA satisfies the flat-plane condition32, 37 and has better
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thermochemistry behavior than the ph-RPA.38 The pp-RPA
can also capture double excitations from an (N − 2)-electron
reference, which is impossible for adiabatic linear-response
TDDFT.39, 40 However, due to the limitation of the (N − 2)-
electron reference construction, single excitations from non-
highest occupied molecular orbitals (non-HOMO) are absent
in the pp-RPA as normally applied—although the pp-RPA
with a non-ground state reference can in principle lead to
such excitations. In this article, we develop the restricted
second random-phase approximation and the restricted sec-
ond particle-particle random phase approximation that can
calculate full single excitation spectrum and some double
excitations.

The second particle-hole random phase approximation
(2ph-RPA)6, 41–44 is a natural extension of the ph-RPA or time-
dependent Hartree-Fock (TDHF) in the equation-of-motion
(EOM)26 framework, where the excitation operators include
both one-particle-one-hole (1p1h) and two-particle-two-hole
(2p2h) excitations. The 2ph-RPA has been applied to nuclear
physics42, 43 and metal clusters44 to study double excitations,
but not in chemistry in general. McKoy and coworkers’ higher
RPA45, 46 is similar albeit involves a very sophisticated ground
state treatment. 2p2h excitations have also been used to im-
prove 1-particle excitations.47–51

Parallel to the 2ph-RPA, we devise here the second
particle-particle random phase approximation (2pp-RPA) that
supplements the pp-RPA excitation operators with three-
particle-one-hole (3p1h) and one-particle-three-hole (1p3h)
operators. From an (N − 2)-electron reference, the 2pp-
RPA has all critical double excitations in the pp-RPA,
plus all single excitations. The philosophy behind the 2pp-
RPA is very similar to including 3p1h/1p3h operators and
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above in double-ionization-potential/double-electron-affinity
equation-of-motion coupled-cluster (DIP/DEA-EOM-CC)
methods.52, 53 The computational scaling of second RPAs (the
2ph-RPA and the 2pp-RPA) can be reduced by placing some
rational restrictions on the excitation operators, leading to a
formal scaling of O(N4), the same as TDDFT and the pp-RPA.
Some molecular tests show that these restricted second RPAs
can capture the most important low-lying excitations while
keeping the computational complexity manageable. Prelimi-
nary results54 show that ph series RPAs and TDAs are prob-
ably size extensive while pp series RPAs and TDAs are not.
Although these second RPAs can be used to study correla-
tion energies as well, the focus of this article is on excitation
energies.

This article is organized as follows. The theories of the
2ph-RPA and the 2pp-RPA and their restrictions are described
in Sec. II. Section III presents the implementation and calcu-
lation details for these methods. Results are shown in Sec. IV
with discussions. Finally, Sec. VI concludes this article.

II. THEORY

A. The EOM formalism

Second RPA theories are expressed in Rowe’s EOM
formalism.26, 55 For an electronic Hamiltonian Ĥ , we have its
eigenvalues and eigenvectors

Ĥ |M〉 = EM |M〉. (1)

Note that Ĥ is expressed in second quantization and |M〉’s do
not have to have the same number of electrons. Suppose we
have an initial state |0〉 and want to study its excitation spec-
trum to some final state |F〉 and F �= 0. Defining an excitation
operator

Ô
†
F = |F 〉〈0|, (2)

we have

Ô
†
F |0〉 = |F 〉 (3)

and

ÔF |0〉 = 0. (4)

The EOM equation for the transition energy is

ωF = 〈0|[ÔF , Ĥ , Ô
†
F ]|0〉

〈0|[ÔF , Ô
†
F ]|0〉

, (5)

where ωF = EF − E0, and the double commutator is

[Â, B̂, Ĉ] = 1

2
[Â, [B̂, Ĉ]] + 1

2
[[Â, B̂], Ĉ], (6)

for Bosonic operators, or

[Â, B̂, Ĉ] = 1

2
{Â, [B̂, Ĉ]} + 1

2
{[Â, B̂], Ĉ}. (7)

for Fermionic operators.6, 55

Equation (5) alone is of little use as neither |0〉 nor Ô
†
F

is an easy task for a general system. By approximating the
initial state |0〉 and the excitation operator Ô

†
F , we can obtain

an eigenvalue equation derived from the stationary condition

without any constraint of Eq. (5). Expanding Ô
†
F as a linear

combination of some operators,

Ô
†
F =

∑
I

XIF Q̂
†
I −

∑
I

YIF Q̂I , (8)

and approximating |0〉 as a model state |MS〉, ωF is then a
function of of the vectors of XIF and YIF. Setting the variation
of ωF zero leads to the generalized eigenvalue equation[

A B

B† A∗

] [
XF

YF

]
= ωF

[
C D

D† −C∗

] [
XF

YF

]
, (9)

where

AIJ = 〈MS|[Q̂I , Ĥ , Q̂
†
J ]|MS〉, (10)

BIJ = −〈MS|[Q̂I , Ĥ , Q̂J ]|MS〉, (11)

CIJ = 〈MS|[Q̂I , Q̂
†
J ]|MS〉, (12)

and

DIJ = −〈MS|[Q̂I , Q̂J ]|MS〉. (13)

B. The 2ph-RPA

The 2ph-RPA is the EOM with |0〉 approximated by the
Hartree-Fock (HF) wave function and Q̂

†
I approximated by

all single and double particle-hole excitation operators, i.e.,
operators of {a†i} and {a†ib†j}. In this article, a, b, c, · · ·
represent unoccupied spin orbitals, and i, j, k, · · · represent
occupied spin orbitals, while p, q, r, s, · · · represent general
spin orbitals. {· · · } indicates the operator is normal ordered
with respect to the Fermi sea.56 The resulting eigenvalue
equation is42–44, 57⎡

⎢⎢⎢⎢⎣
ASS ASD BSS 0

A†
SD ADD 0 0

B†
SS 0 A∗

SS A∗
SD

0 0 AT
SD A∗

DD

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

XS

XD

YS

YD

⎤
⎥⎥⎥⎥⎦

= ω

⎡
⎢⎢⎢⎢⎣

ISS 0 0 0

0 IDD 0 0

0 0 −ISS 0

0 0 0 −IDD

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

XS

XD

YS

YD

⎤
⎥⎥⎥⎥⎦ , (14)

where subscripts S and D denote the single and double ex-
citation block, respectively, and I is an identity matrix. The
matrix elements are

Aia,jb = δijFab − δabFji + 〈aj ||ib〉, (15)

Aia,kcld = U (kl)[δik〈al||cd〉] − U (cd)[δac〈kl||id〉], (16)

Aiajb,kcld = U (ab)U (ij )[U (cd)δjlδikδbdFac

−U (kl)δbdδacδjlFki] + U (ab)[δacδbd〈kl||ij 〉]
+U (ij )[δikδjl〈ab||cd〉]
+U (ij )U (ab)U (kl)U (cd)[δikδac〈bl||jd〉], (17)



214102-3 Peng et al. J. Chem. Phys. 141, 214102 (2014)

and

Bia,jb = 〈ij ||ab〉, (18)

where Fpq is the Fock matrix element, 〈pq||rs〉 is an antisym-
metrized two-electron integral

〈pq||rs〉 = U (rs)〈pq|rs〉, (19)

with

〈pq|rs〉 =
∫ ∫

dxdx′φ∗
p(x)φ∗

q (x′)
1

|r − r′|φr (x)φs(x
′), (20)

and U(pq) is an operator that antisymmetrizes the term with
respect to p and q,

U (pq)f (p, q) = f (p, q) − f (q, p). (21)

Note that only the single-single block of B matrix is nonzero.
For a HF reference, Fpq = δpqεp where εp is the molecular
orbital eigenvalue.

It is interesting to compare Eq. (14) with the configura-
tion interaction singles and doubles (CISD) equation58

⎡
⎢⎣

0 0 A0D

0 ASS ASD

A†
0D A†

SD ADD

⎤
⎥⎦

⎡
⎢⎣

X0

XS

XD

⎤
⎥⎦ = E

⎡
⎢⎣

X0

XS

XD

⎤
⎥⎦ , (22)

where

A0,iajb = 〈ij ||ab〉 = Bia,jb, (23)

and ASS , ASD , and ADD are defined the same as in the 2ph-
RPA. Therefore, the CISD matrix and the 2ph-RPA matrix
contain exactly the same amount of information, i.e., we
can build the CISD equation from the 2ph-RPA equations,
and vice versa. However, CISD includes the double excita-
tion configurations to approximate both the ground and ex-
cited states, while the 2ph-RPA only approximates the excited
states with no direct reference to the ground state. The rear-
rangement of matrix elements makes CISD and the 2ph-RPA
dramatically different.

It is also noted that the matrix in the TDHF equation[
ASS BSS

B†
SS A∗

SS

] [
XS

YS

]
= ω

[
ISS 0

0 −ISS

] [
XS

YS

]
(24)

is a submatrix of the 2ph-RPA matrix. It is well-known
that TDHF suffers from HF instability issues for many
systems.3, 59 Therefore, any instability in TDHF will lead to
instability in the 2ph-RPA (as well as the restricted 2ph-RPA
introduced later). The Tamm-Dancoff approximation (TDA)
is the approximation to set the B matrix zero, which could
ameliorate some instability issues and improve the result. The
TDA for TDHF is configuration interaction singles (CIS). The
TDA for the 2ph-TDA, dubbed 2ph-TDA here, is then[

ASS ASD

A†
SD ADD

] [
XS

XD

]
= ω

[
XS

XD

]
. (25)

Note that the 2ph-TDA matrix is a submatrix of the CISD
matrix.

C. The 2pp-RPA

Parallel to the 2ph-RPA, by complementing the 3p1h
{a†b†c†i} and 1p3h {a†ijk} operators in the pp-RPA deriva-
tion, we obtain here the 2pp-RPA equation

⎡
⎢⎢⎢⎢⎢⎣

A2p,2p A2p,3p1h B2p,2h 0

A†
2p,3p1h A3p1h,3p1h 0 0

B†
2p,2h 0 C2h,2h C2h,1p3h

0 0 C†
2h,1p3h C1p3h,1p3h

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

X2p

X3p1h

Y2h

Y1p3h

⎤
⎥⎥⎥⎥⎦

=ω

⎡
⎢⎢⎢⎢⎣

I2p,2p 0 0 0

0 I3p1h,3p1h 0 0

0 0 −I2h,2h 0

0 0 0 −I1p3h,1p3h

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

X2p

X3p1h

Y2h

Y1p3h

⎤
⎥⎥⎥⎥⎦,

(26)

with

Aab,de = 〈HF|[{ba}, Ĥ , {d†e†}]|HF〉
= U (ab)U (de)[δbeFad ] + 〈ab||de〉, (27)

Aab,def l = 〈HF|[{ba}, Ĥ , {d†e†f †l}]|HF〉

= 1

2
U (ab)U (def )[δad〈bl||ef 〉], (28)

Aabci,def l = 〈HF|[{i†cba}, Ĥ , {d†e†f †l}]|HF〉

= 1

2
δilU (abc)U (def )[Fadδbeδcf ]

−FliU (abc)[δadδbeδcf ]

−1

2
U (abc)U (def )[δadδbe〈cl||f i〉]

+1

4
U (abc)U (def )[δilδcf 〈ab||de〉], (29)

Bab,lm = −〈HF|[{ba}, Ĥ , {m†l†}]|HF〉 = 〈ab||lm〉, (30)

Cij,lm = 〈HF|[{j †i†}, Ĥ , {lm}]|HF〉∗

= −U (ij )U (lm)[δjmFil] + 〈ij ||lm〉, (31)

Cij,dlmn = 〈HF|[{j †i†}, Ĥ , {d†lmn}]|HF〉∗

= 1

2
U (ij )U (lmn)[δjn〈di||lm〉], (32)
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and

Caijk,dlmn = 〈HF|[{k†j †i†a}, Ĥ , {d†lmn}]|HF〉∗

= FdaU (ijk)[δilδjmδkn]

−1

2
δadU (ijk)U (lmn)[Filδjmδkn]

−1

2
U (ijk)U (lmn)[δjmδkn〈di||al〉]

+1

4
U (ijk)U (lmn)[δadδkn〈ij ||lm〉]. (33)

All the expressions are derived using the Wick’s theorem con-
traction (see, for example, Ref. 56). Again, only the 2p-2h
block of the B matrix is nonzero. Note U(def) is an antisym-
metrized operator with three arguments,

U (def )g(d, e, f ) = g(d, e, f ) − g(d, f, e) − g(e, d, f )

+ g(e, f, d) + g(f, d, e) − g(f, e, d).

Similarly, we can obtain the 2pp-TDA by setting B zero,[
A2p,2p A2p,3p1h

A†
2p,3p1h A3p1h,3p1h

][
X2p

X3p1h

]
= ω

[
X2p

X3p1h

]
. (34)

D. Excited state properties

In the EOM formalism, since there is no explicit excited
state wave function, properties of excited states such as den-
sity matrices and S2 expectation values are not directly avail-
able. The motivation for excited state property calculations
originates from distinguishing spin states in the results of an
unrestricted calculation. There were a few discussions on this
topic in the literature. The original proposal by Rowe is84

〈F |Ŵ |F 〉Rowe = 〈MS|Ŵ |MS〉 + 〈MS|[ÔF , Ŵ , Ô
†
F ]|MS〉

〈MS|[ÔF , Ô
†
F ]|MS〉

.

(35)

Alternatively, we can use the expression

〈F |Ŵ |F 〉Rowe = 〈MS|Ŵ |MS〉

+

[
XF

YF

]† [
A(W ) B(W )
B(W )† A(W )∗

] [
XF

YF

]
[

XF

YF

]† [
C D
D† −C∗

] [
XF

YF

] , (36)

with A(W ) and B(W ) defined as in Eqs. (10) and (11) but with
Ĥ replaced by Ŵ . Yeager and co-workers60–62 proposed some
other formulas of 〈F |Ŵ |F 〉. However, due to the complexity
of their expressions, Eq. (35) is still the most used expression
in practice. Equation (35) does not always produce reasonably
values. For example, triplet excited states from a closed-shell
singlet reference in TDDFT or TDHF has an S2 expectation
value of Ref. 63,

〈F |Ŝ2|F 〉Rowe = 2(X†
F XF + Y†

F YF )

X†
F XF − Y†

F YF

, (37)

which is larger than 2 unless YF is zero. On the other hand,
Casida explicitly assigned the excited state wave function |F〉

in TDDFT,18

|F 〉Casida =
∑
ia

√
εa − εi

ωF

Zia,F {a†i}|MS〉, (38)

where ZF is the orthonormal eigenvector of a transformed
TDDFT equation,

[(A − B)1/2(A + B)(A − B)1/2]ZF = ω2
F ZF . (39)

In TDDFT, ZF is related to XF and YF ,

ZF = (A − B)−1/2(XF + YF ). (40)

Casida’s explicit construction of the wave function enables
the calculation of excited state expectation values. In this way,
Casida’s expectation value is equivalent to

〈F |Ŵ |F 〉Casida =〈0|Ŵ |0〉+ 1

ωF

Z†
F (�ε)1/2A(W )(�ε)1/2ZF ,

(41)

with �εia, jb = δijδab(εa − εi). Similarly, Ipatov et al.63 pro-
posed another expectation value formula related to Casida’s
ansatz,

〈F |Ŵ |F 〉Casida = 〈MS|Ŵ |MS〉 + Z†
F A(W )ZF . (42)

Equations (41) and (42) are preferable for delivering exact
〈F |Ŝ2|F 〉 for closed-shell triplet excitations. In this subsec-
tion, we will discuss some other possible expressions for ex-
cited state properties.

Equations (41) and (42) actually resemble the expectation
value expressions in the TDA,

〈F |Ŵ |F 〉TDA = 〈MS|Ŵ |MS〉 + X†
F A(W )XF

X†
F XF

. (43)

Therefore, we deem that B(W ) and YF may not be useful in
expectation evaluation, and propose to use Eq. (43) for gen-
eral EOM solutions even though YF may not be zero. Note
that for hole-hole excitations in pp-RPA/2pp-RPA solutions,
Eq. (43) should be slightly modified,

〈F |Ŵ |F 〉TDA(hh) = 〈MS|Ŵ |MS〉 − Y†
F C(W )YF

Y†
F YF

. (44)

Note also that in EOM the normalization requires that

X†
F XF − Y†

F YF = sign(X†
F XF − Y†

F YF ).

Therefore the normalization factors in Eqs. (43) and (44)
are required. Alternatively, Eq. (37) delivers an intuition
that reversing the sign of the Y†

F YF term may be a good
way to calculate expectation values. Thus we have a revised
expression

〈F |Ŵ |F 〉Rev

= 〈MS|Ŵ |MS〉

+X†
F A(W )XF +X†

F B(W )YF +Y†
F B(W )†XF +Y†

F G(W )YF

X†
F XF +Y†

F YF

,

(45)

where G(W ) = A(W )∗ for particle-hole excitations and
G(W ) = C(W ) for particle-particle or hole-hole excitations.
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Note that for Ŵ = Ĥ , Eq. (45) could produce excitation en-
ergies quite different from the eigenvalues from the original
EOM equation. The performance of expressions above will
be discussed in Sec. III.

Before we conclude this subsection, we have a brief de-
scription of obtaining the matrix elements of A(W ), B(W ),
and C(W ) for Ŝ2. The Ŝ2 operator can be expressed as

Ŝ2 = Ŝ+Ŝ− + Ŝ2
z − Ŝz. (46)

Since both the reference and excited states can be Ŝz eigen-
vectors from construction, the operator we need to study is

�̂ = Ŝ+Ŝ−. (47)

Employing normal order techniques, �̂ can be partitioned into
a constant, a one-body operator, and a two-body operator in
normal order,

�̂ =
∑
pqrs

〈p|Ŝ+|q〉〈r|Ŝ−|s〉p†qr†s

=
∑
ia

〈i|Ŝ+|a〉〈a|Ŝ−|i〉 +
∑
psa

〈p|Ŝ+|a〉〈a|Ŝ−|s〉{p†s}

+
∑
qri

〈i|Ŝ+|q〉〈r|Ŝ−|i〉{qr†}

+
∑
pqrs

〈p|Ŝ+|q〉〈r|Ŝ−|s〉{p†qr†s}

=
∑
ia

〈i|Ŝ+|a〉〈a|Ŝ−|i〉 +
∑
pq

(
∑

a

〈p|Ŝ+|a〉〈a|Ŝ−|q〉

−
∑

i

〈i|Ŝ+|q〉〈p|Ŝ−|i〉){p†q}

−1

4

∑
pqrs

[U (pq)U (rs)〈p|Ŝ+|r〉〈q|Ŝ−|s〉]{p†q†rs}. (48)

Therefore, the normal ordered matrix elements of �̂ are(
�1

N

)
pq

=
∑

a

〈p|Ŝ+|a〉〈a|Ŝ−|q〉 −
∑

i

〈i|Ŝ+|q〉〈p|Ŝ−|i〉,

(49)

and (
�2

N

)
pq,sr

= −U (pq)U (rs)〈p|Ŝ+|r〉〈q|Ŝ−|s〉. (50)

All these matrix elements can be expressed via the spatial
overlap matrix between α and β orbitals. Then the resulting
matrix elements of A(�), B(�), and C(�) are the same as
those in A, B, and C except that Fpq is replaced by (�1

N )pq and
〈pq||sr〉 is replaced by (�2

N )pq,sr . Refer to the supplementary
material for detailed expressions.54

E. Orbital restrictions

Those eigenvalue problems in second RPAs and their
TDAs stated above are still too time-consuming, with a scal-
ing of O(N6) even with Davidson’s algorithm.64 Our goal for
utilizing these extended models is to capture all single excita-

tions and the most important—low-lying—double excitations
that remedies the lack of double excitations in the ph-RPA/ph-
TDA or the missing of non-HOMO single excitations in the
pp-RPA/pp-TDA. Therefore, for the 2ph-RPA/2ph-TDA, we
will restrict the double excitation tensors to include only dou-
ble excitations from HOMOs. The resulting models are thus
named the restricted second particle-hole random phase ap-
proximation (r2ph-RPA) and the restricted second Tamm-
Dancoff approximation (r2ph-TDA). Depending on the
degeneracy of the frontier orbitals, HOMOs may include mul-
tiple orbitals. The resulting excitation operator for the r2ph-
TDA is then

Ô
†
F =

∑
ia

Xia{a†i} + 1

4

i,j∈HOMOs∑
ijab

Xiajb{a†ib†j}, (51)

and similar for the r2ph-RPA.
On the other hand, for the 2pp-TDA, we limit the 3p1h

excitation tensors to those that place two electrons back to
HOMOs of the N-electron state (the LUMOs of the (N − 2)-
electron state). Then the 2pp-TDA operator is

Ô
†
F =

∑
ab

Xab{a†b†} + 1

6

b,c∈HOMOs∑
abci

Xabci{a†b†c†i}. (52)

Note that the HOMOs in Eqs. (51) and (52) are both HOMOs
for N-electron states. If the N-electron state has degenerate
HOMOs (e.g., HOMOs of benzene have twofold spatial de-
generate), the self-consistent (N − 2)-electron state is likely
to break the spatial symmetry which could cause problems for
excitation energy calculations. Therefore, HOMOs in the 2pp-
TDA usually contains one spatial orbital (two spin orbitals).
Due to the asymmetry of 3p1h operators and 1p3h operators,
the restricting 3p1h operators while keeping 1p3h operators
unchanged seems unbalanced. Therefore, only the restricted
2pp-TDA but not the restricted 2pp-RPA be discussed. Note
that the restricted orbitals could potentially be non-HOMOs
due to the state of interest; however, in this paper we only fo-
cus on restrictions on HOMOs as we want to study the low ly-
ing double excitations. This construction also implies that all
the restricted methods are not orbital invariant under unitary
transformation among occupied orbitals since we can only use
canonical orbitals to determine HOMOs.

With these orbital restrictions, the scaling of the r2ph-
RPA, the r2ph-TDA, and the r2pp-TDA can be reduced to
O(N4) with Davidson’s diagonalization.64

III. COMPUTATION DETAILS

All the methods described above are implemented in
QM4D,65 except for the unbalanced restricted 2pp-RPA. For
testing purpose, all excitations have �Sz = 0, and only closed-
shell systems are tested. At the current stage, we only imple-
mented direct diagonalization which scales as O(N6) for the
restricted second RPAs. Full CI (FCI), multireference con-
figuration interaction (MRCI), and EOM-CCSD calculations
are done in GAMESS (US),66 MOLPRO,67, 68 and Gaus-
sian 09,69 respectively. By default, neutral excitation ener-
gies for electron number conserving EOMs are calculated at
N-electron reference, while for pp-methods excitations are
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calculated at (N − 2)-electron reference, with the excitation
energies expressed as the difference of the double electron
affinity of an N-electron state and that of the lowest N-electron
state. All geometries used in this study are adopted from
G2/97 set of MP2 neutrals70 except that BH molecule uses
a bond length of 1.232 Å adopted from Ref. 51. Excitation
energies studied in this article are all vertical excitation ener-
gies. Cartesian basis sets are used when possible. Refer to the
supplementary material for geometries and details of MRCI
calculations.54

By default, second RPAs use HF references except
for TDDFT and pp-RPA/pp-TDA@B3LYP71, 72 calculations.
Note that @B3LYP indicates that the normal ordered Hamil-
tonian used in the EOM is

Ĥ @B3LYP
N =

∑
r

εB3LYP
r {r†r} + 1

4

∑
pqrs

〈pq||rs〉{p†q†sr} (53)

with εB3LYP
r the B3LYP molecular orbital eigenvalue, rather

than the true Hamiltonian which uses the nondiagonal Fock
matrix.39 B3LYP reference was tried for some second RPA
and second TDA calculations with many unphysical low-
lying double excitations, probably due to the ad hoc choice
of the Hamiltonian of Eq. (53). Therefore, B3LYP reference
is only used in the pp-RPA/pp-TDA@B3LYP but not in any
second RPAs/TDAs. In contrast, the use of B3LYP or other
DFT reference is well justified for pp-RPA calculations, be-
cause one can view it as a linear response calculation for time-
dependent DFT in an external paring field.31 Another way to
understand this is from the fact that the pairing perturbation to
a molecule can be described by time-dependent Kohn-Sham
Bogoliubov theory, and the pp-RPA/pp-TDA@B3LYP equa-
tion is just the linear response of the time-dependent Kohn-
Sham Bogoliubov theory at the limit of zero pairing field.31

No such connection exists for the 3p1h or 1p3h perturbation.
For comparisons, Second-Order Polarizability Propaga-

tor Approximation (SOPPA) and Random Phase Approx-
imation with Doubles corrections (RPA(D)) results from
Dalton73, 74 are also added, as these two methods contains cor-
rections from double excitations.

IV. RESULTS

A. S2 expression tests

We first study the behavior of various 〈Ŝ2〉 formulas for
CO with 6-31G basis set as an example for the lowest triplet
excited states a′3�+ (π → π∗) (see Table I). It is noted that
results from Rowe’s formula deviate from the exact value (2)
very much, especially for TDHF and the 2ph-RPA. Both TDA
and Rev formulas deliver the exact value for all methods.
They are indistinguishable for all examples in this article. The
〈Ŝ2〉 assignments for the rest of the calculations in this article
use the TDA formula in Eq. (43) by default.

B. H2O

H2O is used as a test case for all methods with a relatively
small basis set 6-31G. Since the basis set is small enough, all
methods mentioned above can be tested. All data are listed

TABLE I. Ŝ2 expectation values for different formulas. The state to study is
the a′3�+(π → π∗) state of CO, with the basis set 6-31G. Rowe, TDA, and
Rev refer to Eqs. (35), (43) and (45), respectively.

Formula Rowe TDA Rev

TDHF 2.133 2.000 2.000
2ph-RPA 2.215 2.000 2.000
pp-RPA 2.003 2.000 2.000
2pp-RPA 2.004 2.000 2.000

in Table II, with FCI calculations in the same basis set as a
reference. Numbers in Table II for HF-based methods are not
supposed to compare to experimental values because of the
insufficient size of the basis set. The molecule lies in the yz
plane while the principal axis is the z axis. The ground state
configuration of the frontier orbitals in the basis set 6-31G
is 4(a1)25(b1)26(a1)07(b2)0. EOM-CCSD is very accurate for
all the single excitations listed in the table, closely followed
by the r2ph-RPA, the r2ph-TDA, SOPPA, and RPA(D). CIS,
TDHF, and TDDFT with the B3LYP functional are most prac-
ticed methods to calculate single excitations, with the average
errors 0.5–1.0 eV shown in Table II. As a general trend, the
2ph-RPA and the 2ph-TDA systematically pull down excita-
tions from TDHF and CIS. The 2ph-RPA and the 2ph-TDA
correct CIS and TDHF excitation energies in the right direc-
tion. This is probably caused by the unbalanced treatment be-
tween the excited and ground states. Surprisingly, with hole
restriction, the r2ph-RPA and the r2ph-TDA produce much
better results, with errors below 0.5 eV. The pp-RPA and the
pp-TDA (with HF references by default) substantially under-
estimate the excitation energies by more than 4 eV. The pp-
RPA@B3LYP and the pp-TDA@B3LYP, as DFT-based meth-
ods, are different from the FCI results for 1.5 eV, but because
of the small basis set for FCI, this difference does not repre-
sent the real error. A more fair comparison will be presented
in the following paragraph and Table III. At this time, the 2pp-
RPA and the 2pp-TDA produce better results while r2pp-TDA
overestimate most excitations. The defect of the pp-RPA and
the pp-TDA that single excitations from a non-HOMO level
are absent is conspicuous in 3A1 and 1A1 states, which is ame-
liorated in the 2pp-RPA, the 2pp-TDA and the r2pp-TDA.
Note that for all states studied in Table II, no double exci-
tations are involved.

We also test H2O with a larger basis set, aug-cc-
pVTZspd, i.e., the aug-cc-pVTZ basis set with no f functions.
The frontier orbital configuration of the ground state in this
basis set remains the same: 4(a1)25(b1)26(a1)07(b2)0. Results
are shown in Table III. Experimental values are imprecise for
H2O75, therefore we use MRCI results as reference because
MRCI and EOM-CCSD results are very close to each other
and similar to experimental data. Again, CIS and TDHF gen-
erally overestimate excitations by about 0.8 eV, while TDDFT
underestimates excitations by about 0.9 eV. The full 2ph-RPA
and the full 2ph-TDA cannot be calculated because of mem-
ory limit. We see that both the r2ph-RPA and the r2ph-TDA
perform reasonably well with the MAE (mean absolute error)
of about 0.25 eV. The pp-RPA and the pp-TDA substantially
underestimate excitations with the HF reference. In contrast,
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TABLE II. Vertical excitation energies of H2O with different methods using a small basis set 6-31G. All calculations are done in QM4D,65 except for FCI in GAMESS (US),66 EOM-CCSD in Gaussian 09,69 and
SOPPA and RPA(D) in Dalton.74 Unit: eV.

EOM 2ph- 2ph- r2ph- r2ph- pp-RPA pp-TDA 2pp- 2pp- r2pp-
Symbol Excitations FCI -CCSD CIS TDHF TDDFTa SOPPA RPA(D)b RPA TDA RPA TDA pp-RPA pp-TDA @B3LYPc @B3LYPc RPA TDA TDA

3B1 5(b1) → 6(a1) 7.63 7.53 8.33 8.20 6.92 7.27 NA 5.83 5.95 7.68 7.80 3.09 2.98 5.84 5.65 7.58 7.46 11.25
1B1 5(b1) → 6(a1) 8.37 8.27 9.30 9.24 7.72 8.06 8.13 6.61 6.67 8.75 8.80 3.60 3.49 6.47 6.28 8.34 8.22 11.79
3A1 4(a1) → 6(a1) 9.85 9.77 10.12 9.80 8.66 9.47 NA 7.89 8.15 9.80 10.11 NA NA NA NA 12.65 12.53 12.56
3A2 5(b1) → 7(b2) 10.07 10.02 10.55 10.42 9.24 9.80 NA 8.27 8.38 9.98 10.10 5.49 5.38 8.25 8.06 9.98 9.86 13.67
1A2 5(b1) → 7(b2) 10.58 10.52 11.20 11.13 9.83 10.33 10.43 8.79 8.86 10.70 10.77 5.76 5.65 8.61 8.43 10.49 10.37 13.95
1A1 4(a1) → 6(a1) 10.93 10.86 11.77 11.69 9.88 10.56 10.62 9.11 9.19 11.68 11.77 NA NA NA NA 13.65 13.53 13.53

MSEd . . . − 0.08 0.64 0.51 − 0.87 − 0.32 − 0.23 − 1.82 − 1.71 0.19 0.32 − 4.68 − 4.79 − 1.87 − 2.06 0.87 0.75 3.22
MAEe . . . 0.08 0.64 0.53 0.86f 0.32 0.23 1.82 1.71 0.24 0.32 4.68 4.79 1.87f 2.06f 0.96 1.00 3.22

aTDDFT with B3LYP functional.
bDue to the limitation of the program Dalton, only singlet data are listed.
cThe pp-RPA and the pp-TDA using B3LYP reference as in Ref. 39.
dMean signed error. Errors are with respect to FCI values. NA values are excluded.
eMean absolute error. Errors are with respect to FCI values. NA values are excluded.
fThe errors for DFT-based methods are not fairly justified errors because of the small basis set and thus inaccurate FCI results. More fair comparison is presented in Table III with a larger basis set.

TABLE III. H2O excitation spectra with different methods using the basis set aug-cc-pVTZspd. All calculations are done in QM4D,65 except for MRCI in MOLPRO,67, 68 and EOM-CCSD in Gaussian 09,69 and
SOPPA and RPA(D) in Dalton.74 Unit: eV.

EOM- pp-RPA pp-TDA
Symbol Excitations Expt.a MRCI CCSD CIS TDHF TDDFTb r2ph-RPA r2ph-TDA SOPPA RPA(D)c pp-RPA pp-TDA @B3LYPd @B3LYPd r2pp-TDA

3B1 5(b1) → 6(a1) 7.1 7.18 7.05 7.91 7.78 6.48 6.93 7.05 6.59 NA 3.08 3.01 6.34 6.19 10.27
1B1 5(b1) → 6(a1) 7.5 7.57 7.46 8.60 8.55 6.86 7.57 7.61 6.94 6.96 3.30 3.23 6.76 6.61 10.51
3A2 5(b1) → 7(b2) 9.0 9.18 9.05 9.91 9.78 8.15 8.94 9.05 8.49 NA 4.82 4.75 8.50 8.35 12.03
1A2 5(b1) → 7(b2) 9.1 9.36 9.22 10.27 10.22 8.28 9.30 9.34 8.63 8.75 4.88 4.81 8.71 8.57 12.09
3A1 4(a1) → 6(a1) 9.3 9.48 9.37 10.00 9.75 8.55 9.73 9.98 8.89 NA NA NA NA NA 12.07
1A1 4(a1) → 6(a1) 9.7 9.95 9.86 10.91 10.88 9.05 10.62 10.65 9.31 9.33 NA NA NA NA 12.43

MSEe . . . . . . − 0.12 0.82 0.71 − 0.89 − 0.06 0.16 − 0.48 − 0.42 − 4.30 − 4.37 − 0.75 − 0.89 2.78
MAEf . . . . . . 0.12 0.82 0.71 0.89 0.25 0.26 0.48 0.42 4.30 4.37 0.75 0.89 2.78

aExperimental data collected from Ref. 75.
bTDDFT with B3LYP functional.
cDue to the limitation of the program Dalton, only singlet data are listed.
dThe pp-RPA and the pp-TDA using B3LYP reference as in Ref. 39.
eMean signed error. Errors are with respect to the MRCI values. NA values are excluded.
fMean absolute error. Errors are with respect to the MRCI values. NA values are excluded.
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TABLE IV. Be excitation spectra with different methods using the basis set aug-cc-pVTZspd. All calculations are done in QM4D,65 FCI in GAMESS (US),66 and EOM-CCSD in Gaussian 09,69 and SOPPA and
RPA(D) in Dalton.74 Unit: eV.

EOM- 2ph- 2ph- r2ph- r2ph- pp-RPA pp-TDA r2pp-
Symbol Configuration Expt.a FCI CCSD CIS TDHFb TDDFTc RPAb TDA RPAb TDA SOPPA RPA(D)d pp-RPA pp-TDA @B3LYPe @B3LYPe TDA

3P 2s12p1 2.73 2.72 2.73 1.70 − 0.96i 2.10 − 1.27i 1.45 − 1.22i 1.49 1.81 NA 2.73 2.73 2.82 2.81 2.73
1P 2s12p1 5.28 5.33 5.36 5.10 4.84 4.90 3.74 4.07 3.77 4.10 4.86 4.87 5.36 5.36 6.15 6.15 5.34
3S 2s13s1 6.46 6.43 6.44 5.53 5.49 5.69 5.12 5.16 5.15 5.19 6.47 NA 6.44 6.44 8.40 8.40 6.44
1S 2s13s1 6.78 6.77 6.77 6.17 6.16 5.97 5.45 5.47 5.47 5.49 6.01 6.48 6.77 6.77 8.68 8.68 6.77
1D 2p2 7.05 7.16 7.18 NA NA NA 5.92 5.92 5.94 5.94 8.83 NA 7.18 7.18 7.98 7.97 7.18
3P 2s13p1 7.30 7.42 7.42 6.56 6.55 6.08 6.15 6.16 6.17 6.18 7.02 NA 7.43 7.42 9.46 9.46 7.43
3P 2p2 7.46 7.40 7.45 NA NA NA 6.19 6.19 6.21 6.21 8.64 NA 7.46 7.45 7.84 7.83 7.46

MSEf . . . 0.04 0.06 − 0.67 − 0.65 − 0.75 − 1.26 − 1.21 − 1.24 − 1.18 0.36 − 0.38 0.07 0.06 1.00 1.00 0.06
MAEg . . . 0.07 0.07 0.67 0.65 0.75 1.26 1.21 1.24 1.18 0.95 0.38 0.07 0.07 1.00 1.00 0.07

aExperimental values from NIST.76

bThe HF solution of Be atom suffers from instability. Therefore, TDHF, the 2ph-RPA, and the r2ph-RPA have imaginary eigenvalues presented.
cTDDFT with B3LYP functional.
dDue to the limitation of the program Dalton, only singlet data are listed.
eThe pp-RPA and the pp-TDA using B3LYP reference as in Ref. 39.
fMean signed error. Errors are with respect to experimental values. Spatial multiplicity is accounted. NA and imaginary values are excluded.
gMean absolute error. Errors are with respect to experimental values. Spatial multiplicity is accounted. NA and imaginary values are excluded.
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TABLE V. Vertical excitation energies of BH with different methods using the basis set aug-cc-pVTZspd. All calculations are done in QM4D,65 except for FCI in GAMESS (US),66 MRCI in MOLPRO,67, 68 and
EOM-CCSD in Gaussian 09,69 and SOPPA and RPA(D) in Dalton.74 Unit: eV.

EOM- r2ph- r2ph- pp-RPA pp-TDA r2pp-
Term Transition Expt.a FCI MRCI CCSD CIS TDHFb TDDFTb,c RPAb TDA SOPPA RPA(D)d pp-RPA pp-TDA @B3LYPe @B3LYPe TDA

a3� 3σ → π . . . 1.34 1.33 1.33 0.55 − 1.63i − 0.43i − 1.63i 0.24 7.35 NA 1.64 1.61 1.38 1.32 2.40
A1� 3σ → π 2.87 2.90 2.87 2.96 2.86 2.66 2.69 1.81 2.08 2.46 2.46 3.19 3.16 3.19 3.13 4.21
b3�− 3σ 2 → π2 . . . 4.71 4.69 5.69 NA NA NA 4.42 4.42 9.33 NA 5.50 5.47 5.12 5.06 6.56
C′1� 3σ 2 → π2 5.72 5.78 5.73 6.74 NA NA NA 5.09 5.09 6.37 6.38 6.14 6.11 6.04 5.98 7.20
c3�+ 3σ → 3s σ . . . 6.37 6.39 6.38 6.05 NA 5.58 5.34 5.39 6.18 NA 5.58 5.55 7.64 7.58 6.52
B1�+ 3σ → 3s σ 6.49 6.49 6.50 6.52 6.42 NA 5.66 5.53 5.54 7.50 7.50 5.70 5.67 8.41 8.36 6.65
C1�+ 3σ 2 → π2 6.86 6.92 6.89 7.47 NA 7.23 NA 5.93 5.93 8.78 8.78 6.83 6.80 7.09 7.14 7.72
23�+ 3σ → 3p σ . . . 7.33 7.34 7.33 6.87 7.82 6.37 6.21 6.30 7.06 NA 6.61 6.58 9.02 8.96 7.47
23� 3σ → 3p π . . . 7.54 7.55 7.56 7.27 8.29 6.56 6.51 6.54 8.00 NA 6.88 6.85 9.90 9.84 7.76
D1� 3σ → 3p π . . . 7.61 7.60 7.62 7.44 10.89 6.61 6.59 6.60 7.45 7.46 6.97 6.94 10.04 9.98 7.88

MSEf . . . . . . − 0.01 0.24 − 0.31 − 0.28 − 0.77 3.57 − 0.90 1.33 0.36 − 0.15 − 0.18 1.08 1.03 0.78
MAEg . . . . . . 0.02 0.25 0.31 0.28 0.77 3.63 0.90 1.55 0.66 0.51 0.52 1.08 1.03 0.78

aExperimental values from Ref. 77.
bBoth HF and B3LYP solutions of BH molecule suffer from instability. Therefore, TDHF, TDDFT, and the r2ph-RPA have imaginary eigenvalues presented.
cTDDFT with B3LYP functional.
dDue to the limitation of the program Dalton, only singlet data are listed.
eThe pp-RPA and the pp-TDA using B3LYP reference as in Ref. 39.
fMean signed error. Errors are with respect to FCI values. Spatial multiplicity is accounted. NA and imaginary values are excluded.
gMean absolute error. Errors are with respect to FCI values. Spatial multiplicity is accounted. NA and imaginary values are excluded.
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CIS, TDHF, and TDDFT miss quite a few double excitations
from 3σ to π . Again, the instability of the HF and B3LYP
reference leads to imaginary eigenvalues for TDHF, TDDFT,
and r2ph-RPA. A systematic downshift of r2ph-TDA excita-
tion energies is observed. The pp-RPA and the pp-TDA have
similar results with an MAE of about 0.5 eV. The r2pp-TDA
systematically pulls up pp-TDA results, thus overestimating
most excitations. The pp-RPA and the pp-TDA with B3LYP
reference still present unbalanced excitation energies of low
and high excitations. Overall, the r2ph-TDA, the pp-RPA,
the pp-TDA, and the r2pp-TDA perform reasonably well for
states studied in Table V. SOPPA significantly overestimates
the first excitation energy, probably due to the singlet-triplet
instability of the HF reference. SOPPA also has a very large
error on the double excitation dominated transition 3σ 2 →
π2. Overall, SOPPA and RPA(D) are fairly accurate for most
single dominated excitations.

E. CO

Various methods are tested on the CO molecule with re-
sults tabulated in Table VI. No double excitations are involved
in the range of spectra of interest. The pp-RPA and the pp-
TDA with ground state (N − 2)-electron reference do not cap-
ture single excitations from non-HOMO orbitals (the HOMO
is σ ), such as those π → π∗ transitions. The r2pp-TDA qual-
itatively captures these excitations, however, systematically
overestimating all excitation energies. For this system, the HF
reference is stable, and the r2ph-TDA has the same level of
accuracy of CIS, TDHF, and TDDFT, with relatively low av-
erage errors. The accuracy of SOPPA and RPA(D) is close to
the r2ph-TDA.

F. N2

We also test our methods on N2 with the basis set aug-
cc-pVTZspd. The HF ground state configuration of a neu-
tral N2 molecule is σ 2

u σ 2
g π4

u , while its doubly charged cation
has a ground state configuration of σ 2

u π4
u . In other words,

the HOMO in the N-electron HF configuration is πu, but the
molecule will lose two σ g electrons to form the lowest doubly
charged cation. We think this is considered an artifact of HF
orbitals, as σ g is generally considered the HOMO for N2,80

which is also confirmed by a B3LYP calculation. That said,
the pp-RPA and the pp-TDA with HF or B3LYP reference are
blind to all πu and σ u excitations. The r2pp-TDA can capture
but seriously overestimate all excitations listed in Table VII.
CIS, TDHF, TDDFT, and the r2ph-TDA all tend to underes-
timate low-lying excitation energies but overestimate higher
excitation energies. Note that the HF HOMOs are two degen-
erate πu orbitals, thus the double excitations are restricted to
the two πu orbitals. N2 is the only example with degenerate
HOMOs in this study. In this case, SOPPA and RPA(D) per-
form surprisingly well for a wide range of states.

G. CH2O

Calculation results of CH2O are listed in Table VIII. The
ground state configuration of CH2O in the basis set aug-cc-

pVTZspd is σ 2π2n2. The r2pp-TDA recovers the non-HOMO
excitations missing in all pp-RPA(TDA) methods, but with a
large average error of above 2 eV. CIS tends to overestimate
most of the excitations shown in the table, while the system-
atic downshift in the r2ph-TDA greatly improves the accu-
racy. Again, SOPPA and RPA(D) have similar accuracy com-
pared to that of the r2ph-TDA.

H. C2H4

Table IX tabulates excitation energies from the HOMO
π orbital of ethylene from various methods. The pp-RPA and
the pp-TDA systematically underestimate all the excitations
while the r2pp-TDA does the opposite. The pp-RPA and the
pp-TDA with B3LYP reference produce better accuracy. CIS
performs in the same level as EOM-CCSD in this special case.
The first triplet excitation energy of TDHF is very low, prob-
ably because the system is close to the stability-instability
transition. The r2ph-TDA this time underestimates most ex-
citations by about 0.6 eV, similar to the error of TDDFT. For
this molecular, surprisingly, SOPPA and RPA(D) have smaller
errors than EOM-CCSD.

I. E-Butadiene

We also test different methods on E-butadiene (Table X)
with the basis set aug-cc-pVDZ. Due to the relatively small
size of the basis set, we only look at the lowest two singlet and
triplet excitations. Note that the HF solution of this system is
unstable with an imaginary singlet-triplet transition energy.
The pp-RPA and the pp-TDA with HF and B3LYP reference
all have relatively low average errors of about 0.5 eV. The
r2pp-TDA again systematically overestimates all excitations.
CIS, TDDFT, and the r2ph-TDA are of similar accuracy for
the four states studied. The accuracy of SOPPA and RPA(D)
is not quite different from that of the r2ph-TDA and the
r2ph-RPA.

V. DISCUSSION

Results above show that the r2ph-TDA usually has sim-
ilar errors compared to TDDFT, while capable of describing
double excitations. We now study the detailed error distribu-
tions of the r2ph-TDA, compared to EOM-CCSD, TDDFT,
CIS, SOPPA, and RPA(D) in Figure 1. These aggregated re-
sults are also fitted to linear regressions, with results shown
in Table XI. Figure 1 shows that N2 results are the main out-
liers of r2ph-TDA results, thus another set regressions without
N2 are also performed. Overall, EOM-CCSD has high corre-
lation coefficients (R2) above 0.99 with very little bias (|b|
< 0.2 eV). TDDFT also has high correlation coefficients (R2

> 0.98), yet with a bias of about −0.5 eV. The R2 value for
the r2ph-TDA without N2 (0.973) is much better than that in-
cluding N2 (0.944), albeit the change of the bias is not sig-
nificant. CIS, on which the r2ph-TDA is a correction based,
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TABLE VI. Vertical excitation energies of CO with different methods using the basis set aug-cc-pVTZspd with no f functions. All calculations are done in QM4D,65 except for FCI in GAMESS (US),66 and EOM-CCSD
in Gaussian 09,69 and SOPPA and RPA(D) in Dalton.74 Unit: eV.

pp-RPA pp-TDA
State Transition Expt.a EOM-CCSD CIS TDHF TDDFTb r2ph-RPA r2ph-TDA SOPPA RPA(D)c pp-RPA pp-TDA @B3LYPd @B3LYPd r2pp-TDA

a3� σ → π∗ 6.32 6.26 5.67 5.07 5.69 4.73 5.34 5.74 NA 5.57 5.55 5.82 5.67 9.12
a′3�+ π → π∗ 8.51 7.98 7.34 5.79 7.51 5.77 7.33 7.65 NA NA NA NA NA 12.85
A1� σ → π∗ 8.51 8.52 8.84 8.55 8.21 7.74 8.04 8.03 8.19 7.82 7.83 8.03 8.03 11.54
d3� π → π∗ 9.36 8.92 8.28 7.37 8.23 7.35 8.27 8.49 NA NA NA NA NA 13.90
e3�− π → π∗ 9.88 9.49 9.27 8.89 9.30 8.77 9.15 9.15 NA NA NA NA NA 14.82
I1�− π → π∗ 9.88 9.70 9.27 8.89 9.30 8.88 9.26 9.19 9.56 NA NA NA NA 15.03
D1� π → π∗ 10.23 9.82 9.69 9.49 9.63 9.38 9.57 9.42 9.73 NA NA NA NA 15.35
b3�+ σ → 3s 10.40 10.65 11.20 11.10 9.89 10.59 10.68 10.72 NA 8.96 8.88 12.24 11.96 12.50
B1�+ σ → 3s 10.78 11.13 12.18 12.14 10.37 11.19 11.23 11.14 11.33 9.41 9.34 12.83 12.57 12.88
j3�+ σ → 3p σ 11.30 11.49 12.44 12.42 10.62 11.75 11.77 11.54 NA 9.76 9.68 13.72 13.44 13.28
C1�+ σ → 3p σ 11.40 11.68 12.78 12.76 10.77 11.95 11.96 11.73 11.65 10.02 9.94 14.03 13.75 13.46
c3� σ → 3p π 11.55 11.77 12.57 12.39 10.87 11.88 11.93 11.35 NA 10.06 9.98 13.90 13.62 13.59
E1� σ → 3p π 11.53 11.93 12.89 12.88 10.98 12.06 12.08 11.93 11.97 10.19 10.12 13.95 13.67 13.76

MSEe . . . − 0.03 0.17 − 0.19 − 0.64 − 0.63 − 0.28 − 0.32 − 0.03 − 1.19 − 1.24 1.38 1.17 3.27
MAEf . . . 0.28 0.90 1.14 0.64 0.98 0.66 0.54 0.40 1.19 1.24 1.71 1.54 3.27

aExperimental values from Ref. 79.
bTDDFT with B3LYP functional.
cDue to the limitation of the program Dalton, only singlet data are listed.
dThe pp-RPA and the pp-TDA using B3LYP reference as in Ref. 39.
eMean signed error. Errors are with respect to experimental values. Spatial multiplicity is accounted. NA values are excluded.
fMean absolute error. Errors are with respect to experimental values. Spatial multiplicity is accounted. NA values are excluded.
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TABLE VII. Vertical excitation energies of N2 with different methods using the basis set aug-cc-pVTZspd. All calculations are done in QM4D,65 except for FCI in GAMESS (US),66 and EOM-CCSD in
Gaussian 09,69 and SOPPA and RPA(D) in Dalton.74 Unit: eV.

pp-RPA pp-TDA
Symbol Transition Expt.a EOM-CCSD CIS TDHF TDDFTb r2ph-TDA SOPPA RPA(D)c pp-RPA pp-TDA @B3LYPd @B3LYPd r2pp-TDA

A3�+
u πu → πg 7.75 7.04 5.48 1.66 6.38 4.88 6.88 NA NA NA NA NA 9.25

B3�g σ g → πg 8.04 7.76 7.52 7.11 7.18 9.48 7.18 NA 7.82 7.54 7.16 7.16 11.17

W 3�
u

πu → πg 8.88 8.40 6.57 4.86 7.32 5.84 8.09 NA NA NA NA NA 10.29

a1�g σ g → πg 9.31 9.12 9.50 9.23 8.85 9.48 8.49 8.78 9.34 9.19 9.07 9.07 12.77

B ′3�−
u πu → πg 9.67 9.32 7.75 7.11 8.68 6.79 9.05 NA NA NA NA NA 11.45

a′1�−
u πu → πg 9.92 9.57 7.75 7.11 8.68 6.88 9.10 9.69 NA NA NA NA 11.44

w1�
u

πu → πg 10.27 10.00 8.33 8.01 9.10 7.30 9.58 10.00 NA NA NA NA 11.99

C3�u σ u → πg 11.19 11.16 11.56 11.09 10.49 11.39 10.59 NA NA NA NA NA 15.62

E3�+
g σ g → 3s σ g 12.00 12.18 13.22 13.14 11.57 12.70 12.18 NA 11.33 10.94 13.80 13.80 14.38

a′′1�+
g σ g → 3s σ g 12.20 12.76 14.44 14.08 12.10 14.54 12.76 14.75 11.81 11.45 14.40 14.40 15.09

c1�u σ g → 3p πu 12.90 13.25 14.91 15.45 12.64 14.94 13.05 14.09 12.35 11.95 15.25 15.25 15.84

c′1�+
u σ g → 3p σ u 12.98 14.52 14.24 14.90 12.22 13.35 12.87 13.89 12.04 11.64 15.24 15.24 15.33

MSEe . . . − 0.05 − 0.33 − 0.90 − 0.83 − 0.54 − 0.49 0.45 − 0.39 − 0.70 0.97 0.97 2.59
MAEf . . . 0.38 1.43 2.02 0.83 1.77 0.61 0.85 0.40 0.70 1.47 1.47 2.59

aExperimental values from Ref. 81.
bTDDFT with B3LYP functional.
cDue to the limitation of the program Dalton, only singlet data are listed.
dThe pp-RPA and the pp-TDA using B3LYP reference as in Ref. 39.
eMean signed error. Errors are with respect to experimental values. Spatial multiplicity is accounted. NA values are excluded.
fMean absolute error. Errors are with respect to experimental values. Spatial multiplicity is accounted. NA values are excluded.
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TABLE VIII. Vertical excitation energies of CH2O with different methods using the basis set aug-cc-pVTZspd. All calculations are done in QM4D,65 except for FCI in GAMESS (US),66 and EOM-CCSD in
Gaussian 09,69 and SOPPA and RPA(D) in Dalton.74 Unit: eV.

pp-RPA pp-TDA
Symbol Transition Expt.a EOM-CCSD CIS TDHF TDDFTb r2ph-RPA r2ph-TDA SOPPA RPA(D)c pp-RPA pp-TDA @B3LYPd @B3LYPd r2pp-TDA

3A2 n → π∗ 3.50 3.48 3.67 3.33 3.11 3.03 3.37 2.88 NA 1.64 1.51 3.17 2.87 6.69
1A2 n → π∗ 3.94 3.94 4.50 4.32 3.84 3.98 4.16 3.36 3.58 1.98 1.86 3.70 3.45 6.97
3A1 π → π∗ 5.53 5.77 4.68 1.38 5.21 1.38 4.68 5.45 NA NA NA NA NA 8.11
3B2 n → 3s a1 6.83 7.00 8.27 8.18 6.36 7.69 7.76 6.2 NA 3.71 3.55 7.42 6.98 8.73
1B2 n → 3s a1 7.09 7.15 8.62 8.61 6.49 8.00 8.01 6.32 6.51 3.82 3.66 7.92 7.47 8.80
3A1 n → 3p b2 7.79 8.02 9.31 9.25 7.24 8.74 8.78 7.23 NA 4.75 4.59 8.81 8.36 9.67
1A1 n → 3p b2 7.97 8.13 9.46 9.61 7.32 8.91 8.98 7.31 9.12 4.91 4.75 9.48 9.05 9.72
3B2 n → 3p a1 7.96 7.83 9.05 8.99 7.33 8.48 8.53 7.22 NA 4.98 4.83 8.92 8.50 9.77
1B2 n → 3p a1 8.12 8.03 9.41 9.40 7.47 8.81 8.82 7.35 7.42 5.08 4.92 9.15 8.72 9.89
1B1 σ → π∗ 8.68 9.20 9.69 9.44 8.86 9.42 9.67 8.55 8.87 NA NA NA NA 11.96
1A2 n → 3p b1 8.38 8.57 10.07 10.06 8.02 9.50 9.51 7.83 7.93 5.65 5.50 10.17 9.72 10.52

MSEe . . . 0.12 0.99 0.62 − 0.41 0.20 0.59 − 0.55 − 0.13 − 2.79 − 2.93 0.79 0.39 2.28
MAEf . . . 0.17 1.15 1.40 0.44 1.04 0.77 0.55 0.57 2.79 2.93 0.92 0.64 2.28

aExperimental values from Ref. 79.
bTDDFT with B3LYP functional.
cDue to the limitation of the program Dalton, only singlet data are listed.
dThe pp-RPA and the pp-TDA using B3LYP reference as in Ref. 39.
eMean signed error. Errors are with respect to experimental values. NA values are excluded.
fMean absolute error. Errors are with respect to experimental values. NA values are excluded.
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TABLE IX. Vertical excitation energies of C2H4 with different methods using the basis set aug-cc-pVTZspd. All calculations are done in QM4D,65 except for FCI in GAMESS (US),66 and EOM-CCSD in
Gaussian 09,69 and SOPPA and RPA(D) in Dalton.74 The molecule lies in the yz plane with the C=C bond aligned at the z axis. All excitations are from the HOMO π orbital. Unit: eV.

pp-RPA pp-TDA
Symbol Transition Expt.a EOM-CCSD CIS TDHF TDDFTb r2ph-RPA r2ph-TDA SOPPA RPA(D)c pp-RPA pp-TDA @B3LYPd @B3LYPd r2pp-TDA

3B3u 3s = ag 6.98 7.24 6.91 6.87 6.54 6.51 7.05 NA 4.42 4.40 7.72 7.68 8.41
1B3u 3s = ag 7.11 7.37 7.13 7.12 6.62 6.62 7.17 7.18 4.51 4.49 7.81 7.77 8.51
3B1g 3p σ = b2u 7.79 7.98 7.63 7.60 7.13 7.23 7.75 NA 5.09 5.07 8.43 8.39 9.09
1B1g 3p σ = b2u 7.80 8.03 7.73 7.71 7.17 7.30 7.82 7.83 5.09 5.09 8.50 8.46 9.11
1B2g 3p σ = b1u 7.90 8.08 7.88 7.88 7.16 7.40 7.88 7.89 5.08 5.06 8.53 8.49 9.08
1B1u π∗ = b2g 8.00 8.01 7.71 7.36 7.37 6.99 7.43 7.51 6.14 6.12 8.44 8.43 9.94
3Ag 3p π = b3u 8.15 8.51 7.97 7.93 7.89 7.69 8.35 NA 5.76 5.73 9.47 9.43 9.74
1Ag 3p π = b3u 8.28 8.80 8.53 8.49 8.15 7.86 8.61 8.62 6.28 6.26 9.90 9.87 9.98

MSEe . . . 0.23 − 0.14 − 0.54 − 0.48 − 0.60 − 0.04 − 0.01 − 2.23 − 2.25 0.68 0.64 1.70
MAEf . . . 0.23 0.20 0.58 0.48 0.60 0.19 0.19 2.23 2.25 0.84 0.81 1.70

aExperimental values from Ref. 79.
bTDDFT with B3LYP functional.
cDue to the limitation of the program Dalton, only singlet data are listed.
dThe pp-RPA and the pp-TDA using B3LYP reference as in Ref. 39.
eMean signed error. Errors are with respect to experimental values.
fMean absolute error. Errors are with respect to experimental values.

TABLE X. Vertical excitation energies of E-Butadiene with different methods using the basis set aug-cc-pVDZ. All calculations are done in QM4D,65 except for EOM-CCSD in Gaussian 09,69 and SOPPA and RPA(D)
in Dalton.74 Unit: eV.

State Ref.a EOM-CCSD CIS TDHF TDDFTb r2ph-TDA SOPPA RPA(D)c pp-RPA pp-TDA pp-RPA @B3LYPd pp-TDA @B3LYPd r2pp-TDA

3Bu(π → π∗) 3.20 3.29 2.64 − 2.17i 2.80 2.51 2.81 NA 3.22 3.12 2.54 2.32 5.55
3Ag(π → π∗) 5.08 5.16 4.34 2.97 4.86 4.29 4.69 NA 5.60 5.50 6.08 5.86 7.70
1Bu(π → π∗) 6.18 6.35 6.20 5.91 5.57 5.78 5.62 5.81 5.49 5.38 6.58 6.38 8.11
1Ag(π → π∗) 6.55 7.06 7.39 7.27 6.50 6.79 6.78 7.05 5.92 5.83 6.45 6.32 8.59

MSEe . . . 0.21 − 0.11 − 0.55 − 0.32 − 0.41 − 0.28 0.07 − 0.19 − 0.30 0.16 − 0.03 2.23
MAEf . . . 0.21 0.54 1.03 0.32 0.53 0.39 0.44 0.47 0.50 0.54 0.53 2.23

aBest estimated theoretical values adopted from Ref. 82.
bTDDFT with B3LYP functional.
cDue to the limitation of the program Dalton, only singlet data are listed.
dThe pp-RPA and the pp-TDA using B3LYP reference as in Ref. 39.
eMean signed error. Imaginary values are excluded.
fMean absolute error. Imaginary values are excluded.
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FIG. 1. Error distributions of various methods. The reference values are either experimental values, or other theoretical values. See Tables III–X for details.
Data of H2O are those using the basis set aug-cc-pVTZspd. NA and imaginary excitation energies are excluded. (a) EOM-CCSD, (b) TDDFT(B3LYP), (c) The
r2ph-TDA, (d) CIS, (e) SOPPA, (f) RPA(D).
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TABLE XI. Linear regression results of excitation energies. The equation to
fit is y = ax + b. Spatial multiplicity is accounted. NA and imaginary values
are excluded.

All Without N2

Methods R2 a b (eV) R2 a b (eV)

EOM-CCSD 0.992 1.003 0.048 0.994 0.991 0.160
TDDFT(B3LYP) 0.987 0.986 − 0.559 0.986 0.976 − 0.456
r2ph-TDA 0.944 1.143 − 1.624 0.973 1.142 − 1.526
CIS 0.952 1.143 − 1.133 0.971 1.158 − 1.068
SOPPA 0.886 0.864 1.073 0.849 0.842 1.263
SOPPA without BH 0.962 1.025 − 0.418 0.954 1.043 − 0.465
RPA(D) 0.972 1.102 − 0.778 0.970 1.030 − 0.256

also undergoes improvement through excluding N2 from the
data. N2 results have the largest errors probably because of the
unphysical description of the HOMO in the HF reference. In-
terestingly, SOPPA and RPA(D) are very accurate for N2. The
most significant outliers of SOPPA and RPA(D) is BH. The
regression results show that these two methods have better
overall accuracy and small biases. Although the r2ph-TDA is
slightly less accurate than TDDFT in these test data, the r2ph-
TDA also has advantage of capturing some double excitations
and free from instability. Considering double excitations, the
r2ph-TDA is still preferable to SOPPA and RPA(D). The neg-
ative bias of the r2ph-TDA data (∼−1.5 eV) is compatible
with results of the 2ph-RPA in literature as a result of some
missing ground state correlation.43, 44, 83

VI. CONCLUSIONS

Second RPAs and second TDAs of ph- and pp-channels
are introduced in this article to study molecular excitations.
These extensions enable capturing double excitations in the
RPA/TDA and non-HOMO excitations in the pp-RPA/TDA.
Based on orbital restrictions, the r2ph-RPA, the r2ph-TDA,
and the r2pp-TDA can describe all single excitations, and
double excitations from HOMO, with a formal scaling of
O(N4). Since the r2ph-RPA and the 2ph-RPA inherit all
instability issues from TDHF, we suggest that r2ph-TDA
is preferable than the r2ph-RPA. In theory, the r2pp-TDA
and the r2ph-TDA can capture the same states according
to the formalism. However, r2pp-TDA usually overestimates
the excitation energies. Additionally, the possibility that the
(N − 2)-electron reference may be degenerate and that the
SCF result could deteriorate the symmetry. Moreover, pp se-
ries methods are almost impossible to be size extensive, while
ph series methods are probably size extensive according our
preliminary data.54 These restricted second RPAs and TDAs
are tested on various systems. The r2ph-TDA have similar re-
sults compared to TDDFT and CIS, but with a larger negative
bias, which indicates some ground state correlation energies
are unaccounted in the r2ph-TDA. SOPPA and RPA(D) are
very accurate overall, but for double dominated excitations,
their errors are still fairly large. Considering EOM-CCSD is
unbalanced for single and double excitations even with a high
scaling of O(N6), and that SOPPA and RPA(D) do not treat
double excitations well with a scaling of O(N5), the r2ph-TDA

is recommended to study systems with both single and some
low-lying double excitations with a moderate accuracy, when
the excitation energies are the central concern (transition mo-
ments from TDA are less unsatisfactory). Beyond the excita-
tion energy tests, we also develop expressions on excited state
property evaluations that are at least suitable for 〈Ŝ2〉 calcula-
tions, which are very useful to distinguish different spin states
of the excitations.
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