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Abstract

Electron propagator theory is an efficient means to accurately calculating electron bind-
ing energies and associated Dyson orbitals that is systematically improvable and easily
interpreted in terms of familiar concepts of valence theory. After a brief discussion of the
physical meaning of the poles and residues of the electron propagator, the Dyson qua-
siparticle equation is derived. Practical approximations of the self-energy operator in
common use are defined in terms of the elements of the Hermitian superoperator
Hamiltonian matrix. Methods that retain select self-energy terms in all orders of the fluc-
tuation potential include the two-particle-one-hole Tamm–Dancoff approximation, the
renormalized third-order method, the third-order algebraic diagrammatic construction,
and the renormalized, nondiagonal second-order approximation. Methods based on
diagonal second-order and third-order elements of the self-energy matrix, such as
the diagonal second-order, diagonal third-order, outer valence Green's function, partial
third-order, and renormalized partial third-order approximations, provide efficient alter-
natives. Recent numerical tests on valence, vertical ionization energies of representative,
small molecules, and a comparison of arithmetic and memory requirements provide
guidance to users of electron propagator software. A survey of recent applications
and extensions illustrates the versatility and interpretive power of electron propagator
methodology.
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1. INTRODUCTION

Two historical missions have been the constant companions of the field

in which Per-Olov L€owdin exercised lasting influence, quantum chemistry.

The first is the fulfillment of a reductionist project: to determine molecular

properties solely from fundamental constants and equations of physics. The

derivation of approximate methods, the design of efficient algorithms and

their adaptation to modern computing platforms, and numerical testing of

the accuracy of calculations thus enabled are means to producing tools for

the prediction of molecular properties. Steady advances on all of these fronts

have made quantum chemistry an indispensable part of a chemist’s education

and have enabled the emergence of a new specialty, computational chemistry.

The capabilities of the latter field are especially valuable when competing

experimental techniques are costly, unsafe, or slow. These advantages not-

withstanding, quantum chemistry is not merely a branch of contemporary

computational chemistry because of the former field’s second historical mis-

sion. As the modern successor of valence theory, quantum chemistry con-

tinues to generate concepts of chemical bonding that inform the thinking

of specialists who synthesize or characterize new or important forms ofmatter.

These concepts enable the recognition and understanding of patterns of struc-

ture, energetics, reactivity, and physical properties and therefore stimulate the

formulation and execution of renewed experimental activity. They also

inform the education of the next generation of scientists.

There is an inherent tension between these two aspirations. Fulfillment

of the first mission inevitably leads to wave function Ans€atze, perturbative
arguments, density functionals, and parametrization schemes of increasing

complexity. Concepts that are products of the second mission, to have

any purchase on the minds of experimentalists, must be general and verifi-

able. Accurate predictions are a necessary condition for influence. However,

if such data are not clearly interpreted or if they fail to provide an insight into

related systems, their significance may be limited. Qualitative theories based

on relatively simple concepts have promoted the recognition of broad pat-

terns of chemical phenomena, but their rigorous numerical realization often

leads to inaccurate predictions that undermine their authority.

Theories that are systematically improvable and that generate qualitative

concepts with a rigorous foundation therefore have inherent advantages.

One such approach to quantum chemistry is based on electron propagator

(or one-electron Green’s function) theory.1–8 An additional advantage arises
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from relevance to experiments that have been prominent in the develop-

ment of quantum theory from its inception: measurements of electron bind-

ing energies. Finally, there are advantages of computational economy that

are related to the conceptual elegance of the propagator approach to spectra.

All of these features of electron propagator theory are related to the Dyson

quasiparticle equation, wherein a nonlocal, energy-dependent operator has

eigenvalues that are, in principle, exact electron binding energies and

corresponding eigenfunctions known as Dyson orbitals that describe how

electronic structure changes when an electron is removed or added.

In this review, some fundamental aspects of electron propagator theory’s

realization in the context of quantum chemistry are discussed. A derivation

of the Dyson quasiparticle equation that employs some of L€owdin’s most

useful concepts and some prominent approximation schemes are presented.

Finally, numerical tests that demonstrate the advantages of electron propa-

gator methods for the computational chemist and some recent applications

are discussed.

2. POLES AND RESIDUES OF THE ELECTRON
PROPAGATOR

The exact electron propagator suffices to determine the electron bind-

ing energies, Dyson orbitals, one-electron properties, and total energy of an

N-electron system.1,5 Let (χr, χs, χt, χu,…) be a set of orthonormal spin-

orbitals where the corresponding field operators obey the following

relationships:

a{r , a
{
s

� �
+
¼ ar, as½ �+¼ 0

a{r , as
� �

+
¼ δrs:

In this notation, the second-quantized Hamiltonian is given by

H¼Σrshrsa
{
r as +

1

4
Σrstu rs k uth ia{r a{s atau,

where h is the matrix of the one-electron operator and where anti-

symmetrized two-electron integrals in Dirac notation, such that

rs k uth i¼ rsjuth i� rsjtuh i
rsjtuh i¼

Z
χ*r 1ð Þχ*s 2ð Þ g 1, 2ð Þ χt 1ð Þ χu 2ð Þd 1ð Þd 2ð Þ,
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appear in the last term. Solutions of the Schr€odinger equation read

HjN,0i ¼ E0 Nð ÞjN,0i

for the initial, N-electron, ground state and

HjN+1,mi¼Em N+1ð ÞjN+1,mi
HjN�1,ni¼En N�1ð ÞjN�1,ni

for final states with N�1 electrons. Elements of the electron propagator

matrix, G(E), are expressed as

Grs Eð Þ¼ΣmVrm V*
sm E�Amð Þ�1

+Σn U
*
rnUsn E�Dnð Þ�1

,

where Am is the m-th electron attachment energy, Em N+1ð Þ�E0 Nð Þ, Dn

is the n-th electron detachment energy, E0 Nð Þ�En N�1ð Þ, and where the
overlap amplitudes are given by

Vrm¼ N+1,mja{r jN,0
� �

Usn ¼ N�1,njasjN,0h i:

Dyson orbitals for electron attachment and detachment which read

ϕm x1ð Þ¼ N+1ð Þ1=2
Z

dx2 dx3 dx4…dxN+1ψN+1,m x1, x2, x3,…, xN+1ð Þ

�ψN,0 x2, x3, x4,…, xN+1ð Þ

ϕn x1ð Þ¼ Nð Þ1=2
Z

dx2 dx3 dx4…dxNψN,0 x1, x2, x3,…, xNð Þ

�ψN�1,n x2, x3, x4,…, xNð Þ

are related to the overlap amplitudes through

ϕm x1ð Þ¼ΣrV
*
rmχr x1ð Þ

ϕn x1ð Þ¼ΣrUrnχr x1ð Þ:

Whereas the poles of the electron propagator equal electron binding ener-

gies, the corresponding residues are related to Dyson orbitals.

270 H�ector H. Corzo and J. Vince Ortiz



3. DERIVATION OF THE DYSON QUASIPARTICLE
EQUATION

A generalized notation for propagators with field operators or field

operator products that change the number of electrons by one, designated

by μ† and ν, may be introduced such that

μ{; ν
� �� �¼ΣmV

0
μmV

0*
νm E�Amð Þ�1

+ΣnU
0*
μnU

0
νn E�Dnð Þ�1

V0
μm¼ N+1,mjμ{jN,0

� �
U0

νn¼ N�1,njνjN,0h i:

In this notation,

Grs Eð Þ ¼ a{r ; as
� �� �

:

A generalized propagator defined in terms of μ† and ν may be related to a

more complicated propagator through

E μ{; ν
� �� � ¼ N,0j μ{, ν� �

+
jN,0

� �
+ μ{; ν, H½ �� �� �

:

Let a binary product and an accompanying metric matrix for the operators

be defined by

μjνð Þ¼ N,0j μ{, ν� �
+
jN,0

� �¼Tr ρ μ{, ν
� �

+

� �
,

where

ρ ¼ jN,0i N,0j:h

(In his lectures for aspiring quantum chemists, L€owdin often discussed the

axioms, such as Hermitian symmetry, that a binary product must satisfy.)9

Hamiltonian and identity superoperators7,10 then may be defined by

Ĥμ¼ μH�Hμ¼ μ, H½ �
Îμ¼ μ:
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A chain of propagators may be generated, where for example

E a{r ; as
� �� �¼ N,0j a{r , as

� �
+
jN,0

� �
+ a{r ; as, H½ �� �� �

¼ arj asð Þ+ a{r ;Ĥas
� �� �

E a{r ;Ĥas
� �� �¼ N,0j a{r , Ĥas

� �
+
jN,0

� �
+ a{r ; as, H½ �, H½ �� �� �

¼ arjĤas
� �

+ a{r ;Ĥ
2
as

D ED E

E a{r ;Ĥ
ξas

� �� �¼ N,0j a{r , Ĥξas
� �

+
jN,0

� �
+ a{r ; Ĥξas,H

� �� �� �

¼ arjĤξas
� �

+ a{r ;Ĥ
ξ+1

as

D ED E
:

The electron propagator therefore may be written as a series, where

a{r ; as
� �� �¼E�1 arjasð Þ+E�2 arjĤas

� �
+E�3 arjĤ2

as

� 	
+E�4 arjĤ3

as

� 	
+⋯ ,

or in terms of the superoperator resolvent, EÎ� Ĥ
� ��1

, such that

a{r ; as
� �� �¼ arj EÎ� Ĥ

� ��1
as

� 	
¼Grs Eð Þ:

A projection technique discussed by L€owdin11 may be used to replace

the superoperator resolvent by an inverse matrix expressed in a complete

manifold of operators, w, such that

EÎ� Ĥ
� ��1¼ jwÞ wj EÎ� Ĥ

� �
w

� ��1
wj:ð

This substitution yields the following form of the electron propagator

matrix:

G Eð Þ¼ ajwð Þ wj EÎ� Ĥ
� �

w
� ��1

wjað Þ
where a is a column vector of annihilation operators. The operator

manifold, w, may be partitioned into a primary space of simple field oper-

ators, a, and an orthogonal, secondary space with higher field operator

products, f, where

jwÞ¼ ja;f Þ,
ajað Þ¼ 1a, ajfð Þ¼ 0a�f , f jað Þ¼ 0f�a, f jfð Þ ¼ 1f :
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After partitioning,

G Eð Þ¼ 1a0a�f½ � a;f j EÎ� Ĥ
� �

a;f
� ��1

1a0a�f½ �{:
Only the upper left block of the inverse matrix is needed because of the

orthogonalization of the primary and secondary operator spaces. Now let

Ĥ¼ a;f jĤa;f
� �

. After solving the Hermitian eigenvalue equation,

ĤΩ¼Ωω,

the electron propagator matrix reads

G Eð Þ¼ 1a0a�f

� �
Ω E1�ωð Þ�1Ω{� �

1a0a�f

� �{
:

For electron detachment and attachment energies, ωn ¼Dn and ωm¼Am,

respectively. The elements of Ω from the primary operator space provide

the residues, where Ωsm ¼Vsm and Ωsn¼Usn. Solving for the upper left

block of a;f j EÎ� Ĥ
� �

a;f
� ��1

yields

G Eð Þ¼ aj EÎ� Ĥ
� �

a
� �� aj EÎ� Ĥ

� �
f

� �
f j EÎ� Ĥ
� �

f
� ��1

f j EÎ� Ĥ
� �

a
� �h i�1

:

For orthogonalized operator spaces,

G Eð Þ ¼ aj EÎ� Ĥ
� �

a
� �� ajĤf

� �
f j EÎ� Ĥ
� �

f
� ��1

f jĤa
� �h i�1

:

Because the first term in the inverse matrix involves a generalized Fock oper-

ator, F, where

asjĤar
� �¼ hrs +Σtu rtjjsuh i N,0ja{t aujN,0

� �¼ Frs,

the inverse of the electron propagator matrix may be written as follows:

G�1 Eð Þ¼E1a�Ft� ajĤf
� �

f j EÎ� Ĥ
� �

f
� ��1

f jĤa
� �

:

A reference electron propagator, G0, whose poles and residues are defined by

eigenvalues and eigenfunctions of a Hermitian one-electron operator, H0,

may be expressed as

G0 Eð Þ¼ E1a�H0ð Þ�1:
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The reference and exact electron propagators therefore may be related to

each other by

G�1 Eð Þ¼G�1
0 Eð Þ� Ft�H0ð Þ� ajĤf

� �
f j EÎ� Ĥ
� �

f
� ��1

f jĤa
� �

:

The second and third terms are, respectively, the energy-independent and

energy-dependent parts of the self-energy matrix, Σ(E):

Ft�H0 ¼Σ ∞ð Þ
ajĤf
� �

f j EÎ� Ĥ
� �

f
� ��1

f jĤa
� �¼σ Eð Þ

Σ ∞ð Þ+σ Eð Þ¼Σ Eð Þ:

The energy-independent term is given an argument of∞ to emphasize that

the limit of Σ(E) as jEj increases without bound is Σ ∞ð Þ. The inverse form
of the Dyson equation reads

G�1 Eð Þ¼G�1
0 Eð Þ�Σ Eð Þ:

The regular form of the Dyson equation is

G Eð Þ¼G0 Eð Þ+G0 Eð ÞΣ Eð ÞG Eð Þ:
Poles of the electron propagator are values of E where

detG�1 Eð Þ¼ 0:

These values correspond to solutions of

Ft +σ Eð Þ½ �C¼CE:

The latter equation may be solved self-consistently with respect to E. The

energy-dependent, nonlocal σ(E) operator and the one-electron density

matrix that determines the Fock operator may be systematically improved

until exact electron binding energies result. The energy dependence of

the σ(E) operator implies that the number of poles is larger than the dimen-

sion of the corresponding matrix. The associated eigenfunctions determined

by C are proportional to the Dyson orbitals. The norm of the Dyson orbital

corresponding to the electron detachment energy Dn, known as its pole

strength, is given by

Pn¼ ϕnjϕnh i¼ 1�C{
nσ

0 Eð ÞCn

� ��1
,
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where

σ0rs Eð Þ¼ dσrs Eð Þ=dE
is evaluated at the nth pole, En ¼Dn, and C{

nCn¼ 1. Valid pole strengths

vary between zero and unity. A generalized form of the Dyson quasiparticle

equation at self-consistency reads

F+ σ Dnð Þ½ �ϕn¼Dnϕn

for electron detachments. For electron attachments, where pole strengths are

obtained from

Pm¼ ϕmjϕmh i¼ 1�C{
mσ

0 Eð ÞCm

� ��1
,

the Dyson quasiparticle equation at self-consistency is

F + σ Amð Þ½ �ϕm¼ Amϕm:

4. APPROXIMATIONS IN THE DYSON QUASIPARTICLE
EQUATION

Approximations to the exact F and σ(E) matrices may be defined in

terms of the manifold of operators retained in the secondary space, f, and

the reference-state density matrices (ie, ρ density operators) used to evaluate
matrix elements of the Hamiltonian superoperator, Ĥ. The union of all 2hp,

2ph, 3h2p, 3p2h, 4h3p, 4p3h,… operators (ie, Manne’s f3, f5, f7,…, f2N+1

operator manifolds) suffices for a complete f space provided that the defining

reference determinant that distinguishes particles (ie, p or virtual orbitals

with indices a,b,c,…) from holes (ie, h or occupied orbitals with indices

i,j,k,…) is not orthogonal to the exact reference state, jN,0i.12 The non-

redundant members of the a, f3, and f5 operator manifolds are shown in

Table 1. For a complete operator manifold, no improvements over this sin-

gle determinant are needed in jN,0i to produce exact eigenvalues of Ĥ and

poles ofG(E). This principle is similar to L€owdin’s conclusion that the poles

of the resolvent’s expectation value, 0j E1�Hð Þ�1j0� �
, are the same for

exact and approximate j0i provided that the approximate reference state

is not orthogonal to its exact counterpart.11,13,14 Therefore, it is possible

to obtain exact poles ofG(E) using an approximate reference state that con-

sists of a single determinant. However, to obtain exact residues of G(E), the

reference state also must be exact.
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Improvements over a single-determinant approximation for the refer-

ence state may reduce the need for higher fw operators and also restore

the Hermiticity of Ĥ, a property which can be lost when approximate

choices for jN,0i are made. A study of the effects of perturbative improve-

ments over Hartree–Fock reference states credits Linderberg with the obser-

vation that non-Hermitian terms in Ĥ may be expressed as

YjĤX
� �� XjĤY

� �
*¼Tr ρ X, Y{� �

+
H�ρH X, Y{� �

+

� �
¼Tr H, ρ½ � X, Y{� �

+

� �
,

where ρ is a general density operator.15 For example, onemay choose ρ to be
a pure-state density operator: ρ¼ jN,0i N,0jh . The usual assumptions of

perturbation theory, where

H¼H0 + λV,
H0, ρ0½ � ¼ 0

and

ρ¼ ρ0 + λρ1 + λ2ρ2 +⋯,

imply that

H0, ρk½ �+ V, ρk�1½ � ¼ 0:

If ρ is correct through order n, then the non-Hermitian terms are of order

n+1:

YjĤX
� �� XjĤY

� �
*¼Tr V, ρn½ � X, Y{� �

+

� �
:

Table 1 Operator Manifolds
General
Operator

nh(n21)p
Operator Indicesa

np(n21)h
Operator Indicesa

a ap ai i occ aa a vir

f3 ap
†aqar aa

†aiaj i< j occ

a vir

ai
†aaab a<b occ

i vir

f5 ap
†aq

†arasat aa
†ab

†aiajak i< j<k

occ

a<b vir

ai
†aj

†aaabac a<b<c

vir

i< j occ

ai,j,k,l occupied; a,b,c,d virtual.
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This conclusion also is valid for the polarization propagator, where a com-

mutator replaces the anticommutator in the definition of the superoperator

metric.

For all choices of ρ, non-Hermitian terms vanish when X and Y pertain

to the primary (a) operator space, for a{p, aq

h i
+
¼ δpq. These terms also equal

zero when X is an nh(n�1)p operator and Y is an n0p(n0 �1)h operator

(where n and n0 ¼1, 2, 3, …), as the anticommutator term, [X,Y†]+, van-

ishes in such cases.

First-order non-Hermitian terms may appear when ρ is based on a single
Slater determinant. When X is an nh(n�1)p operator and Y is an (n+1)hnp

operator, the anticommutator yields a combination of single-replacement

operators and therefore the non-Hermitian terms vanish through first order

only when the reference determinant satisfies Brillouin’s condition. For

example, the expression

a{a ajakjĤai
� �� aijĤa{a ajak

� �¼ 1�Pjk

� �
δikFaj

is equal to zero when Hartree–Fock orbitals are assumed. (When X is an

np n�1ð Þh operator and Y is an n+ 1ð Þpnh operator, the same conclusion

is reached.) However, when X is an nh n�1ð Þp operator and Y is an

n+ 2ð Þh n+ 1ð Þp operator, X, Y{
� �

+
becomes a combination of double-

replacement operators. Nonvanishing, first-order terms in the ajĤf 5
� �

matrix therefore appear. For example,

a{a a
{
bajakaljĤai

� 	
� aijĤ a{a a

{
bajakal

� 	
¼ 1�Plk�Plj

� �
δil jk k abh i:

These terms are cancelled when first-order corrections to ρ are included.

The resulting zero matrix is identical to the adjoint of the f 5jĤa
� �

matrix.

Blocks of Ĥ that are more remote from the diagonal, where nh(n�1)p and

(n+m)h(n+m�1)p operators or np(n�1)h and (n+m)p(n+m�1)h

operators with m>2 are coupled, have matrix elements that vanish through

first order and therefore there are no corresponding non-Hermitian terms.

Diagonal blocks pertaining to nh(n�1)p and np(n�1)h operators also have

no non-Hermitian terms in first order.

An alternative strategy that originates in equation-of-motion theory3 is

to introduce a density operator, derive Ĥ and solve for eigenvalues of the
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Hermitized matrix, 1=2 Ĥ+ Ĥ
{

� 	
. Disconnected terms that may appear in

Ĥ should be removed before the Hermitization step.

The Manne operator manifold is orthonormal when ρ is obtained

from a single determinant. However, when other density operators are

employed, the superoperator overlap matrix may no longer be diagonal,

ie, XjYð Þ 6¼ δXY: To retain the usual form of σ(E) where E-dependence

occurs only in the f j EÎ� Ĥ
� �

f
� ��1

matrix, orthogonalized secondary

operator spaces must be introduced. A convenient technique is to employ

a symmetric orthogonalization, where, for example, the operator a{a aiaj ¼ f aij
is replaced by

f 0aij ¼ a{a aiaj�
1

2
Σb abja{a aiaj

� �
ab�1

2
Σbkl a

{
bakalja{a aiaj

� 	
a
{
bakal +⋯:

Several widely used approximations retain all terms in Ft+σ(E) through
a certain order of the fluctuation potential. When Hartree–Fock orbitals are

assumed, one-electron density matrix elements, N,0ja{r asjN,0
� �

or Prs, have

vanishing contributions in first order. Nonzero terms in P appear in second

and higher orders. Therefore, correlation contributions to F begin in third

order,4 where for real orbitals

Σ 3ð Þ
pq ∞ð Þ¼Σrs pr k qsh iP 2ð Þ

rs

P
2ð Þ
ij ¼�1

2
Σabkt

1ð Þ
jkabt

1ð Þ
ikab

P
2ð Þ
ab ¼ 1

2
Σijct

1ð Þ
ijact

1ð Þ
ijbc

P
2ð Þ
ia ¼ εi� εað Þ�1 Σjbct

1ð Þ
ijbc bc k ajh i+Σjkbt

1ð Þ
jkab ib k jkh i

h i

P
2ð Þ
ai ¼P

2ð Þ
ia

t
1ð Þ
ijab¼ ij k abh i εi + εj� εa�εb

� ��1
:

Whereas the Pij
(2) and Pab

(2) terms arise from products of first-order, double-

replacement amplitudes, the Pia
(2) term involves their second-order, single-

replacement counterparts.

For most bases other than the canonical, Hartree–Fock orbitals, F, con-

tains exchange as well as correlation terms. For example, in a canonical,

Kohn–Sham basis,
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Σpq ∞ð Þ¼�Σi pijiqh i� vxc½ �pq +Σrs pr k qsh i Prs�δrsnrð Þ,

where matrix elements of the exchange-correlation potential (vxc) occur in

the second-term and spin-orbital occupation numbers, nr, appear in the last

term. The term in parentheses may be set to zero by assuming that the den-

sity matrix of the reference determinant is close to exact. In this case, the role

of Σpq(∞) is to recover the usual exchange operator in the Dyson quasipar-

ticle equation.

To define approximate forms of σ(E), one may specify f operator mani-

folds and the density matrices that are used to evaluate matrix elements of Ĥ.

For example, the two-particle-one-hole Tamm–Dancoff approximation

(2ph-TDA)16 for the self-energy is defined by an operator manifold that

includes a and f3 in combination with a Hartree–Fock (ie, zero order) ref-

erence state:

σ2ph�TDA Eð Þ¼ ajĤf 3
� �

0
f 3j EÎ� Ĥ

� �
f 3

� ��1

0
f 3jĤa
� �

0
:

For the Hartree–Fock reference state, couplings between 2hp and 2ph oper-
ators equal zero and enable a separation of σ(E) into two terms:

σ2ph�TDA Eð Þ¼ ajĤf 2hp
� �

0
f 2hpj EÎ� Ĥ

� �
f 2hp

� ��1

0
f 2hpjĤa
� �

0

+ ajĤf 2ph
� �

0
f 2phj EÎ� Ĥ

� �
f 2ph

� ��1

0
f 2phjĤa
� �

0
:

When the usual Møller–Plesset choice for Ĥ0 is made, zeroth order contri-

butions to the primary–secondary couplings vanish and resulting first-order

expressions read

a{a aiajjĤap
� �

0
¼ pa k jih i

a
{
i aaabjĤap

� 	
0
¼ pi k pah i:

Through first order in V, the 2hp–2hp and 2ph–2ph couplings are given by

a{a aiajjĤa
{
bakal

� 	
0
¼ δabδikδjl εi + εj� εa

� ��δab kl k ijh i

+ 1�Pij

� �
1�Pklð Þδik al k bjh i,
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for i< j, k< l, and

a
{
i aaabjĤa

{
j acad

� 	
0
¼ δijδacδbd εa + εb�εið Þ

+δij cd k abh i� 1�Pabð Þ 1�Pcdð Þδac id k jbh i,
for a<b, c<d. The latter terms generate ring, ladder, and mixed ring-ladder

diagrams in all orders of V. Because the Hartree–Fock reference state gen-

erates no energy-independent terms,

σ2ph�TDA Eð Þ¼Σ2ph�TDA Eð Þ:
The chief arithmetic bottleneck in 2ph-TDA calculations arises from matrix

multiplications that involve 2ph–2ph couplings. These contractions scale as

ov4, where o is the number of occupied orbitals and v is the number of vir-

tual orbitals.

By ignoring the first-order terms in a{a aiajjĤa
{
bakaI

� 	
0

and

a
{
i aaabjĤa

{
j acad

� 	
0
, the self-energy expression becomes

Σ 2ð Þ Eð Þ¼ ajĤf 2hp
� �

0
f 2hpjEÎ� Ĥ0

� �
f 2hpÞ�1

0 f 2hpjĤa
� �

0

+ ajĤf 2hp
� �

0
f 2hpj EÎ� Ĥ0

� �
f 2hp

� ��1

0
f 2hpjĤa
� �

0

and the matrix elements acquire their familiar, second-order form:

Σ 2ð Þ
pq Eð Þ¼ Σa i<j qa k jih i E+ εa�εi�εj

� ��1
ji k pah i

+Σi a<b qi k bah i E+ εi� εa�εbð Þ�1
ba k pih i

For electron detachment energies in which the assumptions of Koopmans’s

identity are qualitatively valid, neglect of off-diagonal elements of

Σ(E) usually introduces deviations of 0.01–0.02 eV. The resulting diagonal,
or quasiparticle, approximation leads to an especially simple form of the

Dyson quasiparticle equation in which

E¼ εi +Σii Eð Þ
When the diagonal, second-order (D2) self-energy approximation is used

with flexible basis sets, valence, vertical ionization energies (VIEs) of closed-

shell molecules are predicted to be too small, with mean absolute deviations

from reliable data of approximately 0.4 eV. Larger errors obtain for small

basis sets. Predicted VIEs increase as more functions are added. Whereas

280 H�ector H. Corzo and J. Vince Ortiz



negatives of canonical Hartree–Fock orbital energies usually give VIEs that

are too large, chiefly because of their neglect of final-state relaxation of

orbitals, D2 results that are extrapolated with respect to basis saturation pro-

vide an informal lower bound. For every Koopmans result that is refined

with D2 corrections, only a partial integral transformation to the

Hartree–Fock basis is required. The latter transformation has fourth-power

arithmetic scaling. Because evaluation of Σii(E) matrix elements has cubic

scaling, it constitutes no bottleneck.

A noniterative formula in which the pole is approximated by

E� εi +Σ 2ð Þ
ii εið Þ

is identical to the second-order result of Rayleigh–Schr€odinger perturbation
theory in which the N-electron, Møller–Plesset fluctuation potential also is

used to generate total energies for states with N�1 electrons. (The same

conclusionmay be reached in third, but not higher orders.)17 However, iter-

ations with respect to E commonly yield nonnegligible shifts of approxi-

mately 0.05 eV. Pole searches may be accelerated by evaluating the

derivatives of Σii(E) with respect to E and using Newton’s method to esti-

mate the next guess. Convergence to within 0.01 eV usually follows after

the third iteration.

A perturbative analysis of the second-order self-energy7,18 discloses that

final-state relaxation effects for electron detachment (or attachment) ener-

gies are attributable to terms in the 2hp (or 2ph) summation where i or j

(a or b) equals p. The remaining terms in these summations account for final-

state correlation effects. Second-order, pair correlation energies in the

N-electron reference state that are destroyed (created) in final states with

N�1 (N+1) electrons are given by the 2ph (2hp) summation.

To efficiently estimate VIEs for a set of chemically related molecules,

spin-scaled D2 approximations have been introduced.19,20 Several scaled

versions of the D2 self-energy with the general formula,

Σ 2ð Þ
pp Eð Þ¼ 1

2
Σaij pajijh i E+ εa�εi�εj

� ��1
CC�2hp ijjpah i+CE�2hp jijpah i� �

+
1

2
Σiab pijabh i E+εi�εa�εbð Þ�1

CC�2ph abjpih i+CE�2ph bajpih i� �
,

have been examined for the purpose of enabling calculations on large mol-

ecules. Coulomb (C subscript) and exchange (E subscript) contributions and

the 2hp and 2ph terms have been given four separate weights. Because D2
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often succeeds in identifying Koopmans defects, where the order of final

states predicted with canonical orbital energies is incorrect, it is a better basis

for parametrizations than the Hartree–Fock equations. When a linear fit of

Hartree–Fock orbital energies to reliable data necessarily fails because of

Koopmans defects, parametrized versions of the D2 quasiparticle equation

may yield useful tools for interpolation.

The D2method, without the introduction of scaling parameters, also has

been used in the context of semiempirical Hamiltonians.21 Successful assign-

ments of photoelectron spectra in which the Koopmans ordering of final

states is incorrect have been realized for several classes of organic and inor-

ganic compounds.

For valence electron binding energies where a frozen-orbital determi-

nant is a reasonable description of the final state, the D2 approximation pro-

vides valuable, semiquantitative corrections to the results of Koopmans’s

identity. However, for core ionization energies, where final-state orbital

relaxation is strong, the orbital energy provided by the transition operator

method (TOM) is a superior zero-order approximation.22–24 Matrix ele-

ments of the transition operator read

FTOM
pq ¼ hpq +Σr pr k qrh inr:

Occupation numbers of 0 and 1 are assigned to each spin-orbital, save for a

single spin-orbital (ie, the transition orbital) assigned to an occupation num-

ber of 1/2. (This choice of occupation numbers is a special case of grand-

canonical Hartree–Fock theory.)25,26 The eigenvalue corresponding to

the transition spin-orbital, εpTOM, incorporates orbital relaxation effects.

For the grand-canonical Hartree–Fock density operator, a generalized form
for the second-order self-energy obtains, where

Σ 2ð Þ
pq Eð Þ¼ 1

2
ΣrstNrst qr k sth i E+ εr�εs� εtð Þ�1

st k prh i

Nrst¼ nr 1�nsð Þ 1�ntð Þ+ 1�nrð Þnsnt:
The second-order, transition-operator (TOEP2) method24 also employs the

diagonal self-energy approximation. Poles satisfy the equation

E¼ εTOM
p +Σ 2ð Þ

pp Eð Þ:
This method provides a useful, semiquantitative account of core and valence

electron binding energies, with mean absolute errors of approximately

0.35 eV for valence IEs.
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Despite its retention of nondiagonal elements of the self-energy operator

and its inclusion of ring, ladder, and mixed ring-ladder terms beyond

second-order, the 2ph-TDA yields larger average errors for valence VIEs

than the less computationally demanding D2 method. The chief advantage

of 2ph-TDA is its ability to produce a first-order account of correlation states

in which 2hp or 2ph configurations dominate over the h and p configura-

tions assumed in Koopmans’s identity. In the inner-valence region of a

photoelectron spectrum, numerous poles with low strengths obliterate

the Koopmans picture of one-hole final states.27 Canonical Hartree–Fock
orbital energies in the inner-valence region therefore have little physical

meaning with respect to specific transitions. For typical molecules, the

He II photoelectron spectrum (ie, up to approximately 40 eV) may be qual-

itatively assigned with 2ph-TDA calculations.

To generate all third-order terms in F+σ Eð Þ orΣ(E) withHartree–Fock
orbitals, the following approximation suffices:

Σ3+ Eð Þ¼Σ 3ð Þ ∞ð Þ+ ajĤf 3
� �

1
f 3j EÎ� Ĥ

� �
f 3

� ��1

0
f 3jĤa
� �

1
:

Third-order, energy-independent terms are added to an expression for

σ(E) in which the primary–secondary couplings are correct through second-
order (because of first-order terms in the density operator) and the inverse,

first-order matrix of secondary–secondary couplings generates terms in all

orders. Whereas all third-order terms in Σ(E) are present, there are many

higher-order terms as well. Therefore, this approximation may be den-

ominated 3+. Expressions for the primary–secondary couplings with real

orbitals read

a{a aiajjĤap
� �

1
¼ a{a aiajjĤap
� �

0
+
1

2
Σbctjibc pa k bch i+ 1�Pij

� �
Σbktkjba pk k bih i

¼ Ĥ
1ð Þ
aij,p + Ĥ

2ð Þ
aij,p

a
{
i aaabjĤap

� 	
1
¼ a

{
i aaabjĤap

� 	
0
+
1

2
Σjktjkba pi k jkh i+ 1�Pabð ÞΣjctijbc pc k jah i

¼ Ĥ
1ð Þ
iab,p + Ĥ

2ð Þ
iab,p

For each value of p, there are fifth-power contractions. Determination of all

primary–secondary couplings therefore is a sixth-power process and consti-
tutes the chief noniterative bottleneck in 3+ calculations. (In practice, iter-

ative processes with fifth-power scaling may require more arithmetic
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operations.) This additional effort is rewarded with superior accuracy in cal-

culations on valence ionization energies and electron affinities.28

One may extend the 3+ self-energy by adding more energy-independent

terms.29 One such approach is based on a relationship between the electron

propagator matrix and the one-electron density matrix that reads

P¼ 2πið Þ�1

Z
C

G Eð ÞdE,

where C denotes a contour in the complex plane that includes all electron

detachment poles and where electron propagator matrix elements with a

complex argument are given by

Grs Eð Þ¼ limη!0 ΣmVrmV
*
sm E�Am + iηð Þ�1

+ΣnU
*
rnUsn E�Dn � iηð Þ�1

h i
:

By truncating the expansion of the Dyson equation,

G Eð Þ¼G0 Eð Þ+G0 Eð ÞΣ Eð ÞG0 Eð Þ+G0 Eð ÞΣ Eð ÞG0 Eð ÞΣ Eð ÞG0 Eð Þ+G0 Eð Þ
�Σ Eð ÞG0 Eð ÞΣ Eð ÞG0 Eð ÞΣ Eð ÞG0 Eð Þ+⋯,

after the second term, the approximation

P� 2πið Þ�1

Z
C

G0 Eð Þ+G0 Eð ÞΣ Eð ÞG0 Eð Þ½ �dE

is obtained. An approximate density matrix defined in this way yields a new

Σ(∞) and therefore a new Σ(E). By setting

Σ Eð Þ¼Σ ∞ð Þ+σ3+ Eð Þ,
where

σ3+ Eð Þ¼ ajĤf 3
� �

1
f 3j EÎ� Ĥ

� �
f 3

� ��1

0
f 3jĤa
� �

1
,

one may obtain P and Σ(∞) self-consistently. This extension of the 3+ self-

energy is the most common version of the third-order algebraic diagram-

matic construction, or ADC(3).2 It suffices to recover all fourth order terms

and many higher-order terms inΣ(∞). In the ADC(3) method, sixth-power

contractions that scale as o2v4 are performed iteratively in the determination

of Σ(∞). Whereas the correlation contribution to P has a vanishing trace for

the 3+ self-energy and for the exact case, its ADC(3) counterpart does not

have this property. This deviation stems from the retention of only some
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Σ(∞) terms in fifth and higher orders of the fluctuation potential and may

become problematic for large molecules.

The design of the 3+ and ADC(3) methods assumes the need to include

all third-order terms in Σ(E) and embraces the inclusion of higher-order

terms. An alternative approach is based on examination of improvements

to the second-order self-energy and retention of terms that suffice to provide

reliable predictions of electron binding energies.30 For the calculation of

electron detachment energies, an asymmetric superoperator metric is

adopted, where

XjYð ÞD ¼ HFj X{, Y
� �

+
1+T

1ð Þ
2

� 	
jHF

D E
,

and where the reference Hartree–Fock determinantal wave function, jHFi,
and the first-order Møller–Plesset wave function define the double excita-

tion amplitudes of T2
(1). The operator manifold comprises the a and f3 spaces.

Second-order terms appear only when Y is a 2ph operator or X is a 2hp

operator. For electron detachment energies, all of these second-order terms

except those occurring in the 2hp-h block of Ĥ may be neglected. First-

order terms in the 2ph–2ph block of Ĥ also may be omitted. After

Hermitizing Ĥ, the resulting self-energy matrix elements are expressed as

ΣNR2�D
ij Eð Þ¼ Ĥ

1ð Þ
i,2hp +

1

2
Ĥ

2ð Þ
i,2hp


 �
f 2hpj EÎ� Ĥ

� �
f 2hp

� ��1

0
Ĥ

1ð Þ
2hp, j +

1

2
Ĥ

2ð Þ
2hp, j


 �

+ Ĥ
1ð Þ
i,2ph f 2phj EÎ� Ĥ0

� �
f 2ph

� ��1

0
Ĥ

1ð Þ
2ph, j

ΣNR2�D
ia Eð Þ¼ Ĥ

1ð Þ
i,2hp +

1

2
Ĥ

2ð Þ
i,2hp


 �
f 2hpj EÎ� Ĥ

� �
f 2hp

� ��1

0
Ĥ

1ð Þ
2hp,a

+ Ĥ
1ð Þ
i,2ph f 2phj EÎ� Ĥ0

� �
f 2ph

� ��1

0
Ĥ

1ð Þ
2ph,a

ΣNR2�D
ai Eð Þ¼ ΣNR2�D

ia Eð Þ� �
*

ΣNR2�D
ab Eð Þ¼ Ĥ

1ð Þ
a,2hp f 2hpj EÎ� Ĥ

� �
f 2hp

� ��1

0
Ĥ

1ð Þ
2hp,b

+ Ĥ
1ð Þ
a,2ph f 2phj EÎ� Ĥ0

� �
f 2ph

� ��1

0
Ĥ

1ð Þ
2ph,b

The designation NR2 was chosen because this self-energy approximation is

nondiagonal, renormalized, and complete through second order. Ring and

ladder renormalizations are generated by the first-order terms that occur in
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f 2hpj EÎ� Ĥ
� �

f 2hp
� ��1

0
. There are no energy-independent terms. Because

2ph rings and ladders and second-order p–2hp terms are neglected, the need

for electron repulsion integrals with four virtual indices is eliminated inNR2

calculations of electron detachment energies. The most arithmetically inten-

sive contraction has o3v3 scaling and is the only step that requires electron

repulsion integrals with three virtual indices.

For the calculation of electron attachment energies, the metric is chosen

according to

XjYð ÞA¼ HFj 1+T
1ð Þ
2

� 	{
X{, Y
� �

+
jHF

� 


and the roles of particles and holes are reversed in the selection of self-energy

terms. For electron attachment energies,

ΣNR2�A
ab Eð Þ¼ Ĥ

1ð Þ
a,2ph+

1

2
Ĥ

2ð Þ
a,2ph


 �
f 2phj EÎ� Ĥ

� �
f 2ph

� ��1

0
Ĥ

1ð Þ
2ph,b+

1

2
Ĥ

2ð Þ
2ph,b


 �

+ Ĥ
1ð Þ
a,2hp f 2hpj EÎ� Ĥ0

� �
f 2hp

� ��1

0
Ĥ

1ð Þ
2hp,b

ΣNR2�A
ai Eð Þ¼ Ĥ

1ð Þ
a,2ph +

1

2
Ĥ

2ð Þ
a,2ph


 �
f 2phj EÎ� Ĥ

� �
f 2ph

� ��1

0
Ĥ

1ð Þ
2ph, i

+ Ĥ
1ð Þ
a,2hp f 2hpj EÎ� Ĥ0

� �
f 2hp

� ��1

0
Ĥ

1ð Þ
2hp,i

ΣNR2�A
ia Eð Þ¼ ΣNR2�A

ai Eð Þ� �
*

ΣNR2�A
ij Eð Þ¼ Ĥ

1ð Þ
i,2ph f 2phj EÎ� Ĥ

� �
f 2ph

� ��1

0
Ĥ

1ð Þ
2ph, j

+ Ĥ
1ð Þ
i,2hp f 2hpj EÎ� Ĥ0

� �
f 2hp

� ��1

0
Ĥ

1ð Þ
2hp, j:

In the evaluation of Ĥa,2ph
(2) , there is a contraction with o2v4 arithmetic scal-

ing that involves electron repulsion integrals with three virtual indices.

Inclusion of the first-order 2ph–2ph elements of Ĥ entails a need for elec-

tron repulsion integrals with four virtual indices. NR2 calculations of elec-

tron attachment energies may be expected to require more arithmetic

operations and memory than their counterparts for electron detachment

energies.

Arithmetic bottlenecks encountered in 3+ and NR2 calculations may be

reduced by introducing two additional approximations. To evaluate prod-

ucts of f 3j EÎ� Ĥ
� �

f 3
� ��1

0
with other matrices, repeated multiplications are
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required. As a result, self-energy terms in all orders are retained. However, if

the inverse matrix is approximated according to

f 3j EÎ� Ĥ
� �

f 3
� ��1

0
� f 3j EÎ� Ĥ0

� �
f 3

� ��1

0
+ f 3j EÎ� Ĥ0

� �
f 3

� ��1

0

f 3j Ĥ� Ĥ0

� �
f 3

� �
0
f 3j EÎ� Ĥ0

� �
f 3

� ��1

0
,

only terms up to fourth order remain and all third-order terms are conserved.

By applying these arguments to the 3+ self-energy, the third-order self-

energy’s structure is shown:

Σ 3ð Þ Eð Þ¼Σ 2ð Þ Eð Þ+Σ 3ð Þ ∞ð Þ+ Ĥ
2ð Þ
13 f 3j EÎ� Ĥ0

� �
f 3

� ��1

0
Ĥ

1ð Þ
31

+Ĥ
1ð Þ
13 f 3j EÎ� Ĥ0

� �
f 3

� ��1

0
Ĥ

2ð Þ
31

+Ĥ
1ð Þ
13 f 3j EÎ�Ĥ0

� �
f 3

� ��1

0
f 3j Ĥ�Ĥ0

� �
f 3

� �
0
f 3j EÎ�Ĥ0

� �
f 3

� ��1

0
Ĥ

1ð Þ
31

The last term is responsible for the ring and ladder diagrams that appear in

third order. Applying similar truncations to the NR2 self-energy formulae

defines nondiagonal, partial third-order (NP3) approximations. For exam-

ple, whereas the occupied–occupied block of theNP3 self-energymatrix for

electron detachment energies reads

ΣNP3�D
ij Eð Þ¼Σ 2ð Þ

ij Eð Þ+ 1

2
Ĥ

1ð Þ
i,2hp f 2hpj EÎ� Ĥ0

� �
f 2hp

� ��1

0
Ĥ

2ð Þ
2hp, j

+
1

2
Ĥ

2ð Þ
i,2hp f 2hpj EÎ� Ĥ0

� �
f 2hp

� ��1

0
Ĥ

1ð Þ
2hp, j

+Ĥ
1ð Þ
i,2hp f 2hpj EÎ� Ĥ0

� �
f 2hp

� ��1

0
f 2hpj Ĥ� Ĥ0

� �
f 2hp

� �
0

f 2hpj EÎ� Ĥ0

� �
f 2hp

� ��1

0
Ĥ

1ð Þ
2hp, j,

the virtual–virtual block of its counterpart for electron attachments reads

ΣNP3�A
ab Eð Þ¼Σ 2ð Þ

ab Eð Þ+ 1

2
Ĥ

1ð Þ
a,2ph f 2phj EÎ� Ĥ0

� �
f 2ph

� ��1

0
Ĥ

2ð Þ
2ph,b

+
1

2
Ĥ

2ð Þ
a,2ph f 2phj EÎ� Ĥ0

� �
f 2ph

� ��1

0
Ĥ

1ð Þ
2ph,b

+Ĥ
1ð Þ
a,2ph f 2phj EÎ� Ĥ0

� �
f 2ph

� ��1

0
f 2phj Ĥ� Ĥ0

� �
f 2ph

� �
0

f 2phj EÎ� Ĥ0

� �
f 2ph

� ��1

0
Ĥ

1ð Þ
2ph,b
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The second approximation is neglect of the off-diagonal elements of

Σ(E) in the canonical, Hartree–Fock orbital basis. For a given electron bind-

ing energy corresponding to spin-orbital r, only the elements of Ĥr,2hp
(2) or

Ĥr,2ph
(2) must be evaluated and the corresponding sixth-power contractions

are reduced to fifth power. Arithmetic operations are similarly reduced when

f 3j EÎ� Ĥ
� �

f 3
� ��1

0
Ĥ31 products are formed. The resulting diagonal third-

order (D3) andP331,32 self-energies therefore have fifth-power arithmetic scal-

ing. For real spin-orbitals, theD3 self-energymatrix elementsmaybewritten as

Σ 3ð Þ
rr Eð Þ¼1

2
Σaij ra k ijh i E+ εa�εi� εj

� ��1
ra k ijh i+2Ĥ

2ð Þ
raij +Uraij Eð Þ

h i

+
1

2
Σiab ri k abh i E+ εi�εa�εbð Þ�1

ri k abh i+2Ĥ 2ð Þ
riab+Uriab Eð Þ

h i

+Σ 3ð Þ
rr ∞ð Þ,

where

Uraij Eð Þ¼�1

2
Σkl ra k klh i E+ εa�εk�εlð Þ�1

kl k ijh i

� 1�Pij
� �

Σbk rb k jkh i E+ εb� εj�εk
� ��1

ak k bih i

Uriab Eð Þ¼1

2
Σcd ri k cdh i E+ εi�εc� εdð Þ�1

cd k abh i

+ 1�Pabð ÞΣjc rj k bch i E+ εj� εb�εc
� ��1

ic k jah i:
The usual computational bottleneck occurs in the Uriab(E) expression,

where a contraction with ov4 scaling must be repeated for various values

of E. For P3 electron detachment energies,

ΣP3�D
kk Eð Þ¼1

2
Σaij ka k ijh i E+ εa�εi�εj

� ��1
ka k ijh i+Ĥ 2ð Þ

kaij +Ukaij Eð Þ
h i

+
1

2
Σiab ki k abh ij j2 E+ εi�εa�εbð Þ�1

,

and for P3 electron attachment energies,

ΣP3�A
cc Eð Þ¼1

2
Σiab ci k abh i E+ εi�εa�εbð Þ�1

ci k abh i+ Ĥ
2ð Þ
ciab +Uciab Eð Þ

h i

+
1

2
Σaij ca k ijh ij j2 E+ εa� εi� εj

� ��1
:
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In the former case, the evaluation of Ĥkaij
(2) intermediates requires a contrac-

tion that scales as o2v3; iterations with respect to E require o3v2 contractions.

For electron attachment energies, P3’s noniterative, and iterative bottle-

necks have o2v3 and ov4 scaling factors.

D2 tends to overestimate corrections to canonical Hartree–Fock orbital

energies and therefore to produce underestimates of electron detachment

energies. However, D3 displays the opposite trend, especially as basis sets

approach completeness. Estimates of higher-order terms usually are neces-

sary to obtain results of predictive quality. For this purpose, the outer valence

Green’s function (OVGF)methods2,33 contain twomultiplicative factors for

third-order terms in which ratios of third-order and second-order terms are

formed. These factors read

Xr ¼�2 Ĥ
1ð Þ
r,2hp f 2hpj EÎ� Ĥ0

� �
f 2hp

� ��1

0
Ĥ

2ð Þ
2hp,r

h

+Ĥ
1ð Þ
r,2ph f 2phj EÎ� Ĥ0

� �
f 2ph

� ��1

0
Ĥ

2ð Þ
2ph,r

i
Σ 2ð Þ
rr Eð Þ

h i�1

X2hp
r ¼�2 Ĥ

1ð Þ
r,2hp f 2hpj EÎ� Ĥ0

� �
f 2hp

� ��1

0
Ĥ

2ð Þ
2hp,r

h i

� Ĥ
1ð Þ
r,2hp f 2hpj EÎ� Ĥ0

� �
f 2hp

� ��1

0
Ĥ

1ð Þ
2ph,r

h i�1

X2ph
r ¼�2 Ĥ

1ð Þ
r,2ph f 2phj EÎ� Ĥ0

� �
f 2ph

� ��1

0
Ĥ

2ð Þ
2ph,r

h i

� Ĥ
1ð Þ
r,2ph f 2phj EÎ� Ĥ0

� �
f 2ph

� ��1

0
Ĥ

1ð Þ
2ph,r

h i�1

:

In the A version, energy-independent and energy-dependent terms in third

order are scaled as follows:

ΣOVGF-A
rr Eð Þ¼Σ 2ð Þ

rr Eð Þ+ 1+Xrð Þ�1 Σ 3ð Þ
rr Eð Þ�Σ 2ð Þ

rr Eð Þ
h i

:

Two scaling factors are applied to the energy-dependent, third-order terms

in the B version, so that

ΣOVGF-B
rr Eð Þ¼Σ 2ð Þ

rr Eð Þ+Σ 3ð Þ
rr ∞ð Þ+ 1+X2hp

r

� ��1Σ3�2hp
rr Eð Þ

+ 1+X2ph
r

� ��1Σ3�2ph
rr Eð Þ:
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In the C version, a more complicated formula is introduced for cases where

second-order terms are small:

ΣOVGF-C
rr Eð Þ¼Σ 2ð Þ

rr Eð Þ+ 1+XC
r

� ��1 Σ 3ð Þ
rr Eð Þ�Σ 2ð Þ

rr Eð Þ
h i

XC
r ¼ X2hp

r Σ3�2hp
rr Eð Þ+X2ph

r Σ3�2ph
rr Eð Þ� �

Σ3�2hp
rr Eð Þ+Σ3�2ph

rr Eð Þ� ��1
:

The scaling factors and self-energy matrix elements generally are evaluated at

the D3 pole energy. Results of the A, B, and C versions are usually within

0.1 eV of each other. A recommended value which is reported typically as

the recommended OVGF result emerges from the selection criteria of von

Niessen33:

1. If EOVGF-A � 15eV, the EOVGF-B value is chosenwhen
P 2ð Þ

rr Eð Þ� 0:6eV:

2. If EOVGF-A � 15eV, the EOVGF-C value is chosenwhen
P 2ð Þ

rr Eð Þ< 0:6 eV:

3. If EOVGF-A� 15eV and jXrj�0.85, the EOVGF-A value is chosen unlessP 2ð Þ
rr Eð Þ< 0:6 eV and Xr

C
�� �� � 0:85: In the latter case, the EOVGF-C

value is chosen.

4. If EOVGF-A> 15eV, jXrj>0.85 and
P 2ð Þ

rr Eð Þ< 0:6eV, the EOVGF-C

value is chosen.

5. If EOVGF-A> 15eV, jXrj>0.85 and
P 2ð Þ

rr Eð Þ� 0:6 eV, the EOVGF-B

value is chosen unless X2hp
r

�� �� > 0:85, X2ph
r

�� �� > 0:85,

EOVGF-C< 15 eV, or XC
r

�� �� > 0:85: In the latter cases, the EOVGF-C value

is chosen.

In the P3+ method,34 the self-energy reads

ΣP3+D
kk Eð Þ¼ 1+Y

2hp
k

� 	�1 1

2
Σaij ka k ijh i E+ εa� εi� εj

� ��1

kajjijh i+ Ĥ
2ð Þ
kaij +Ukaij Eð Þ

h i

+
1

2
Σiab ki k abh ij j2 E+ εi�εa�εbð Þ�1

,

where

Y
2hp
k ¼ �1

2
Σaij ka k ijh i E+ εa� εi�εj

� ��1
Ĥ

2ð Þ
kaij


 �
Σ 2�2hpð Þ
kk Eð Þ

h i�1

:
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For P3+ electron attachment energies,

ΣP3+A
cc Eð Þ¼ 1+Y2ph

c

� ��1 1

2
Σiab cijjabh i E+ εi� εa� εbð Þ�1

ci k abh i+ Ĥ
2ð Þ
ciab +Uciab Eð Þ

h i

+
1

2
Σaij ca k ijh ij j2 E+ εa�εi�εj

� ��1
:

where

Y2ph
c ¼ �1

2
Σiab ci k abh i E+ εi�εa� εbð Þ�1

Ĥ
2ð Þ
ciab


 �
Σ 2�2phð Þ
cc Eð Þ

h i�1

:

P3+ self-energy terms and Y factors are evaluated at the P3 pole energy. The

OVGF and P3+ methods entail only trivial calculations beyond D3 and P3,

respectively.

5. TEST CALCULATIONS

The predictive capabilities of the presently considered self-energy

approximations for valence, VIEs have been examined recently.35 In this

study, coupled-cluster singles and doubles plus perturbative triples,

ie, CCSD(T),36 calculations have been performed with correlation-

consistent double, triple, and quadruple ζ basis sets37–39 on 21 molecules

and on 52 cationic states. Basis-set extrapolations of these total energies pro-

vide standards of comparison. In Table 2, results obtained with the

correlation-consistent quadruple ζ basis at the same molecular geometries

are compared to these standards. In addition to the statisticalmeasures of error

(ie, mean signed error, mean absolute error, and root-mean-square error),

the most taxing arithmetic bottlenecks and storage requirements are listed.

Diagonal self-energy approximations are in widest use. The most effi-

cient of these methods, D2, consistently underestimates VIEs, but these

errors decrease as the basis-set approaches completeness. D3 results tend

to overestimate VIEs when large basis sets are used. OVGF produces more

reliable data than D3 with the same effort. P3 is competitive with OVGF,

for, with fewer arithmetic operations and smaller memory requirements, it is

only slightly less accurate, despite having no selection criteria with numerical

parameters. The P3+ method reduces the tendency of P3 to overestimate

VIEs with almost no additional effort and is an efficient alternative to OVGF

that involves no selection procedure.
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Table 2 Errors of Calculated Vertical Ionization Energiesa vs Extrapolated CCSD(T) Results
Electron
Propagator Method

Mean Signed
Errorb

Mean Absolute
Errorb

Root-Mean-
Square Errorb

Iterative Arithmetic
Bottleneckc

Noniterative
Arithmetic Bottleneckc

Largest
Intermediate Matrixc

Koopmans �0.75 0.83 1.01

D2 0.50 0.52 0.61 ov2 NAd ov2

D3 �0.28 0.39 0.55 ov4 o2v3 v4

OVGF �0.01 0.11 0.13 ov4 o2v3 v4

P3 �0.10 0.18 0.24 o3v2 o2v3 ov3

P3+ 0.01 0.13 0.16 o3v2 o2v3 ov3

2ph-TDA 0.66 0.66 0.71 ov4 NAd v4

3+ �0.08 0.17 0.23 ov4 o2v4 v4

ADC(3) �0.12 0.16 0.23 o2v4 o2v4 v4

NR2 0.11 0.16 0.19 o2v3 o3v3 ov3

a52 Vertical ionization energies (eV) for 21 molecules calculated with the cc-pvqz basis.
bPositive signs correspond to underestimates of vertical ionization energies vs basis-set extrapolated CCSD(T) standards, ie, Error¼VIECCSD(T)�VIEEP.
co¼number of valence occupied orbitals; v¼number of valence virtual orbitals.
dNot applicable: no energy-independent intermediates are necessary.



Nondiagonal self-energy methods also are compared in Table 2. For cal-

culating valence VIEs, 2ph-TDA produces worse results than D2with much

higher effort. Unlike D2, 2ph-TDA is capable of giving a qualitatively

meaningful description of shake-up (ie, chiefly 2hp) final states in photo-

electron spectra and of core-excited (ie, chiefly 2ph) electron attachments.

The 3+ method is a considerable improvement over 2ph-TDA for valence

VIEs that retains the ability of the latter approximation to account for cor-

relation final states. The iterative, sixth-power contractions that distinguish

ADC(3) from 3+ do not appear to procure any advantage for this test set. 3+

and ADC(3) tend to overestimate VIEs; error criteria will increase slightly as

larger basis sets are employed. For the nondiagonal methods, NR2 has the

smallest error measures, arithmetic scaling factors, and memory require-

ments. Improvements in basis sets will reduce errors in the majority of cases

where NR2 underestimates VIEs.

6. RECENT APPLICATIONS AND EXTENSIONS

Electron propagator methods have been applied to the calculation of

ionization energies of common amino acids in the gas phase and, with the

benefit of polarizable continuum models, in aqueous solution.40 Applica-

tions to the photoelectron spectra of fullerenes, macrocyclic molecules,

and nucleotide fragments have been reviewed.41 Electron binding energies

of compounds that are effective scavengers of free radicals have been deter-

mined.42,43 Electron propagator methods have been used to predict bound,

excited states of anionic fullerenes.44 They have facilitated assignments of the

photoelectron spectra of tetrazoles.45,46 The nature of diffuse electronic

structure in substituted aza-uracil and thio-uracil anions has been eluci-

dated.47–49 A systematic study of electron-accepting molecules that may

be useful in photovoltaic devices showed the predictive power of electron

propagator methods.28 Electron binding energies of confined atoms, crucial

quantities for understanding their electronic structure, have been deter-

mined with electron propagator methods.50 Calculations on electron affin-

ities of cations provided essential information for the determination of

photoionization cross sections in the molecular quantum defect model.51

The electronic structure of metallocenes and their Penning ionization spec-

tra have been interpreted.52 Electron propagator calculations provided an

explanation for the remarkable changes in anion electronic structure that

depend on coordination to noble-gas atoms.53 They also demonstrated

how Dyson orbitals may be localized or delocalized in halide-water
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complexes and in aqueous solution.54–56 Anion photoelectron spectra of

superalkalides were interpreted with electron propagator methods.57,58

A comparison of various approaches to calculating ionization energies of

molecules reported superior performance for electron propagator

methods.59 Automated derivations of improved electron propagator

methods have been incorporated into a general electronic structure package

named for L€owdin.60 An approach to self-energy expressions of any order

and the convergence of perturbative expansions have been examined.17

7. CONCLUSIONS AND PROSPECTS

The Dyson quasiparticle equation provides a framework for accurate

and efficient calculation of molecular electron binding energies. The sim-

plest self-energy approximation, D2, often suffices to correct qualitative

errors obtained with canonical Hartree–Fock orbital energies,

eg, incorrect orderings of final states caused by neglect of final-state orbital

relaxation or differential correlation effects. A restricted need for trans-

formed electron repulsion integrals and low arithmetic demands indicate

that D2 results should be obtained routinely after self-consistent-field iter-

ations are complete. D2 provides a suitable foundation for parametrized

interpolation schemes or semiempirical approaches that pertain to selected

classes of molecules. Because the largest corrections to Koopmans results

generally occur at the D2 level, this approximation can provide reliable diag-

nostics of basis-set effects and a means of estimating the results of higher-

order calculations that are infeasible with large basis sets.

For predictions of valence, VIEs with mean, unsigned errors between 0.1

and 0.2 eV, the OVGF methods and their selection procedure constitute an

efficient alternative to methods based on many-electron state functions or

density functionals. This tool can be especially powerful when several final

states of a given irreducible representation are needed. More computation-

ally efficient alternatives of similar accuracy are provided by the partial

third-order (P3) approximation and its renormalized extension (P3+).

The quasiparticle, or diagonal self-energy, methods (ie, D2, OVGF, P3,

and P3+) are most useful when the Koopmans description of an electron

binding energy is qualitatively valid. In these cases, the Dyson orbital is a

canonical Hartree–Fock orbital times the square root of the pole strength.

The success of these methods implies that the chief flaw in the Koopmans

description often pertains not to the quality of the occupied orbitals, but

to the potential that determines their energies. In such cases, the addition
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of easily calculated, nonlocal, energy-dependent corrections to canonical

Hartree–Fock orbital energies suffices for a prediction of electron binding

energies that verifies the presence of gas-phase molecular species in exper-

imental samples and enables assignments of photoelectron spectral peaks. For

core ionization energies, where orbital relaxation effects are large, the TOM

produces an orbital energy that may be improved with low-order, self-

energy corrections, such as D2 generalized to grand-canonical Hartree–
Fock reference ensembles.

More general (nonquasiparticle) approximations include all elements of

the self-energy matrix. When correlation states in photoelectron spectra are

under consideration, the collapse of the Koopmans picture can be diagnosed

with 2ph-TDA calculations, although a quantitatively accurate description

generally demands a self-energy with higher-order terms. Whereas the two-

particle-one-hole Tamm–Dancoff approximation (2ph-TDA) fails to gen-

erate reliable results for valence, VIEs, other nondiagonal alternatives, such

as renormalized third-order (3+), the third-order algebraic diagrammatic

construction (ADC(3)) and the nondiagonal, renormalized, second-order

(NR2) methods yield mean absolute errors between 0.1 and 0.2 eV. The

NR2method achieves competitive accuracy with smaller demands for arith-

metic operations and memory. All of these nondiagonal methods are capable

of describing 2hp correlation final states qualitatively. Their Dyson orbitals

are linear combinations of canonical Hartree–Fock orbitals. Dyson orbitals

for electron affinities are likely to require such flexibility. Recent studies of

vertical electron affinities of electron-accepting molecules indicate that the

NR2 method may be a promising approach.28

Higher accuracy for valence electron binding energies, quantitatively

accurate calculations for correlation final states such as shakeups in photo-

electron spectra or core-excited anions, descriptions of strong orbital relax-

ation effects for inner-shell ionization energies, and descriptions of more

complex correlation effects that involve several open shells may be treated

by introducing higher operator manifolds and more correlated reference

states. Descriptions of low-spin, open-shell states that conserve exact spin

quantum numbers may be accommodated with more flexible Ans€atze for

reference density matrices. Research along these lines is in progress.
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