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1 .  - I n t r o d u c t i o n .  

The relevance of many-body effects, over and above the independent- 
particle approximation, on the optical properties of semiconductors has been 
increasingly recognized over the years. Specifically, the collective effect of 
screening has long been known to be essential to account for the reduction of the 
electron-hole attraction in an exciton and for the polarization accompanying a 
single-particle excitation. Only more recently however, it has been possible to 
give quantitative account of these phenomena by combining Green's function 
techniques of quantum field theory with the description of band structures in 

(*) Present address: Scuola Normale Superiore, 56100 Pisa, Italy. 
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terms of localized (molecularlike) orbitals [1-3]. The theory of elementary 
excitations in crystalline semiconductors with electronic states that are to some 
extent localized, which has emerged from these efforts, can be considered rather 
well established by this time. 

Objective of this paper is to give a pedagogical review of the theoretical 
framework underlying the calculations of many-particle properties in semi- 
conductors which are based on the concepts of single- and two-particle ex- 
citations. Biased by the beliefs that, quite generally, only through detailed 
knowledge of the theory one can correctly formulate the problems and that, for 
the specific physical phenomena of interest, the Green's functions method 
provides the very language to describe them, we shall put special emphasis on 
the working procedures that are important for appreciating the subtleties of the 
method, but are not commonly described in the literature. For these reasons, 
results of numerical calculations will be only sketchly presented and references 
will be given to the original papers for additional details. In particular, when 
relating theoretical results with experimental quantities, the direct link between 
the two-particle Green's function and the correlation functions of linear response 
theory will extensively be exploited. It is, in fact, the focus on the correlation 
functions that renders the Green's functions method quite efficient and practical 
by avoiding the calculation of redundant information. 

To keep the presentation as compact as possible, we shall avoid the for- 
mulation of Green's functions theory in terms of conventional diagrammatic 
techniques [4], but we shall rather adopt the alternative formulation in terms of 
functional derivatives techniques that reduces the many-body problem directly 
to the solution of a coupled set of nonlinear integral equations [5]. In this way, 
the screening mechanism which is so important in a semiconductor will be 
introduced from the outset in the formal theory by replacing the ordinary 
Coulomb interaction between electrons by a modified (time-dependent) 
interaction that takes into account the polarization of the medium represented by 
the remaining electrons. 

We confine ourselves in this paper to the zero-temperature limit which is 
appropriate to describe the optical properties of a semiconductor, although 
extention to finite temperatures is feasible [6]. The system we consider are N- 
interacting electrons moving in the static potential of the ions. The spatial 
symmetry of this potential will be left as much as possible unspecified but we will 
restrict eventually to insulting systems with crystalline (space group) 
symmetry, while actual calculations will be presented for cubic covalent 
semiconductors. No coupling with phonons as well as no magnetic and relativistic 
effects will be considered throughout. 

This paper is organized in two parts. The first part (sect. 2-7 and appendices 
A-E) introduces the theoretical tools and the associated calculation methods and 
approximation procedures which connect the study of the optical properties of 
semiconductors to the Green's functions method. The second part (sect. 8-11 and 
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appendices F-H) deals more specifically with the computation of quantities (such 
as the optical absorption coefficient) characterizing single- and two-particle 
excitations in (covalent) semiconductors. 

2. - G e n e r a l i z e d  G r e e n ' s  f u n c t i o n s .  

We consider a (nonrelativistic) N-electron system which interacts with a 
static potential V(r). The corresponding second-quantized Hamiltonian has the 
form 

(2.1) 

In eq. (2.1)x signifies the set of space (r) and spin (~) variables, the ~(x) are field 
operators, h(r) is the one-electron Hamiltonian 

(2.2) 

and 

(2.3) 

is the Coulomb interaction [7]. 

h2 V 2 + V(r) h(r) = - 2----~ 

e 2 

v(r, r')= It-r'l  

We consider also an external (scalar) potential U(x, x'; t) which is local in 
time but nonlocal in space and which couples bi-linearly to the field operators. 
The interaction Hamiltonian is thus taken of the form 

(2.4) I:I'(t) = f dxdx '  ~*(x) U(x, x'; t) ~(x') , 

which is guaranteed to be Hermitian by requiring U(x, x'; t) to be Hermitian in 
the x variables at any t. This potential is further assumed to vanish as It I ~ ~. 

The introduction of the interaction (2.4) may be considered as a purely formal 
tool to generate in a compact form the equations of motion for the Green's 
functions together with a number of useful relations. It will be understood, in 
fact, that the external potential will be allowed to vanish at the end of the 
calculation. Nevertheless, the formalism we shall develop could be used as well 
to follow the time development of the Green's functions of the system under the 
action of a physical external (local) potential of the form 

(2.5) U(x, x'; t)= U(x, x'). 

More general forms of coupling to scalar and vector (electromagnetic) potentials 
will be considered in sect. 5 and in appendix C. 

The interaction Hamiltonian (2.4) enables us to introduce an interaction 
picture by defining the time dependence of the field operators with respect to the 
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unperturbed Hamiltonian (2.1): 

(2.6) ~~ ~ ~(Xl, tl) = exp [iI:Itl/h] #(xl)  exp [ -  iI:Itl/h]. 

Similarly, we write 

(2.7) /t~(t) = exp [iI:It/h] I:I'(t) exp [ -  iI:It/h] = 

= f d x d x '  ~ ( x ,  t § U(x, x'; t) ~(x' , t), 

where for later convenience t § stands for t + ~ (8--* 0§ and we introduce the 
(formal) operator 

i f dt/~(t) (2.8) S = exp - ~ 

The generalized single- and two-particle Green's functions are then defined 
to be 

i (NtT[S~(1) ~t(2)]lN} 
G1(1, 2)= 

h (NIT[S]IN) 
(2.9) 

and 

(2.10) 
( h )  2 (NIT[S~(1) ~(2) ~t(2') ~( I ' ) ] ]N)  

62(1, 2; 1', 2 ' )=  - (NIT[~]IN) , 

respectively, where IN) denotes the ground state of the unperturbed N-electron 
system and T is Wick's time-ordering operator which includes a minus sign for 
any permutation of (fermion) field operators. Equations (2.9) and (2.10) reduce to 
the definitions of the ordinary single- and two-particle Green's functions [4] 
when the external potential U is allowed to vanish. Notice also that  all the U- 
dependence in the generalized Green's functions is contained in the operators S. 

3. - Equations of  motion for the generalized single-particle Green's function. 

The presence of the time-ordering operator in eqs. (2.9) and (2.10) requires 
us to consider, besides the S-matrix T[S], the time evolution operator in the 
interaction picture T[S(t~, tb)], where 

(3.1) S(t~, tb) -- exp - dt/t~(t) 
ta 

(with the understanding that  the operator (3.1) makes sense only within a time- 
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ordered product). This operator satisfies the following relevant properties: 

(3.2) i) T[S(t~, tr = T[S(t~, tb)] T[S(tb, t~)] 

(group property); 

(3.3) ii) T[S(t~, tb) ~(1) ~(2)] = T[S(t~, tl)] T(1) T[S(tl, t2)] T(2) T[S(t2, tb)], 

for to > tl > t2 > tg 

(3.4a) iii) f 3-~T[S(ta' tb)]=-hI2II(t')T[S(t~' tb)], 

(3.4b) ~ T[g(t~, tb)] = ~ T[g(t,, tb)]/-I~(tb) �9 

The equation of motion for Ga (1, 2) and its adjoint are then obtained by 
taking the derivative of G1 (1, 2), alternatively, with respect to tl and t2. After 
the time dependence of the various factors entering the definition (2.9) is made 
explicit, in addition to eqs. (3.1)-(3.4) we require the equations of motion of the 
field operators 

i [h(1) + f d3v(1, 3) ~*(3) ~(3)] ~(1) , (3.5a) ~t~ ~(1) = - 

as well as the identity 

where 0 is the unit step function. In eqs. (3.5) we have introduced the notation 
v(1, 2) = v(rl, r2) ~(tl - t2) and h(1) = h(rl), while the integrals extend over space~ 
spin, and time variables which are collectively denoted by 1, .... 

Manipulations lead then to the following equations: 

(3.7a) [ih~-h(l)]Gi(1,2)- fd3U(l ,  3)G~(3,2)+r 
+ ihJd3v(1, 3) G2(1, 3+; 2, 3 § = 8(1, 2), 

+ ihJd3v(2, 3)G2(1, 3--; 2, 3-) = 8(1, 2), 
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where 3 +- implies that the time variable t3 is augmented (diminished) by a 
positive infinitesimal, and we have introduced the notation 

(3.8) U(1, 2)= U(x~, x2; t~)~(t~- t2). 

A characteristic feature of eqs. (3.7) is that, besides the single-particle 
Green's function, they involve also the two-particle Green's function. A whole 
hierarchy of equations involving higher-order Green's functions can thus be 
generated in this way [8]. It is customary to replace this hierarchy of equations 
by a coupled nonlinear set of integro-differential equations connecting the single- 
particle Green's function to the self-energy operator (2:), the (irreducible scalar) 
vertex function (/~), and other derived quantities like the (irreducible) polar- 
izability (~), the dynamically screened interaction (W), etc. To this end, we begin 
by eliminating formally the two-particle Green's function from eqs. (3.7) by 
utilizing the following functional derivative identity: 

(3.9) G2(1, 3; 2, 3§ 2)G1(3, 3 § 
~G1(1, 2) 

~U(3) ' 

which holds in this form for generalized Green's functions defined in the presence 
of the local potential U(1) (cf. eq. (2.5)). Potentials of the more general form (3.8) 
will instead be needed to generate the equation of motion for the two-particle 
Green's function. Equation (3.9) is derived in appendix A where the calculus with 
functional derivatives is also briefly reviewed. 

Inserting the identity (3.9) into the equations of motion (3.7) yields two 
functional differential equations: 

(3.10a) ih - h(1) - U(1) + ihfd3v(1, 3)G1(3, 3+)1 G~(1, 2 ) -  

~GI(1, 2) 
- ihfd3v(1 § 3) ~U(3) 

- -  - 3 ( 1 ,  2 )  

and 

(3.10b) I -  i h ~ -  h(2) -U(2) + ihf  d3v(2, 3)G1(3-, 3)] GI(1, 2 ) -  

~GI(1, 2) ( 
- ih | d3v(2-, 3) 

~U(3----~ J 
-~(1, 2). 

Equations (3.10) are not yet in a form suitable for taking the limit as U-~ 0, since 
this process would require explicit knowledge of the functional dependence of G1 
on U itself. To avoid any reference to the external potential, it is convenient to 
rewrite eqs. (3.10) in terms of the self-energy operator which is defined by the 
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two alternative expressions 

(3.11a) Z(1, 2)=ZH(1, 2)+ ihfd34v(1 +, 3) - -  
~G1(1, 4) 

~U(3) 
G~1(4, 2), 

~G1(4, 2) v(3, 2-) (3.11b) 2(1, 2)=2JH(1, 2)+ihfd34G~l(1 ,  4) ~U(3----~ " 

Here 2:H stands for the Hartree contribution to the self-energy 

while the rest  is sometimes referred to as the mass operator and indicated by 
M(M). The inverse G~ 1 of the generalized single-particle Green's function (2.9) is 
defined by 

(3.13) ] d3V~ 1(1, 3) 61(3, 2) = f d3GI(1, 3) V~ 1(3, 2) = 8(1, 2). 

Demanding the left and right inverse of G1 to be equal requires the two 
expressions (3.11) to coincide. This property can be verified for the exact self- 
energy through a diagrammatic expansion; its relevance will appear when it will 
be imposed as a constraint on the choice of the approximate form of the self- 
energy (sect. 6). 

Equations (3.10) can now be cast in the form 

or, alternatively, 

Equations (3.14) express Dyson's equation in differential form (cf. appendix B) 
and give to 2: the physical meaning of a nonlocal and energy-dependent effective 
single-particle potential, as it will be discussed in sect. 9. Hereafter we shall limit 
to consider only one of the two equations (3.14), since the other is implied by the 
condition 2: = Z. 

We proceed now to eliminate any explicit reference to the external potential 
in the self-energy operator (3.11). To this end, we introduce the following 
auxiliary quantities. 

i) The total (classical) potential V is defined as 

(3.15) V(1) -= U(1) - ih f d3v(1, 3) G1(3, 3+). 
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Regarding alternatively G1 as a functional of V instead of U and using the 
,,chain rule~, (A.8) as well as eq. (A.7) yield 

(3.16) M(1, 2 ) = - i h f d 3 4 5 v ( 1  § 3)G1(1, 4) 
~G~ 1(4, 2) ~V(5) 

~V(5) ~U(3)" 

ii) Equation (3.16) suggests to introduce a scalar (irreducible) vertex 
function [" defined as 

SM(1, 2) 
~G~1(1, 2) 8(1, 3)8(2, 3)+ ~V(3) (3.17) /~(1, 2; 3 ) -  ~V(3) = - - '  

where the right side has been obtained by combining eqs. (B.4), (3.11), and 
(3.15). Since the mass operator M depends on the external potential U (or 
alternatively on V) only through its dependence on the generalized single- 
particle Green's function (cf. eqs. (3.11)), we can again use the ,,chain rule,  for 
functional differentiation together with eq. (A.7) to obtain an integral equation 
for/~: 

(3.18) 
r ~M(1, 2)~G1(4, 5) 

/~(1, 2; 3) = ~'(1, 3)8(2, 3) + J d45~G--~, ~ ~V(3) - 

f ~M(1, 2) 
= 8(1, 3)8(2, 3)+ d 4 5 6 7 ~  G1(4, 6)G1(7, 5)i5(6, 7; 3). 

This can be considered as the equation defining/~, whereby the limit U--* 0 can 
explicitly be taken. 

iii) Equation (3.16) suggests to introduce also an inverse (longitudinal) 
dielectric matrix �9 defined as 

SV(1) 
(3.19) � 9  1(1, 2) -- 

~U(2)" 

From the definition (3.15) and from the identity 

(3.20) 
(NIT[g~(1)][N) 

-ihGl(1, 1 +) .... (NIT[g]IN) - (~(1)), 

where ~(1)= ~*(1)~(1) is the density operator, we can express 

(3.21) �9 - 1(1, 2) = 8(1, 2) + ~ d3v(1, 3 ) - -  
~U(2) " 

The functional derivative of the average density with respect to the external 
potential in eq. (3.21) is a measure of the polarizability of the system. Its 
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connection with the corresponding quantity of linear response theory (cf. sect. 5) 
is most readily drawn by utilizing the identity (3.9): 

~(~(i)) 
(3.22) ~(1, 2) = -  

$U(2) 
= ih[G~(1, 2; 1 +, 2 +) -G1(1, 1 +) G1(2, 2+)] = 

i <N[T[S~'(1)~'(2)]I N)  

h <N]T[S]IN> 

where we have introduced the density deviation operator 

(3.23) ~ ' (1)=~(1)-(~(1)) .  

From the last line of eq. (3.22) Z is seen to be symmetric under the 
interchange of its arguments. Moreover, it is convenient to single out from Z the 
part which is irreducible with respect to the bare Coulomb potential v by 
regarding the average density as a functional of the total potential V: 

(3.24) z(1, 2) = fd3  $(~(1)) $V(3) 
6V(3) 6U(2) 

r [8,3 

6(~(1)) � 9  
- -  - f d~ ~ 1(3, 2) = 

2) + f d4v(3, > 7 = 

= ~(1, 2)+ f d34~(1, 3)v(3, 4)z(4, 2), 

where we have defined the irreducible polarizability ~ to be 

6(~(I)) 
(3.25) ~(1, 2) - 

w ( 2 )  " 

Equation (3.24) can be regarded as an integral equation to be solved for Z once 
the kernel ;~ is specified. Knowledge of ~, in turn, can be related to that of the 
vertex function (3.17) through the identity (A.7) 

~GI(1, 1 + ) = ih f d34Gl(1, 3)~G~1(3' 4)G1(4, 1 +) = (3.26) ;~(1, 2) = - ih $V(2) $V(2) 

- - -  i h f  d34Gl(1, 3)G1(4, 1)/~(3, 4; 2). 

Notice that ~ also is symmetric under interchange of its arguments, and that we 
can express the (longitudinal) dielectric matrix �9 in terms of ~ as follows: 

(3.27) e(1, 2) - - -  
6U(1) 
 V(2) I V ( l ) -  f d3v(1, 3)<~(3))1 = ~V(2) 

=~(1, 2 ) -  f d3v(1, 3)~(3, 2), 
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where 

(3.28) fd3e- l (1 ,  3)e(3, 2)= f d3e(1, 3)e-~(3, 2)= 8(1, 2). 

Equation (3.28) follows from eq. (A.3) and the ,,chain rule,  (A.8). 

iv) It is further convenient to introduce the dynamically screened 
interaction W defined as 

(3.29) W(1, 2)=  fd3e-~(1, 3)v(3, 2). 

We can express alternatively 

(3.30) W(1, 2) = v(1, 2) + fd34v(1, 3)~(3, 4) W(4, 2)=  

= v(1, 2) + f d34v(1, 3) Z(3, 4) v(4, 2), 

where the first line can be interpreted as an integral equation defining W, while 
the last line represents its formal solution. From the last line it also follows that  
W(2, 1) = W(1, 2). 

With the definitions (3.17), (3.19), and (3.29) the mass operator (3.16) can be 
cast in its final form 

(3.31) M(1, 2)= ihfd34W(1 § 3)GI(1, 4)/~(4, 2; 3). 

Equations (3.14), (3.18), (3.26), (3.30), and (3.31) constitute the set of coupled 
equations which link M,/~, ~, and W. They are represented graphically in fig. 1 
together  with the expression for M (cf. equation (3.11b)) 

(3.32) M(1, 2) -- ih f d34/~(1, 4; 3) G1(4, 2) W(3, 2-). 

Notice that  the limit U o  0 can be readily taken in these equations. 
All quantities considered thus far are still exact. Approximations can be 

generated either by expressing the set of coupled equations as (infinite) series in 
terms of Gt ~ and v, thereby reproducing the Feynman-Dyson perturbation 
theory [4], or by truncating the set of coupled equations by making specific 
ansatz on the functional form of the mass operator M in terms of the self- 
consistent G1 and W [5, 6, 8]. Different approximations will be relevant to 
different physical situations, and for any given approximation it will be 
important to check whether  it satisfies rather  general conservation criteria such 
as the conservation of the number of particles, the total energy, etc. A 
prescription to generate such conserving approximations will be discussed in 
sect. 6. 
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4 

b )  

Fig. 1. - a) Graphical symbols corresponding to the relevant quantities needed to 
represent b) the coupled set of equations for M, /~, ~, and W. 

4. - Bethe-Salpeter equation for the two-particle Green's function. 

The equation of motion for the two-particle Green's function, which is the 
analog of the Dyson's equation (B.6) for the single-particle Green's function, can 
be most readily obtained by introducing the two-particle correlation function 
defined as 

(4.1) L(1, x' t; 2, x t  § - - G2(1, x' t; 2, x t  § + G1(1, 2) Gl(x' t, x t§  
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In fact, for generalized Green's functions evolving in the presence of an external 
potential of the type (3.8), L can be expressed by means of the identity (A.12), 
namely, 

(4.2) L(1, x' t; 2, x t  § = 
~G~(1, 2) 

~U(x, x'; t) " 

A combination of eq. (4.2) with eqs. (A.7), (A.8), and (B.4) then yields 

f ~G1~(3, 4) G~(4, 2)= (4.3) L(1, x '  t; 2, x t  § = - d34Gl(1, 3) ~U(x, x'; t) 

= d34G1(1, 3) ~(ts - h) ~(t4 - t) ~(x~, x) r x ')  . ~U(x, x'; t) 

= GI(1, x t )  G~(x' t, 2) + f d3456G1(1, 3) G~(4, 2) 3 - -  

G1(4, 2)= 

~2:(3, 4) 

~G1(6, 5) 
L(6, x't; 5, xt+).  

This is an integral equation for L, whereby x, x ' ,  and t play the role of external 
variables and the kernel 

(4.4) S(3, 5; 4, 6 ) = - -  
~Z(3, 4) 

~G1(6, 5) 

represents an effective two-particle interaction. Notice that the limit as U---)0 
can be explicitly taken in eq. (4.3). Notice also the following properties. 

i) The topology of its diagrammatic structure (cf. fig. 2a)) implies that  eq. 
(4.3) can be generalized to hold for arbitrary values of the external time variables 
t and t' and not just  in the limit t ' =  t-. We can then write compactly 

(4.5) L(1, 2; 1', 2 ' )=  G1(1, 2')G1(2, 1 ' )+ 

+ ]d3456Gl(1, 3)G1(4, 1')S(3, 5; 4, 6) L(6, 2; 5, 2').  

Equation (4.5) is known as the Bethe-Selpeter equation for L [8]. 

ii) It  is convenient to single out from the outset the Coulomb term in the 
effective interaction 3 by breaking up the self-energy 2: as the sum of the 
Hartree term (3.12) and the mass operator M (cf. eqs. (3.11)), to obtain 

(4.6) S(3, 5; 4, 6)= -ih~'(3, 4)8(5, 6)v(3, 6)+ - -  
~M(3, 4) 
~G1(6, 5)" 

This splitting will enable us to identify the irreducible (or proper) part of L as 
well as other correlation functions (appendix C). 
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+ 
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b )  

1 2 r 1 2 / 1 3 6 

I v ~ '" ; 1 / "~ ~ 2 1 v 4 5 

T = E -t- 

2 / 

c~ 

Fig. 2. - Bethe-Salpeter equation for a) the two-particle correlation function L, b) the 
bound part of the two-particle Green's function $G2, and c) the many-particle T-matrix. 

iii) A connection between the integral equations (4.5) for L and (3.18) for/~ 
can be drawn from the identity 

(4.7) L(1, 3; 2, 3 +) =/d45Gl(1, 4)G1(5, 2)/(4, 5; 3), 

where we have introduced the scalar (reducible) vertex function I" defined as 

(4.8) /'(1, 2; 3 )= /d4 /~ (1 ,  2; 4)e-1(4,  3) 

(d4 $G~1(1' 2) $V(4) _ ~G~I(1, 2) 
J ~V(4) ~U(3) ~U(3) 



14 G. STRINATI 

The last line of eq. (4.8) has been obtained from the definitions (3.17) and (3.19) 
and the ~,chain rule,  (A.8). 

Equation (4.5) is not the only form of the Bethe-Salpeter equation one finds 
in the literature. Two alternative forms are shown graphically in fig. 2b) and 2c). 
They can be obtained from eq. (4.5) as follows. The two-particle Green's function 
G2 can be separated into a free part corresponding to the propagation of two 
single-particle excitations totally independent of one another and a bound part 
~G2 [9] 

(4.9) G2(1,2;1',2')=G~(1,1')G~(2,2')-Gl(1,2')G1(2,1')+~G2(1,2;1',2'), 

whereby the bound part ~G2 satisfies the integral equation [9, 10] 

~G2(1, 2; 1', 2 ' )=  - fd3456G1(1, 3)G1(4, 1')Z(3, 5; 4, 6)- (4.10) 

G,(6, 2')G~(2, 5)+ f d3456Gl(1, 3)G1(4, 1')2(3, 5; 4, 6)~G~(6, 2; 5, 2'). Q 

Otherwise, one can introduce the many-particle T-matrix defined as the solution 
of the integral equation [9, 11] 

(4.11) T(1, 2; 1', 2 ' )=3(1 ,  2; 1', 2 ' )+  

f , + d34562(1, 4; 1', 3)G~(3, 6)GI(5, 4)T(6, 2; 5, 2'). 

Solving eq. (4.11) is equivalent to solving eq. (4.10) since the bound part ~G2 can 
be obtained by attaching a single-particle Green's function to each end point of T: 

(4.12) ~G2(1, 2; 1', 2')= 

= - f  d3456Gl(1, 3)G1(4, 1')T(3, 5; 4, 6)G1(6, 2')G1(2, 5). 
# 

The spin variables can be eliminated from explicit consideration whenever 
the Hamiltonian is spin independent. The procedure is trivial for the single- 
particle Green's function, the vertex function, and the polarizability, but it 
requires some care for the two-particle Green's function or the T-matrix. In 
particular, the effective interaction entering the Bethe-Selpeter equation for the 
singlet channel differs from that for the triplet channels (appendix D). 

Comparison of eqs. (3.22) and (4.1) shows that the polarizability z can be 
obtained as a degenerate form of the two-particle correlation function L, namely, 

(4.13) Z(1, 2)= - ihL(1 ,  2; 1 § 2+). 

In this limit the Bethe-Selpeter equation (4.5) is equivalent to the set of 
equations (3.24), (3.26), and (3.18), thereby providing information on the density 
fluctuations of the system and related physical quantities (such as plasmons). 
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The full equation (4.5), on the other hand, is relevant to the study of bound-state 
problems (such as excitons) in the spirit of the original work of Gell-Mann and 
Low [12] (cf. sect. 11). 

5. - C o n n e c t i o n  wi th  l inear-response  theory.  

The time-ordered correlation functions introduced thus far (cf. appendix C) 
do not directly represent the effects of the coupling between a system of 
particles and an external agent when causal boundary conditions are required. 
Specifically, if the system was in the ground state before the external agent 
acted, the linear response of the ground-state expectation value of a given 
operator 0(x, t) is known to be given by a Kubo formula [13] 

(5.1) 

Here 

t 

i fdt'(NU:I;(t'), 6~(x, t)]]N} t ) )  = 

(5.2a) /t~(t) = exp [iI-:It/h] I:I'(t) exp [ -  iI:It/h], 

(5.2b) (~I(X, t) ---- exp [iI:It/h] O(x, t) exp [ -  iI:It/h], 

where/~'( t)  is the (weak) time-dependent interaction Hamiltonian between the 
system and the external agent. In particular, for an electromagnetic field/4'(t) is 
given by eq. (C.1). In this case one is interested in the linear response of the 
density and current operators, given by eq. (C.2) and by 

(5.3) J(x, t)=j(x)-q-~-A(r, t)~(x), 
m c  

respectively (cf. eq. (C.3)). To first order in the fields, one obtains for the total 
density and current: 

(5.4) (~(1))a,~ = (N]~(1)]N}+q f d2(za(1 , 2)9(2)-  1~R(1, 2)-A(2)), 

(5.5) (J(1))A,~ -- q (N]~(1)[N}A(1)+ 
m e  

where we have introduced the retarded counterparts of the correlation functions 
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(C.23) and (C.24): 

(5.6a) XR(1, 2)= ---~i (N][y(1), ~'(2)][N} O(tl-t2) 

(5.6b) i ~R(1, 2) = - ~ ( N ] [ j ' ( 1 ) ,  ,~'(2)]IN} O(tl - -  t2), 

(5.6c) ZR(1, 2) = - -~ (NI[j'(1), j'(2)]IN} O(t: - t2). 

Here the unit step function o(t~ - t2) enforces the casual boundary conditions 
as it limits the knowledge of the interaction between the system and the external 
agent to antecedent times; the time-ordered correlation functions (C.23) and 
(C.24), on the other hand, require also the knowledge of the future of this 
interaction and thus do not have bearing on the experimental situation. 
However, the retarded correlation functions cannot be calculated through the 
set of coupled integral equations developed in appendix C (or, alternatively, by 
the Feynman-Dyson perturbation series) because the identities (C.4) and (C.5) 
hold only for time-ordered products of operators (or, alternatively, Wick's 
theorem applies only to these products). A connection between the two sets of 
correlation functions is then in order. This connection can be drawn by looking at 
the respective Lehmann representations after Fourier tranforming the time 
dependence. 

For a general pair of time-ordered and retarded correlation functions 

(5.7) i (N]T[A'(1)[C'(2)]IN}, cTAB(1, 2)=-- -~  

(5.8) i (N[[A'(1),/~'(2)]IN) O(tl - -  t2), C~(1,  2) - - 

where A and /~ are Hermitian Bose-like operators, we obtain 

(5.9) ( A~(xl)B*(x2) A * s ( x 1 ) B s ( X 2 )  ~) 
CTAB(Xl, X2; 0~) = ~*oE ~'hO; ~ ~ - +  i~ hoe + E~ - Eo - i ' 

(5.10) ( A~(xl)B*(x2) A*(xl)B~(x2) ~) 
C~(x: ,  x2; ~)=  ~ o [ t t ~ - ~ o - - - ~ T i ~  ho~+ E , - E o  + i  " 

Here the index s labels the eigenstates IN, s) of the unperturbed Hamiltonian/~ 
(s = O corresponds to the ground state IN}), (E~ - Eo) > 0 is an excitation energy, 



APPLICATION OF THE GREEN'S FUNCTIONS METHOD ETC. 17 

~---~ 0 § and 

(5.11) A~(x) = (Nlf i (x) lN,  s ) .  

Note the following properties (for real oJ): 

(5.12) i) CR~B(xi, X2; -- oJ) = cR~B(Xl, X2; ~o)*, 

which implies that its real part is an even and its imaginary part is an odd 
function of ~; 

(5.13) ii) CT~(Xl, X2; -~) - -C~A(x2,  xl; co); 

(5.14) iii) C ~ ( x l ,  x2; ~)= CT~(Xl, x2; ~), 

for ~ > 0. One can thus evaluate CTA~(xl, X2; 0~) for ~ > 0 by standard many-body 
techniques and then obtain CRAS(Xi, X2; ~o) for all values of oJ through eqs. (5.12) 
and (5.14). 

Fur ther  properties can be obtained when the operators A and/~ coincide 
with either ~ ~ orj.~ In this case ZT(x~, x2; ~) and ZT(Xl, X2; oJ) are even functions of 
~, while XT(X~, x2; ~) is an odd function of o~ (provided no magnetic field is 
present). 

6. - Conserv ing  approximat ions .  

An approximate solution to the coupled set of integro-differential equations 
discussed in sects. 3 and 4 may or may not be consistent with the general 
(number, momentum, and energy) conservation laws satisfied by the exact 
solution. A particular approximation is then said to be conserving if it satisfies 
the restrictions imposed by the conservation laws. These restrictions have been 
first formulated by Baym and Kadanoff [11] in terms of sufficient conditions to 
be satisfied by the approximate self-energy operator 2, and successively recast 
in a simple diagrammatic form by Baym [14]. Fulfillment of conservation criteria 
turns out to be essential to correctly describe transport phenomena (as, for 
instance, in the context of the Landau theory of Fermi liquids [9]); however, it 
may be less important in other contexts such as the determination of single- 
particle and bound electron-hole pairs excited states of a crystal. In any case, one 
should be aware of possible violations of conservation laws although it might be 
difficult to fulfill them in practice. 

A sufficient condition to ensure fulfillment of conservation laws is that any 
approximation for the self-energy operator 2 be ,,~-derivable~, in the sense that 



18 G. STRINATI 

there exists a functional ~ such that [14] 

(6.1) S(1, 2 ) -  r  
SGI(2, 1)" 

is meant to be a functional of the bare Coulomb potential v(1, 2) and of the 
generalized single-particle Green's function G](1, 2) (in the presence of an 
external field U), which has thus to be determined self-consistently via Dyson's 
equation (3.14). Examples that show how �9 can be constructed to reproduce 
known approximate expressions of X are reported in fig. 3. Notice there that 

?, 
i 

b) . ( f  - " ~  

. [  1 " s  ~ ~ . 4 y  

C) - - "~lL / 

O::\O 
Fig. 3. - Examples of correspondence between diagrams for ~ and I .  Straight lines here 
denote the self-consistent single-particle Green's function G1 and broken lines denote the 
bare Coulomb potential v. 

condition (6.1) requires certain diagrams for I to be taken together, as for the 
terms c) and f) .  This feature, in turn, implies that the two alternative 
expressions (3.31) and (3.32) for the mass operator M coincide for the given 
approximation, as anticipated in the discussion of eq. (3.11). 
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Conservation laws for the ground state follow directly when condition (6.1) is 
satisfied. In addition, conservation laws are also fulfilled within linear response 
if, for the given choice of 2, the two-particle correlation function L satisfies the 
Bethe-Salpeter equation (4.5) with kernel Z = ~Y,/~G1 (that is, with no terms 
omitted) [14]. In this case we can express (cf. eqs. (4.4) and (6.1)): 

(6.2) Z(1, 2; 1', 2 ' ) -  ~2~ =Z(2, 1; 2', 1'), 
~G1(2', 2) ~GI(I', 1) 

which leads to the symmetry condition 

(6.3) L(1, 2; 1', 2 ' )=  L(2, 1; 2', 1') 

for the approximate two-particle correlation function. 
As an example, we consider the number conservation law expressed in terms 

of G 

(6.4) 3~ihGl(1, 1 + ) +  Vl" [2--~(V 1 -- V2)ihG~(1, 2)12=1+= 

= ~ 1  ihGl(1, 2) + ~ (V~- V~) GI(1, 2) = 0. 
2 = 1  + 

To recover this equation for the approximate G1, we begin by subtracting the 
two alternative forms of Dyson's equation (3.14a) and (3.14b), to obtain 

(6.5) -~1 + ihGl(1, 2) + ~ - V~) GI(1, 2) - 

- -  (V(rl) -3 t- U(1) - g(r2) - U(2)) G1(1, 2) + 

+ f d3(G,(1, 3)r(3, 2 ) -2 (1 ,  3)Gl(3, 2))= 0, 

and then take the limit as 2--, 1% In this limit, one can readily show from eqs. 
(3.11) that 

(6.6) hm [ d3(Gl(1, 3)2(3, 2) - Z(1, 3) G,(3, 2)) = 0, 
2 ~  1 + J 

since 2 = 2 for a conserving approximation. Equation (6.4) thus follows. 
Equation (6.6) can alternatively be obtained by noticing that the functional 

is, by construction, invariant under the transformation 

(6.7) GI(1, 2)--~ exp [iA(1)] GI(1, 2) exp [ -  iA(2)] -~ 

-~ G1(1, 2) + i(A(1) - A(2)) GI(1, 2), 



20 G. STRINATI 

to lowest order in the small function A. Variation of �9 then gives 

(6.8) ~q~ = :] d12 ~---~ ~Ga(1, 2 +) = ~G~(1, 2) 

= f d12X(2, 1) i(A(1) - A(2+)) G1(1, 2 + ) 

=ifdl,X(l+)fd2(Gl(1, 2)X(2, 1 +) -X(1, 2) G~(2, 1+))= 0, 

where account has been taken of eqs. (6.1) and (6.7). (The need to replace 2--, 2 + 
in the first line of eq. (6.8) originates from the Hartree-Fock term.) The 
arbitrariness of A yields eventually eq. (6.6). 

Physically, eq. (6.4) reduces to the continuity equation for the ground state 
in the limit of zero external field U [15]. However, eq. (6.4) holds more generally 
for arbitrary U and thus it contains information about the induced density and 
current within linear response. Specifically, taking the functional derivative of 
eq. (6.4) with respect to U(3) and recalling eqs. (A.13) and (C.26), yields 

(6.9) ihL(1, 3; 1 +, 3*)+ Vl .ihI2-~m(Va- V2)L(1, 3; 2, 3+) lz=~ + = 

= - ( - ~ t  X(1 ,3 )+V~.~(1 ,3 ) )=0 ,  

where the limit for vanishing U is now understood. 
Equation (6.9) holds for the approximate correlation functions, provided L 

satisfies the Bethe-Salpeter equation (4.5) with kernel taken according to eq. 
(6.2). To interpret it as the continuity equation for the induced density and 
current within linear response, the connection established in sect. 5 between 
time-ordered and retarded correlation functions has to be recalled. In particular, 
by Fourier transforming the time dependence of eq. (6.9) and making use of the 
properties (5.12) and (5.14), it follows that (cf. eqs. (5.4) and (5.5)) 

(6.10) -~1(~(1))c+ Vl. (j(1))~T= fd2 ZR(1, 2)+ Vl-~R(1, 2) u=o U(2) = 0 .  

Equation (6.9) can also be obtained as a particular limit of a more general 
equation relating X to L which is satisfied by a ~,~-derivable- approximation, as 
discussed in the next section. 

7. - Gauge  invar iance ,  current  c o n s e r v a t i o n ,  and the  Ward ident i t ies .  

In this section we derive an identity relating the exact single- and two- 
particle Green's functions as well as any conserving approximation to these 
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functions. This identity (which will be referred to as the ,,generalized Ward 
identity,)  will be shown to follow from the gauge invariance of the theory and to 
reduce to the continuity equation (6.9) for the induced density and current in a 
particular limit. The ordinary Ward identities [9] will also be recovered as 
special forms of the generalized Ward identity. 

To derive the relationship between single- and two-particle Green's 
functions, we begin by coupling the system to the electromagnetic field 
according to eq. (C.1), where we replace [14] 

(7.1) 

I A(r, t)--> VA(r, t), 

l ~(r, t)--) t) 1 
- c - ~ A ( r ,  . 

The resulting interaction Hamiltonian, which corresponds to vanishing electric 
and magnetic fields (gauge Hamiltonian), can then be utilized to define 
generalized Green's functions according to eqs. (2.9) and (2.10). In particular, the 
single-particle Green's function satisfies the following equation of motion: 

(7.2) h2 V(rl) + ih S~l,~(1)]G~(1, 2; 

- f d32(1, 3; A) G1(3, 2; 2~) = 8(1, 2), 

where 

(7.3) A(1)=/--~cA(1 ) . 

Equation (7.2) can be obtained from eq. (3.14a) with the usual replacement in the 
presence of an electromagnetic field 

(7.4) 
I V~V +/-~cA, 
I V---)V+ q~, 

where now A and ~ are taken according to eq. (7.1). The solution of eq. (7.2) can 
be expressed as [14] 

(7.5) GI(1, 2; 2~) = exp [ -  2~(1)] GI(1, 2; 2~ = 0) exp [21(2)], 

which can be verified at every order of a diagrammatic expansion of 2: in terms 
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of G~. Equation (7.5) implies that 

(7.6) ~GI(1,,~A(3): 2; ,[)[ .~=0 = (8(2, 3) - ~(1, 3))G~(1, 2) 

for the exact generalized single-particle Green's function as well for any 
approximation to it. 

The desired connection with the two-particle Green's function can then be 
established by expressing the functional derivative in eq. (7.6) in an alternative 
form by recalling eqs. (C.4) and (C.5). We write 

(7.7) ~G1(1, 2; .~)= -ih f d3{L(1, 3; 2, 3+)~-~3,~(3)+ 

+[2-~m(V~-V3,)L(1, 3; 2, 3')]3,=3+ �9 V3~(3) t , 

for an infinitesimal .[. Integration by parts in eq. (7.7) yields 

(7.8) ~GI(1,~A(3)_= 2; "[)1 .(=o = ih{~t3L(1, 3; 2, 3+)+ 

+ V3. [2-~m(V3-V3,)L(1, 3; 2, 3')13,=s.}, 

and comparison with eq. (7.6) leads eventually the generalized Ward identity in 
the form 

(7.9) ~t3 L(1, 3; 2, 3+)+ V3. I2/~(V3-V3,)L(1, 3; 2, 3')]~,=3 + = 

= ~ (~(1, 3) - 8(2, 3)) G1(1, 2), 

where the limit ,~ = 0 is understood. 
This equation holds for any approximate two-particle correlation function L, 

provided it satisfies the Bethe-Salpeter equation (4.5) with kernel ~ obtained 
from the approximate single-particle Green's function G1 according to the 
prescription (4.4). However, in order to recover from eq. (7.9) the continuity 
equation (6.9) for the induced density and current within linear response, the 
kernel -~ has in addition to satisfy the symmetry requirement (6.2) which is met 
by any ~-derivable- approximation. This is because the resulting symmetry 
property (6.3) for L is required to relate the restrictions of local charge 
conservation (6.9) and of gauge invariance (7.9) [16]. 
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The identity (7.9) can be obtained in an alternative way by expressing is left- 
hand side in terms of the density and current deviation operators (C.25) 

(7.10) 3 - ~ L ( 1 , 3 ; 2 , 3 - ) + V s . [ & ( V s - V s , ) L ( 1 , 3 ; 2 , 3 ' ) I s , = 3  + = 

- + - 

- ih(8(1, 3) - 8(2, 3)) GI(1, 2)},  

where the last term proportional to the single-particle Green's function 
originates from the time derivative of the time-ordering operator. Requiring the 
continuity equation for the density and current deviation operators to hold leads 
eventually to the result (7.9). 

The generalized Ward identity (7.9) can also be rewritten in terms of the 
scalar and vector vertex functions through eqs. (C.8) and (C.9). Projection from 
the left and the right onto a pair of G~ 1 with suitable arguments yields in fact 

(7.11) ~t3 F(1, 2; 3)+ Vs" F(1, 2; 3)= h(8(2, 3 ) -  8(1, 3))G~I(1, 2)= 

=/h (8(2, 3) - 8(1, 3)) ih + ~ Vlj 8(1, 2) - M(1, 2) 

(cf. eqs. (B.4) with U= 0, (2.2), (3.11), and (3.12)). Notice that the Hartree 
contribution to the self-energy operator (as well as the potential term) drops out 
from the right-hand side of eq. (7.11). This remark suggests that eq. (7.11) 
actually holds for the irreducible vertex functions introduced in appendix C. We 
can, in fact, express 

F(1, 2; 3)=/~(1, 2; 3)+ f d45/~(1, 2; 4)v(4, 5)z(5, 3), (7.12a) 

F(1, 2; 3)= f(1, 2; 3)+ f d45/~(1, 2; 4)v(4, 5)~(5, 3), (7.12b) 

that give 

(7.13) ~ t  F(1, 2; 3) + V3-F(1, 2; 3) =~t3/~(1 , 2; 3) + Vs-/~(1, 2; 3)+ 

+ 1 
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The continuity equation (6.9) for the induced density and current within linear 
response together with the symmetry properties of the correlation functions 
under the interchange of their arguments, guarantee the expression within 
brackets to vanish and allow us to replace the vertex functions in eq. (7.11) by 
their irreducible counterparts. 

The ordinary Ward identities, which express a constraint between the 
derivatives of the self-energy operator and the vertex functions in the limit of 
long wave lenghts and small frequencies [9], can now be recovered from the 
generalized Ward identity (7.11) as follows. Let us consider, in particular, a 
translationally invariant system that admits the Fourier representations (D. 13). 
After elimination of the spin variables eqs. (7.11) and (7.13) reduce thus to 

(7.14) h 
qo['(p; q) - q ' / ~ ( P ;  q) = qo - m q "p + [ M ( p  - q/2) - M ( p  + q/2)], 

where p = (p, P0) and q = (q, q0). Taking the limit as q--) 0 (for given p) of eq. 
(7.14) yields 

(7.15a) /~(p; 0) = 1 
a M ( p )  

ahpo 

when q/qo----) O, and 

(7.15b) /~(p; O) = h p  + V h p M ( p ) ,  
m 

when q/qo---~ ~ .  Notice that, on the Fermi surface, the Ward identities (7.15) 
relate the renormatized vertices to the wave function renormalization 

(7.16) [ ] -1 
a =  1 ahpo ~F 

and to the effective mass of a quasi-particle 

(7.17) a = 1 ~ M([Pl, ~r) �9 
m h~-FI 9 I ~FI 

Equation (7.15a), in particular, is needed, e .g . ,  to derive Landau's transport 
equation for a Fermi liquid from the Bethe-Salpeter equation [9]. 

Similar identities have been utilized in the theory of the inhomogeneous 
interacting electron gas to reveal the short-range density dependence of the 
mass operator [17], as well as in the theory of shallow impurities states in 
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semiconductors [18]. For these inhomogeneous systems the identity 
corresponding to eq. (7.15a) can be obtained alternatively in the following 
way [19]. We may regard the scalar potential U in eq. (3.14) as a slowly varying 
perturbation in time which is uniform throughout the system and set accordingly 
U(1) = -  aq with a infinitesimal. This perturbation induces a change in the 
inverse single-particle Green's function which can be written in two ways. On the 
one hand, we can make use of the scalar (irreducible) vertex function (3.17) to 
write 

(7.18) ~G11(1, 2) = - f d3/~(1, 2; 3) $V(3), 

with (cf. eq. (3.15)) 

(7.19) ~V(3) = - :r - i h  f d2v(3, 2) ~G1(2, 2+). 

On the other hand, we can consider the shift (7.19) as generated by the gauge 
transformation (7.1) with A(1)= act1, c being the velocity of light, and write 
according to eq. (7.6) 

(7.20) i 
~G1(1, 2) = -~ qa (tl - t2) G1(1, 2). 

Equation (7.20) yields (cf. eqs. (A.7), (B.2), and (B.4)) 

(7.21) i 2)], ~G~ 1(1, 2) = ~ qa (tl - t2) G~ 1(1, 2) = qa [8(1, 2) - ~ (tl - t2) M(1, 

as well as ~V(3) = - aq,  since ~ G 1 ( 2 ,  2 +) = 0. Comparison of eq. (7.21) with eq. 
(7.18) leads to the Ward identity 

(7.22) ~(t l  - -  t~)M(1, 2) = 8(1, 2) - f d3/~(1, 2; 3). 

Upon taking the time Fourier transform, eq. (7.22) reads 

5 f 
(7.23) M ( r l ,  r2; ~ )  = ~(rl - r2) - | drJ~(rl, r2; r311), co--~ 0) 

5kO ~ 

which reduces to eq. (7.15a) for a homogeneous system. 
From eq. (7.9) it can also be shown that any ,,O-derivable)~ approximation 

satisfies an important sum rule known as the Thomas-Reiche-Kuhn sum rule (cf. 
appendix E). 
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8. - Optical  properties o f  semiconductors .  

The purpose of this section is to apply the formal tools developed so far to the 
discussion of the optical properties of semiconductors. In particular, we shall 
combine the treatment of the dynamics of the many-body effects beyond the 
one-electron model with the geometry characterizing a crystalline 
semiconductor. After some general considerations which apply to 
semiconductors (or insulators) with arbitrary point-group symmetry and which 
can be formally carried out to all orders of (many-body) perturbation theory, we 
shall present numerical calculations for (cubic) covalent materials whereby the 
relevant many-body effect is the excitonic effect. 

8"1. Maxwell's equations and local-field effects. - Charge densities and 
currents (over and above the ground-state values) can be partitioned into 
externally specified and induced contributions. The corresponding Maxwell's 
equations then read 

V. E(r, t) = 4=(,z~xt(r, t) + ,~ind(r, t)), 

V.B(r ,  t) = 0, 

(8.1) 
V x E(r, t ) = - ~ t B ( r ,  t), 

V x B ( r ,  t )=  47' (Jext(r 'e t) A-gind(r' t ) ) + l ~ t E ( r '  t). 

Here the induced charge density and current can be obtained within linear 
response by multiplying the induced part of the number density (5.4) and current 
(5.5) by the electronic charge (q = - e). A comment about the nature of the scalar 
and vector potentials that enter these expressions is in order at this point. 
Although the choice of the gauge has been left unspecified in sect. 5 as well as in 
appendix C, the forms (2.1) and (C. 1) for the unperturbed and interaction parts 
of the Hamiltonian, respectively, are actually consistent with the Coulomb (or 
transverse) gauge, in which 

(8.2) V. A(r, t) = O. 

The scalar and vector potentials entering eqs. (5.4) and (5.5) are thus to be 
understood as the external scalar potential and the total (transverse) vector 
potential which includes the induced contribution [20]. 

The Coulomb gauge yields a natural separation between the transverse (T) 
and longitudinal (L) parts of the electric field. We find it also convenient to 
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introduce the so-called perturbing electric f ield [21] 

(8.3) EP(r, t ) -  1 c ~ A ( r ,  t ) -  v~ext(r, t)-- Eext(r, t)+E~nd(r, t )= 

= E(r,  t) - EL'O(r, t), 

in terms of which the induced charge density and current can be expressed. To 
this end, we need to exploit the generalized Ward identity (7.9) and the 
symmetry condition (6.3), to obtain 

(8.4) 

- ioJxR(rl, r2; oJ) + V 1 �9 ZR(rl, 1"2; (o) ---- 0,  

- -  i~ZR(rl, r2; ~) + ~1" ZR(rl, 1"2; 0~) + 1 (N]~(r2)]N} ~1 ~(rl - r2) = 0, 
m 

and 

(8.5) 

i~R(rl ,  r2; ~) + V2" ~R(rl, r2; o~) = 0, 

i~Ozz(rl, r2; o~) + V2" ZR(rl, r2; ~) + 1 (NI~(ri)IN) V2~(r2 - r~) = 0. 
m 

In eqs. (8.4) and (8.5) advantage has been taken of the time translational 
invariance of the unperturbed system by introducing the time Fourier 
transform, and the analytic continuation from time-ordered to retarded 
correlation functions has been performed according to the prescriptions of sect. 
5. Recall also that eqs. (8.4) and (8.5) hold for any conserving (O-derivable) 
approximation to the correlation functions. 

Equations (8.4) ensure that the induced charge density and current obtained 
from eqs. (5.4) and (5.5) satisfy the continuity equation. Equations (8.5), on the 
other hand, enable us to rewrite 

(8.6) 
t q2 f dr' ~R(r, r'; ~). EP(r'; co), pind(r; o~) = -- 

[ Jina(r; ~) = - i~o f dr' ~(r, r'; ~o)-EP(r'; ~o), 

where we have introduced the so-called quasi-polarizability tensor 

(8.7) q ~ " co) + Nl~(r)lN } ~ ( r -  r') , " ~) - - ZR(r, r ,  m ~ ( r ,  r , 

being the unit dyadic. In deriving eqs. (8.6) the surface contributions that 
originate from an integration by parts have been assumed to vanish. 
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It is common practice when dealing with dielectric materials to implement 
Maxwell's equations by introducing the polarization and displacement vectors 

(8.8) 
P(r; ~o)= -.1 Jind(r; oJ), 

~09 

D(r; oJ) = E(r; ~) + 4nP(r; oJ). 

(We assume throughout the absence of magnetic phenomena.) Notice that in eq. 
(8.8) E(r; oJ) is the total electric field, while in eqs. (8.6) only the perturbing 
electric field (8.3) enters, thereby justifying calling the tensor (8.7) the quasi- 
polarizability. 

The Coulomb gauge allows us also to express the scalar potential in terms of 
the instantaneous charge density and the vector potential in terms of the sole 
transverse currents, as they satisfy the equations [22] 

(8.9) 

I V2~(r; ~ ) = -  4~(~ext(r; ~ )+  ~ind(r; ~o)), 

l ( ~  4n V 2 +-~ A(r; oJ)= ---(j~Xt(r;c ~o)+ j~nd(r; ~o)). 

In what follows we shall assume that  j~xt_ 0 inside the material. 
All equations considered so far hold for the microscopic fields which exhibit 

large and irregular variations on the atomic scale. This phenomenon occurs in a 
crystal irrespective of the fact that the external fields may vary only on a 
macroscopic scale corresponding to several crystal cells. These features (which 
are called local-field effects) thus render the response to an electromagnetic field 
of a crystal different from that of a homogeneous material. The difference can be 
expressed by stating that any response function of the crystal satisfies the 
(geometrical) property 

(8.10) f ( r+n ,  r' +n ;  oJ) =f ( r ,  r'; ~) 

for any vector n of the Bravais lattice; for a homogeneous system, on the other 
hand, there is no restriction on the translation that  appears at the left-hand side 
of eq. (8.10). 

To fully exploit the symmetry property (8.10), it is convenient to introduce 
the space Fourier transform, which reads 

(8.11) f(r, r'; ~o)= 

B z  

Z exp[i (k+G).r] f (k+G,  k+G'; co) exp[- i (k+G') . r ' ] .  
k GG' 
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Here ~ is the volume occupied by the crystal, k is a Bloch wave vector confined 
to the first Brillouin zone (BZ), and G and G' are reciprocal lattice vectors. The 
appearence of the same k in the two exponential factors at the right-hand side of 
eq. (8.11) enables us to consider k itself, besides o~, as a parameter in the Fourier 
transform of eqs. (8.6)-(8.9). 

Microscopic fields are not, however, the quantities which are dealt with in 
ordinary electrodynamics where  one considers field quantities that  vary on a 
macroscopic scale and are thus experimentally accessible. To obtain the 
macroscopic from the microscopic fields an averaging procedure is necessary 
which has the result of smoothing out the irregular fluctuations of the 
microscopic quantities [23]. A suitable averaging procedure for functions which, 
once represented by the Fourier series 

(8.12) g(r; oJ)= 1 Bz k / ~ k  ~G exp[i(k +G).r]g(k  +G; ~o), 

contain only small Bloch wave vectors (i.e., Ikl << IGI), is to take the average over 
a unit cell of the cell-periodic part only [24] 

(8.13) tT(n; ~o) =- -~1 ~oE.lf drg(r; oJ) -~ V~I ~k exp [ik. n] g(k + O; ~). 

Here ~r is the unit cell centred at n, Or is its volume, and the approximation in 
the last line neglects the variation of exp [ik. r] over the unit cell. Consistently, 
one may replace n in eq. (8.13) by the continuous variable r. 

The averaging procedure (8.13) suffices to eliminate the rapidly varying 
fields from eqs. (8.8) and (8.9), provided the external fields are slowly varying 
over the unit cell, but it fails, in general, for eqs. (8.6) where the average of a 
product needs to be taken. In practice, however, we can neglect the microscopic 
components (G r 0) of the perturbing electric field for values of the frequency 
restricted to the optical range [21]. In fact, combining the Fourier transforms of 
eqs. (8.8) and (8.9) yields 

(8.14) Ew(k + G; ~) - - -  

which tipically gives (G r 0) 

(8.15) 

(c~ + G; ~) 
(k + (~) 

]Ew(k + G; (o)] 
IEw(k + 0; ~){ ~< 10-2' 

for ho~ ~ 5 eV. Similarly, the microscopic components of the longitudinal part of 
the displacement vector can be neglected, since one may show that  

(8.16) DL(k + G; ~) = E~t(k  + G; ~). 
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8"2. Macroscopic dielectric tensor. - The optical properties of semiconduc- 
tors can be conveniently described in terms of the macroscopic dielectric tensor 
~M(k; ~o) which relates the macroscopic components of the displacement vector 
and of the total electric field: 

(8.17) D(k + 0; ~o) = ~M(k; oJ). E(k + 0; o~). 

EM(k; oJ) can, in turn, be expressed in terms of many-body response functions by 
relating it to the macroscopic component ~(k + 0, k + 0; ~) of the quasi-polariz- 
ability tensor (8.7). To this end, we need first to relate the macroscopic 
components of the total and of the perturbing electric fields via 

(8.18) E(k + 0; o~) = [7 - 4r.(/~/~) �9 ~(k + 0, k + 0; o~)]. EP(k + 0; •), 

where  (1~1~) is the longitudinal projection operator. Invert ing this equation in 
favour of Ee(k + 0; o~) and using eq. (8.8) we find eventually 

(8.19) ~M(k; ~) = 1"+ 4=X(k +0,  k + 0 ;  o~). [ 1 -  4=(]~]~).X(k + 0, k + 0 ;  ~)]-1. 

The matrix within brackets at the right-hand side of eq. (8.19) may then be 
explicitly inverted, to give [21] 

(8.20) ~M(k; ~) = 1 + 4:~(k + 0, k + 0; o~). 

. .~+[4r.( f~f~).~(k+O,k+O;o~)]l  - 4~/~ . ~ - ~ + - 0 ~ - - - - - / ~  +O; -~-)-./~ 

There still remains to evaluate the left and right longitudinal contractions of 
the tensor X(k + 0, k + 0; o~). This can be readily done by taking the space 
Fourier  t ransform of eqs. (8.5b), (8.4b), and (8.4a). We obtain, in the order, 

qZ 
(8.21a) ~(k + 0, k + 0; oJ)./~ = - oj~ ~R(k + 0, k + 0; oJ), 

(8.21b) 
q2 

/~. ~(k + 0, k + 0; oJ) = - o--~-~R(k + 0, k + 0; ~), 

(8.21c) 
q2 

/~. '~(k + O, k + O; o~)./~ = - ~zR(k  + O, k + O; oJ). 

Insertion of eqs. (8.21) into eq. (8.20) allows us to calculate the macroscopic 
dielectric tensor by many-body techniques. 

In eq. (8.20) the parameter  k is assumed to be restr icted in such a way that  
]k1-1 is much larger than the characteristic microscopic lenght scale, i.e. the 
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dimension of the crystal cell. The frequency ~o, on the other hand, ranges over 
the optical region and thus it is quite comparable with the semiconductor band 
gap. One may then envisage eliminating k from eq. (8.20) by formally taking the 
limit as k---> 0, while keeping ~ finite. In performing the limit, however, some 
care should be exerted owing to the divergence of the (Fourier transform of the) 
bare Coulomb potential in this limit. We shall show that the macroscopic 
dielectric tensor is well-behaved in this limit, irrespective of the divergence. 

To single out from the correlation functions the part containing the 
divergence of the bare Coulomb potential, it is convenient to rearrange the 
integral equations they satisfy (cf. eqs. (3.24) and (C.31) for the time-ordered 
counterparts) in the following way. We first introduce the proper correlation 
functions (denoted by a circumflex) as being the solutions to the equations 

(8.22a) ~R(k + G, k + G'; o~) = 

G "~ ~ ~k + G" = ~ R ( k + G , k + G ' ; c o ) +  ~ ~ a ( k + G , k + G " ; o ~ ) v ( k +  ~ z R ~  ,k+G' ;r  
G"r 

(8.22b) ~.R(k + G, k + G'; ~) = 

-~ v(k +G )xR(k +G , k +G'; ~o), = y.R(k + G, k + G'; co)+ ~, ~ ( k  + G, k + G"; co) " -~ " 
G"r 

(8.22c) ~ ( k  + G, k + G'; ~) = 

= ~ ( k  +G, k +G'; co)+ ~ ~ ( k  +G, k +G"; co)v(k +G")f~R(k +G", k+G' ;  ~o), 
G"~0 

(8.22d) ~R(k + G, k + G'; ~) = z~(k + G, k + G'; ~o) + 

: G "~ = 'k + G", + ~ zR(k+G,k+G";co)v (k+ J Z R ~  k + G ' ; ~ ) +  
G,,ve 0 

+ ~ ~ ~a(k + G, k + G"; ~o) v(k + G"). 
G"r G~0  

�9 ~R(k+G", k+G";  co)v(k+G")~a~(k+G", k+G' ;  ~o). 

Here v(k + G)= 47:e2/Ik + Gt 2 and the retarded irreducible correlation functions 
(denoted by a tilde) are obtained by analytic continuation from the time-ordered 
counterparts introduced in appendix C. Owing to the absence in eqs. (8.22) of the 
factor v(k + 0) which would be the source of the divergence in the limit k -o  0, the 
proper correlation functions can be interpreted as the correlation functions of a 
hypothetical medium whereby the interparticle potential is replaced by a 
Coulomb potential with a small-momentum cutoff [25]. These functions are thus 
well-behaved in the limit k---~ 0. 

The G--G'  =0 elements of the correlation functions that e n t e r  the 
expression (8.20) of the macroscopic dielectric tensor can be cast in a form which 
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isolates the divergent factor v ( k  + 0) explicitly [26]: 

(8.23a) 

(8.23b) 

~R(k + 0, k + 0; ~) 
zR(k + O, k + O; to) = 

1 - v ( k  + O) ~R(k + O, k + 0; ~) ' 
~R(k + 0, k + 0; ~) = 

= ~ ( k + 0 ,  k + 0 ; ~ ) ~  ~R(k+0, k + 0 ; ~ ) v ( k + 0 )  ~ ( k + O , k + O ; ~ o ) ,  
1 - v ( k  + O)f~R(k + O, k + 0; ~) 

(8.23c) zR(k+0, k+0; oJ)-- 

= ~(k  + O, k + O; ~) + ~R(k + O, k + O; ~) 
v (k  + O) ~R(k + O, k + 0; o~) 

1 - v (k  + O) ~R(k + O, k + 0; ~) ' 

(8.23d) ~n(k + O, k + O; ~) = 

= ~ ( k  + 0, k + 0; o~) + ~ ( k  + 0, k + 0; ~) 
v (k  + 0 ) ~ ( k  + 0, k + 0; ~) 

1 - v (k  + O)s + O, k + 0; ~) 

We are now in a position to rewrite the macroscopic dielectric tensor (8.20) in 
a form suitable for taking the l imitk-*0.  Inserting eqs. (8.23) into eqs. (8.21) 
and into the Fourier transform of eq. (8.7) and entering the results into eq. 
(8.20), we obtain after straightforward algebraic manipulation: 

(8.24) ~M(k; oJ)= (1 ---P-~I 4=e2"~ "" ~ ] - 7 z ~  + o, k + 0; ~), 

which is indeed well-behaved in the limit k-~ 0. Equation (8.24) is formally valid 
to all orders of (many-body) perturbation theory and for crystals of arbitrary 
point-group symmetry [27]. For cubic materials eq. (8.24) takes a particularly 
simple form, to be discussed next. 

8"3. Cubic  mater ia l s .  - For materials with cubic symmetry the macroscopic 
dielectric tensor (8.24) is equivalent to a scalar in the limit k - o  0, i.e. it is 
diagonal with equal elements: 

(8.25) lim ~M(k; o~) = eM(oJ) 7 .  
k ~ 0  

Here eM(~) can be obtained, in particular, from the longitudinal-longitudinal 
element of the matrix (8.20) by taking into account eqs. (8.21c) and (8.23a): 

(8.26) eM(~O) = 1 -- lim v(k + 0)~R(k + 0, k + 0; ~), 
k ~ 0  
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where 

(8.27) za(k + 0, k + 0; ~) ~ 0  k2 ~R(CO), 

for ~M(k; ~) to be well-behaved in this limit. 
Equations (8.25) and (8.27) can be proved by exploiting the Lehmann 

representation (5.10) of the proper correlation functions (8.22d) and (8.22a), in 
the order. For completeness, we sketch the proof below. 

i) Proofofeq. (8.25). Equation (8.25) results from the following symmetry 
property of the proper current-current correlation function: 

(8.28) ~ - 1 .  ~ a ( ~ k ,  ~ k ;  ~). ~ = ~ (k ,  k; ~o), 

where ~ is the rotation part of a symmetry transformation { ~ [ w }  of the 
crystal. Equation (8.28), in turn, follows from the invariance under this 
transformation of the set of projection operators (built from many-body 
eigenstates of given energy) that  enter the Lehmann representation. Taking the 
limit as k--* 0 of both sides of eq. (8.28) and choosing successively ~ to be, e.g., a 
rotation by = about the x-axis, a rotation by = about the y-axis, and a rotation by 

A 

2=/3 about the l l l -axis  [28], one may readily prove that  ~(0,  0; o~) is equivalent 
to a scalar. 

ii) Proof of eq. (8.27). Equation (8.27) follows from the Lehmann 
representation of the proper density-density correlation function together  with 
the property 

(8.29) f dr (Yl~(r)JY, s) = O, 

for s r  (cf. eqs. (5.10) and (5.11)) and the fact that the system possesses an 
energy gap. (QED) 

The result (8.25) simplifies considerably the discussion of the optical 
properties of cubic semiconductors. In particular, one may write for the induced 
current (cf. eqs. (8.6b), (8.16), (8.18), and (8.20)) 

(8.30) ~m Jma(k + 0; ~) = - ioJ 4= E~t(0; oJ) , 
eM(~) 

where the transverse and longitudinal components have been explicitly indi- 
cated. Equation (8.30) implies, in particular, the well-known results that  there is 
no transverse screening effect in the long wavelength limit and that  a transverse 
perturbing electric field excites only transverse induced currents [25]. It  then 
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follows that we can find purely transverse solutions to Maxwell's equations (8.9), 
whereby ~(r; ~) = 0. Setting 

(8.31) A ( r ;  oJ) = Ao exp [i~. r] 

and taking 

(8.32) j~nd(r; o9) = -- io9 Z~ o~), 
4r, c 

we find that the propagation vector ~ satisfies the d i s p e r s i o n  r e la t i on  

o92 
(8.33) ~2 = -~  eM(~) �9 

In writing eq. (8.32), we have assumed that the real and imaginary parts of ~ are 
small enough for the space Fourier transform of eq. (8.31) to contain only small 
wave vectors k. In this way the same constant eM(OJ) is pertinent to all Fourier 
components of the wavepacket (8.31). 

Conventionally, one writes the propagation vector ~ in terms of the index of 
refraction (n) and of the extinction coefficients (x) 

(8 .34)  ~ = $ - ~ ( n  + i •  
C 

where ~ is the unit vector in the direction of propagation. One can then express 
the average energy flux in the medium corresponding to the (real part of the) 
solution (8.31) through a Poynting's vector of the form 

(8.35) (S>=  s c ~  ~2~2 exp [ -  2~x~. r] .  
o 87~ It, C2 ~10 C 

The coefficient of the exponentially decreasing factor in eq. (8.35) is called the 
a b s o r p t i o n  coe f f ic ien t  r, [39], and may be also expressed in terms of the 
imaginary part e2(oJ) of the macroscopic dielectric function eM(O~) by using the 
dispersion relation (8.33): 

(8 .36)  V(og) = o9 e2(o9) 
c n(og)" 

This expression for ~ can alternatively be obtained by calculating the power 
absorbed by the medium. To this end, we identify the rate at which the 
electromagnetic field does work on the system as the time rate of change of the 
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mean value of the system Hamiltonian (2.1) [24] 

(8.37) dq~_ d (w(t)l/~lT(t)} = i (w(t)l[/4'(t), (/4+/4'(t))]lw(t)) 
dt dt h 

where IF(t)) is the wave function of the system driven by the electromagnetic 
field and /-t'(t) is the interaction Hamiltonian (C.1) (without the diamagnetic 
term). Standard manipulations lead to 

(8.38) dgP_ 
dt 

- -  - -  - -  f d r V ? e x t ( r ,  t ) .  Jind(r, t) + 

is o)m ] + drA(r, t) ~t d(r, t ) + e 2 ( N l ~ ( r ) l N ) A ( r ,  t) , 
m c  

where use has been made of the continuity equation and a surface term 
originating from integration by parts has been dropped. To recover from eq. 
(8.38) the classical expression involving only the induced current and the 
(perturbing) electric field, we should perform the t ime average of eq. (8.38) over 
the time interval ( -  T, + T) during which the perturbation acts on the system. 
(For periodic disturbances, it is actually enough to average over one cycle.) We 
obtain 

+T +T 

/ d g P \ _  l__l_ ! .., dgr 1 f dt, f dr,iod(r, t ,) .EP(r, t,), (8.39) \ d t  / 2T_  at d t '  =2--T_~ 

where we have performed an integration by parts over t' and recalled eq. (8.3). 
Equation (8.39) holds quite generally for any type of material. For  a cubic 

semiconductor we may consider a solution of the form 

(8.40) 

Eew(r; ~o) = =[EPT(r) ~(~o -- co0) + E~(r)* ~(~ 

l Eer(r) = i ~~ Ao exp [i,4.. r] 
C 

+ o~o)], 

(~0 > 0), for which 

(8.41) (_~_f \ ~0 
t / = ~ e2(o~o) f drlE~(r)l 2 �9 

Defining the absorption coefficient as the ratio between the (time-averaged) 
energy absorbed by the system (per unit time and per unit volume) and the 
energy flux in the medium (for the same unit volume), we are able to recover eq. 
(8.36) from eq. (8.41). 
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One may also verify that the (time-averaged) energy absorbed by the system 
per unit time can be obtained directly for a transverse vector potential 
corresponding to eq. (8.40) by calculating the transition probability per unit time 
from the Golden rule. This calculation shows, in addition, that 

(8.42) ~ ( k  + 0, k + 0; OJ)W = ~ ( k  + 0, k + 0; oJ)T, 

for the transverse submatrices in the limit k--* 0. This result can be interpreted 
by saying that the proper density-density correlation function describes the 
response of a (cubic) semiconductor (or insulator) to a transverse electric field of 
long wavelength [25]. Notice that eq. (8.42) could have alternatively been 
obtained from eq. (8.23d) by showing that the second term at the right-hand side 
of that equation vanishes by symmetry in the long-wavelength limit [30]. 

8"4. Time-dependent-screened-Hartree-Fock approximat ion in a local- 
orbital basis. - The result (8.26) for the macroscopic dielectric function holds 
quite generally whatever form of the proper density-density correlation function 
is inserted at its right-hand side. We now discuss some numerical results which 
have been obtained for (cubic) covalent crystals such as diamond [31] and 
silicon [32, 33], and more recently for GaP [34], whereby the important many- 
body mechanism is the screened interaction within an electron-hole pair created 
in the polarization process. Parallel calculations of the photoabsorption cross- 
section in atomic systems within the RPAE approximation have also emphasized 
the importance of the above mechanism [35], although methods for different 
systems rely on different computational schemes. In particular, for 
semiconductors the use of a local-orbital basis to represent single-particle wave 
functions has made it possible the inclusion of the excitonic effect on top of local- 
field effects. 

As discussed in sects. 2-4, the dynamics of the many-body processes 
occurring in the system response is embodied in the choice of the functional form 
of the self-energy operator, since the effective two-particle interaction can be 
obtained from it by functional differentiation. Consistency with conservation 
laws further restricts the choice of the self-energy, as discussed in sect. 6. For 
the purpose of describing the optical properties of semiconductors it is 
apparently sufficient to take for the non-Hartree part of the self-energy operator 
(cf. eqs. (3.11) and (3.12)) 

(8.43) M(1, 2)= ihW(1 § 2) G1(1, 2), 

as well as to neglect the variation of the dynamically screened interaction while 
calculating the functional derivative: 

~M(1, 2) 
(8.44) 

~G1(3, 4) 
- -  ~ -  i h  8(1, 3) 8(2, 4) W(1 § 2). 
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Equation (8.44) would become exact if W in eq. (8.43) would be replaced by the 
bare Coulomb potential. In this case the system response is said to be 
approximated within the time-dependent-Hartree-Fock approximation, which 
has been used with success for several atomic systems. For semiconductors, 
however, the screening of the electron-hole attraction is an essential feature 
which cannot be neglected in calculating the optical spectra. The same conclusion 
will consistently be reached when discussing the single-particle energies (sect. 9) 
and the (bound) excitonic levels (sect. 11). 

The form (8.43) for the mass operator (the so-called GW approximation) has 
been first discussed by Hedin in conjunction with properties of the electron 
gas [36]. This form is consistent with conservation criteria provided that the 
dynamically screened interaction is evaluated within the random-phase- 
approximation (RPA), i.e., by approximating the (irreducibile) scalar vertex 
function that enters the expression (3.26) of the irreducibile polarizability by its 
lowest-order expression. An example is given in fig. 3e). Going beyond the RPA 
approximation (by introducing, e.g., a screened electron-hole interaction in the 
bubbles) requires, in principle, the addition of other terms to the mass operator 
in order to be consistent with conservation criteria (cf. fig. 3f)). By the same 
token, the approximation (8.44) where some terms at the right-hand side have 
been dropped, violates in principle the conservation criteria. In practice, 
however, in calculating the optical response one usually approximates the 
dynamically screened interaction by a static screened potential obtained from a 
phenomenological dielectric function 

(8.45) W(1 +, 2) -- W~(rl, r2) ~(t{ - t2) , 

and keeps the form (8.44) for the kernel of the Bethe-Salpeter equation. 
Consistency with conservation criteria is then limited to a numerical check on the 
accuracy to which the longitudinal sum rule is satisfied. Further comments on 
the practical importance of a formal violation of conservation criteria in the 
calculation of the band structure of covalent semiconductors will be given in 
sect. 9. 

We pass now to solve the integral equation (C.16) whose kernel (C.15) is 
approximated by eqs. (8.44) and (8.45). It is convenient to eliminate at the outset 
both the spin variables according to the prescriptions of appendix D and the time 
variables by first pairing them as in eq. (C.18) and then taking the Fourier 
transform with respect to the resulting relative time. We obtain 

(8.46) L(rl,  r2; r{, r~[ro)=Lo(rl, r2; r~, r~l~o) + 

+ ih f dr3draLo(rl, 1"4; rl, rs[~o) W~(r3, r4)L(r3, !"2; r4, r~[~) 
2 
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where we have introduced the notation 

(8.47) , 1 d ~ o ' , ~ .  , ,. Lo(rl, 1"2; r~, r~]o~) = fi j ~-= ~1(rl, ~; ~o + ~ ) G,(rz, r~, ~') 

for the noninteracting part. Notice that the factor of two at the right-hand side of 
eq. (8.47) originates from the spin degeneracy. Notice also that in eq. (8.46) the 
frequency ~ is a parameter. 

To proceed further, we represent all single-particle Green's functions 
entering eq. (8.46) in the quasi-particle approximat ion  of the form 

(8.48) 
uk(r~) u~(r~)* 

Gl(r l ,  09) r2; 

where ~---~ 0 § and the Fermi level sr is placed within the gap. In eq. (8.48) the 
u~(r) are (orthonormalized) single-particle wave functions which are assumed to 
be known by a previous solution of a band eigenvalue problem. In practice, they 
are approximated by a .~;~ or a local-density calculation. Although eq. (8.48) is not 
the most general form for a single-particle Green's function, it turns out to be a 
suitable approximation to describe the optical properties of semiconductors. In 
sect. 9 we shall justify the choice (8.48) as well as its internal consistency. 

Entering eq. (8.48) into eq. (8.47) yields 

(8.49a) 

where 

Lo(rl, rz; r~, ~loJ)= 

= E uk~(rl)Uk~(r2)Lo(kl,k2; k~, k~l~)Uk.l(r~)*uk,~(~)*, 
kl k2 ki k~ 

(8.49b) Lo(kl, k2; k~, k~l(,J)-- 

_ ,  7 

Here the step functions discriminate conduction bands from valence bands 
states. (Notice that the infinitesimal imaginary parts in the energy denominators 
in eq. (8.49b) correspond still to time-ordered quantities. Analytic continuation 
to retarded quantities will eventually be performed by replacing i3--) - i8 in the 
second energy denominator within brackets). We may similarly expand 

(8.50) L(rl, 1"2; r~, r~l~)= E ukl(rl)uk~(r2)L(kl,k2; k~, k~[oJ)uk,,(r~)*uk,(r~)* 2 
k 1 k 2 ki k~ 

and transform eq. (8.46) into an integral equation for the coefficients at the right- 
hand side of eq. (8.50) by invoking the assumed orthonormality of the single- 
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particle wave functions. A more handy matr ix  equation can instead be obtained 
by representing the single-particle wave functions in eqs. (8.49a) and (8.50) in a 
local-orbital basis [31]: 

(8.51) U n k ( r )  ~_ ~/~,~ - 1/2 E exp [ i k  " l ]  r - l )  C . n ( k )  . 

Here we have specified the label k to signify the pair (n, k) where n is a band 
index and k is a Bloch wave vector, ~4" is the number of lattice sites, and the 
orbital r  I) is localized about the lattice site l. In eq. (8.51) it is understood 
that the set {t~} is sufficient to describe the valence and conduction bands which 
are coupled by optical excitations. 

The following steps allow us then to transform the Bethe-Salpeter equation 
(8.46) into a matrix equation: 

i) set r l  ---- r{ and r2 = r~ in the light of eq. (C.18); 

ii) multiply both sides of eq. (8.46) by t ) - i e x p [ - i ( q + G ) ' r ~ ]  �9 
�9 exp [i(q + G').  rl], where q now stands for a Bloch wave vector, and integrate 
over I"1 and r2; 

iii) use the symmetry properties of the screened interaction Ws(r3, r4) 
when shifting both coordinates by the same lattice vector as well as when 
interchanging r~ ~ 1"4. 

After suitable shift of integration and of (discrete) summation variables, we 
obtain eventually 

(8.52) 1 E Ac(q + G) tNc~,(q; ~o) - N~162 ~o) - 
-~O c, c' k 

ih ~. N~,,(q; ~o) ~ o . V~,,e.(q)N~.c,(q, oJ) A~(q + G') 
c,,c ,~ J 

= 0 .  

In eq. (8.52) ~90 is the volume of the Wigner-Seitz cell, the collective index (,C~) 
stands for the triad (l, v, t~) which appears in the form factors 

(8.53) Ac(q + 6) = f d rea r )  exp [ -  i(q + 6 ) .  r] r - 1), 

and we have introduced the matrices 

(8.54) 
1 BZ 

Ncc,(q; ~) = ~ ~, ~ c*(k)  c,~,(k + q) exp [i(k + q).  1]. 
nl n2 n3 n4 

�9 L(n~k' ,  n~k + q; ink '  + q, r~klco) e x p [ -  i(k' + q).  l ']c*~(k' + q)c~,~(k'), 
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(8.55) 

(8.56) 

N~ oJ) = 1 ~ ~ c*(k) c~nl(k + q) exp [i(k + q). (1 - / ' ) ] .  
- - ~  k n l ~ 2 

2i [.0(e,c(k) - eF) 0(e~ - ~ ( k  + q)) 
"-h-- [ ~n,(k + q ) -  ~-~-k~ ~-/-~----h-~ 

O(~F- %(k))O(~.:(k + q)-  ~)l 
- -~:(-k~---~:~-~-~-~i-~----h-~ -jc+,~(k)c*n,(k +q),  

Vc~'(q) = E exp [ -  iq. m]. 
m 

�9 <r - m) r 1 - m)lWgr, r')l r (r') r  l ')>, 

which represent the irreducible polarizability, its RPA approximation, and the 
screened interaction in the local-orbital basis, respectively. For reasons that  will 
soon become clear, eq. (8.56) is called the (screened) exchange Coulomb matrix. 

Equation (8.52) can, in general, be satisfied if the matrix within braces 
vanishes identically. This is the desired matrix equation, which can be formally 
solved to give 

(8.57) .[1 
in matrix notation. The practical convenience of this computational scheme is 
apparent at this point whenever the spatial localization of the orbitals r 
drastically limits the range of the index c in eq. (8.52) (cf. eq. (8.53)). In the 
limiting case of extreme localization one may, in particular, recover the classical 
Clausius-Mossotti relation from eq. (8.57) and below (cf. appendix F). 

Within the above approximations, the irreducible polarizability takes on the 
form 

(8.58) ~.(q + G, q + G'; o~) = -~o ~Ar + G)(- ih)Ncc,(q; oJ)A~(q + G'). 

The proper polarizability, which is needed to evaluate the macroscopic dielectric 
function (8.26), may be similarly expressed as 

(8.59) )~(q + G, q + G'; ~o) = ~o ~Ac(q + G)Scc,(q; oJ)A~(q + G'), 

where S is called the (proper) screening matrix. S can be determined by entering 
eqs. (8.58) and (8.59) into the integral equation (8.22a). One finds 

(8.60) 
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in matrix notation, where in the last line use has been made of eq. (8.57), and 

(8.61) VCc'(q) = -~o ~'~o A*(q + G) v(q + G)Ac,(q + G) 

is the (proper) Coulomb matrix. By adding to the right-hand side of eq. (8.61) the 
missing term with G = 0, one obtains the full Coulomb matrix which will be 
needed in sect. 9. The latter can also be cast in the form (8.56) with the 
interchange r ~ - r '  between the first and the last orbital. This justifies calling eq. 
(8.56) the (screened) exchange counterpart of the Coulomb matrix. 

The limit as q--* 0 can be taken in eq. (8.59), whereby the property (8.27) 
results from eq. (8.53) and the orthogonality of orbitals referring to valence and 
conduction bands. 

Details of the calculations are given in refs. [31-34]. Here we only comment 
on the main features of the results. One is interested in comparing the 
experimental spectrum of e2(~) with the calculated spectrum obtained within 
alternative approximations based on the result (8.60), namely, i) the time- 
dependent-screened-Hartree-Fock approximation (TDSHF) that takes eq. (8.60) 
as it stands, ii) the random-phase-approximation (RPA) that neglects the 
excitonic effect and thus sets V == 0 in eq. (8.60), and iii) the RPA with the 
further neglect of local-field effects (RPA) that sets also V c= 0 in eq. (8.60) [37]. 
Figures 4 and 5 show the results for diamond and silicon, respectively. Common 
trends for both materials are that passing from the RPA to the RPA 
approximation furthers the discrepancy with experiment, while good agreement 
with experiment is re-established by the inclusion of the excitonic effect 
(TDSHF). Notice how these effects are more pronounced for diamond than for 
silicon, as expected from the different degree of localization of the orbitals. 
Similar results are found for GaP [34]. 
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As a ~<rule of thumb,, the excitonic effect tends to pull the strength of the 
absorption coefficient toward the low-energy side [38], a feature which can also 
be accounted for by the use of a simplified model [39]. The numerical results also 
show the appropriateness of describing the absorption above the fundamental 
gap in terms of localized orbitals, since large regions of k-space contribute to the 
main peaks. This has to be contrasted with the description of excitonic bound 
states below the fundamental gap whereby the use of the so-called effective- 
mass-approximation is found to be appropriate for semiconductors (cf. sect. 11). 

9. - Single-particle energy levels. 

In the previous section the underlying single-particle band structure needed 
for calculating the optical spectra of semiconductors (cf. eqs. (8.48) and (8.51)) 
has been assumed to be known and emphasis has been placed on two-particle 
effects over and above band-structure effects. Many-body techniques, however, 
allow us also to determine single-particle band structures of semiconductors. 
This study, on the one hand, is necessary for a consistency check on the optical 
spectra, and, on the other hand, has some interest of its own because single- 
particle energy levels can be directly probed whenever two-particle effects can 
be disregarded. In particular, assessing the role of many-body effects on the 
band structure of semiconductors bears on the so-called ~<band-gap problem- 
that arises from the inability of conventional local-density calculations to 
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reproduce the experimental band gaps of semiconductors [40]. It turns out that  
the ansatz (8.43) for the mass operator is sufficient for an accurate description of 
the band structure of (covalent) semiconductors and wide-gap insulators, at least 
for the cases studied thus far [41-44], this finding being consistent with the 
relevance of the excitonic effect on the optical spectra. 

The starting point for the connection between the single-particle Green's 
function and the band structure is the observation that  the poles of the time 

'Four ier  transform of the single-particle Green's function (in the absence of an 
external t ime-dependent potential) correspond to the energies of excitation of 
quasi-electrons and quasi-holes [45]. As the poles might be complex, these are 
approximate excited states of the (N + 1)-particle and ( N -  1)-particle system, 
respectively. A suitable algorithm to locate these poles starts by taking the time 
Fourier  transform of Dyson's eq. (3.14) with U =  0 

(9.1) [h~o - h(r)] Gl(r, r'; ~) - f dr"2 (r, r"; ~o) Gl(r", r'; ~o) = ~(r - r ' ) ,  

and then proceeds by considering the associated right and left eigenvalue 
problems [17] 

(9.2a) f r. h(r)~,,(r; ~o)+ dr'2:(r,  r ,  ~)~(r ' ;  o~)= $~(o~)~.,(r; ~o) 

(9.2b) f ~ I~ h(r)~.,(r; ~o)+ d r ' ~ ( r ,  ~)Z(r ' ,  r; oJ)= ~ (~ )~ ( r ;  ~), 

whereby o~ is regarded as a parameter. In these equations, the self-energy acts 
as a nonlocal and energy-dependent potential [46]. The eigensolutions of eqs. 
(9.2) are assumed to form a complete set and to satisfy the orthonormality 
relation 

(9.3) fdr,~,,(r; ~)~,(r; oJ) = ~v,. 

The single-particle Green's function can thus be expressed in the bilinear form 

(9.4) 
~(r;  ~)~v(r, ~) 

Gl(r, r'; ~) = ~  h~ - ~v(~) 

Equation (9.4) can be considerably simplified when the resonances occurring at 
hoJ-~.,(o)) are narrow. In this case, one usually adopts the so-called quasi- 
particle approximation [47] which assumes that  the singularities originating 
from the energy denominator in eq. (9.4) form the dominant  contribution to the 
single-particle Green's function: 

(9.5) 
~) = ~'.gv ~(r;  Re{~o~}) " " ~v(r, Re{co.,}) 

Gl(r, r'; h~o - ho~ ' 
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where ~ are determined by the condition 

(9.6) ~,,(~.,) = h~,~ 

and we have introduced the renormalization factor 

(9.7) g~= 1 dco ~ 

Since the skew-Hermitian part of the self-energy operator changes from being a 
positive operator to being a negative operator as hco increases through the 
chemical potential [47] (which for a semiconductor lies within the energy gap ~g), 
the imaginary part of ~,, changes sign correspondingly. This remark implies, in 
particular, that if the self-energy did not depend on oJ, its skew-Hermitian part 
would vanish and consequently eq. (9.5) would become exact with g, = 1. This is 
indeed the case for the Hartree-Fock approximation 

+ ~  

(9.8) 2:H~(r, r ' ) = - i h S ( r - r ' ) 2 f d r " v ( r - r " )  f ~d~ exp [ico'8]Gl(r", r"; co') + 

+ ~  

f " '~ " co') dco' exp [ ~  0] Gl(r, r ,  + ihv(r - r') ~ 

where the factor of two in the Hartree term originates from the spin sum and the 
convergence factor in the frequency integrals selects the contribution of the 
states below the chemical potential in eq. (9.5). 

The Hartree-Fock approximation represents conceptually a good reference 
level to study many-body effects since it corresponds to the ,,best~) single- 
particle picture whereby each particle is assumed to move under the influence of 
the average interaction with all other particles [48]. However, when applied to 
real materials it gives, e.g., energy gaps that are by far too large compared with 
the experimental values. For instance, in the case of diamond one obtains a value 
of 15.0 eV for the gap [49] which is about twice the experimental value (7.3 eV). 
The reason for this serious deficiency of the Hartree-Fock approximation can be 
traced in the lack of relaxation processes which should accompany the primary 
single-particle excitation, namely, the rearrangement of the passive electrons to 
the addition of an extra electron or to the creation of a hole. The success in 
describing the optical properties (sect. 8) suggests that the ansatz (8.43), which 
replaces the bare Coulomb interaction v of the Fock term with the dynamically 
screened interaction W, can actually account for the above polarization processes 
in semiconductors. Moreover, to address important questions such as the 
influence of the energy dependence of the dielectric matrix on the self-energy 
shifts and the goodness of the quasi-particle approximation in semiconductors, 
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we will keep the full time dependence of eq. (8.43) in the calculation and resort to 
a static approximation of the type (8.45) only for comparison. 

The adding of correlation effects within the GW approximation (8.43) on top 
of a Hartree-Fock band structure was the line followed in the original calculation 
for diamond [41] which was chosen as a prototype of covalent materials. The 
reasons for this choice were essentially the availability of accurate Hartree-Fock 
calculations for this light-core material as well as the appropriateness of a local- 
orbital representation for the valence and conduction bands which is needed for 
an accurate description of the screening properties (cf. subsect. 8"4). Later  
work [42-44] has used as starting point local-density band-structure calculations 
which have the advantage of being more readly available than Hartree-Fock 
calculations. Here we follow the approach of the prototype calculation for 
diamond [41] for pedagogical reasons. 

The local-orbital representation (8.51) for the single-particle wave functions 
allows us to reduce the quasi-particle equation (9.2) to an algebraic eigenvalue 
problem for the coefficients c~,(k) [50] 

(9.9) Z((~[~(k)l~') + (~lM(k; E,(k))l~') ) c~,n(k) = E,(k) c~,(k). 

Here we have introduced the notation 

(9.10a) (~l~(k)l~'> = • exp [ik . l] ( r  1) ) , 
I 

(9.10b) (~lM(k; E)I~'} = Z exp [ik. l] (r r'; E)lr - l ) ) ,  
I 

where hay(r) contains the Coulomb effects both of the nuclei and of the average 
electronic charge distribution in the ground state (Hartree term). Notice that 
the condition (9.6) has already been taken into account in eq. (9.9). 

For the expressions (9.10) to be of practical importance the summations over 
the lattice sites ! should be rapidly converging. This is certainly the case for the 
matrix elements of the local Hamiltonian in eq. (9.10a), provided the local 
orbitals are sufficiently localized, while for the convergence of eq. (9.10b) the 
short-range property in I r -  r' I of the mass operator in required in addition [17]). 
Crystal symmetry also considerably reduces the number of independent matrix 
elements in eqs. (9.10). For diamond a minimal set of ten independent matrix 
elements has proven sufficient [41]. 

The expression of the mass operator within the GW approximation to be 
inserted in eq. (9.10b), namely 

(9.11) 
+ ~  

i f  M(r, r'; E)=~-~= _~ dE'  exp[iE'e]Gl(r, r'; E + E')W(r,  r'; E') 
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can be split in terms of the Hartree-Fock MHF (the second term at the right-hand 
side of eq. (9.8)) and of a remainder M', whereby the dynamically screened 
interaction in eq. (9.11) is replaced by 

(9.12) 
( 

?. 
E )  = J dr1 dr2 v ( r  - rl) zw(ri, r2; E ) v ( r 2  - r ' )  , W ' ( r ,  r , 

ZT being the (time-ordered) polarizability matrix. The matrix elements of MHr 
can thus be determined by fitting a Hartree-Fock band structure 
calculation [49]. The matrix elements of M', on the other hand, need to be 
explicitly evaluated. To this end, it is convenient to exploit the local-orbital 
representation for ZT which is obtained from eq. (8.59) by replacing the proper 
screening matrix S with the full screening matrix S that contains also the term 
with G = 0. This is because, contrary to the description of the optical properties 
where the limit q - . 0  is in order, the short-range nature of the electronic 
correlations requires an accurate description of XT(q + G, q + G'; E) for al l  q. 
The result can then be expressed in terms of the matrix 

(9.13) W~, .... %,:,(q; E)= E E V .... , , , ,(q)Sl, , .r/ , ,(q; E )  Vr,,~, ,,w=,(q), 
I.~ 1%'.' 

where now the indices (~, =) refer either to a pair of bonding or antibonding 
orbitals, or to a bonding and an antibonding orbital. Details of the calculation are 
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Fig. 6. - Quasi-particle band structure of diamond calculated within the Hartree-Fock 
approximation (dashed-dotted line) and within the GW approximation with the screening 
taken within the TDSHF approximation (full line) (from ref. [19]). 
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given in ref. [41] where the numerical methods adopted to make the scheme 
working in practice are also described. 

The quasi-particle valence and conduction band structure of diamond (that is, 
the real part of the eigenvalues E~(k) of eq. (9.9)) is shown in fig. 6 for two 
symmetry directions. The label TDSHF signifies, as in sect. 8, that both local- 
field effects and the electron-hole attraction have been included in the screening 
properties entering eq. (9.13). The Hartree-Fock band structure from ref. [49] is 
also shown for comparison. In fig. 7 the quasi-particle band structure TDSHF is 
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Fig. 7. - Quasi-particle band structure of diamond calculated within the GW 
approximation with the screening taken within the TDSHF approximation (full line) and 
within the RPA approximation (dotted line) (from ref. [19]). 

compared with the RPA simplified form obtained by neglecting the electron-hole 
attraction in the screening properties. Several interesting features can be 
inferred from these calculations. 

i) Self-energy corrections to the Hartree-Fock eigenvalues are positive 
for holes and negative for electrons, thereby reducing the amount of energy 
required to produce an electron-hole pair. In particular, a drastic reduction of 
the diamond band gap at F occurs from the Hartree-Fock value (15.0 eV) to the 
final correlated value (7.4 eV) within the TDSHF approximation, in very good 
agreement with the experimental value. Notice also that the magnitude of self- 
energy corrections for the valence bands is larger than for the conduction bands, 
thereby matching a general ,,rule of thumb), that to larger effective masses 
correspond larger self-energy corrections. 

ii) The magnitude of the self-energy corrections within the RPA 
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approximation is smaller than the corresponding value within the TDSHF 
approximation; in particular, the RPA band gap is increased by about 1 eV 
compared with the full calculation. This is consistent with the ab initio values 
obtained for the long-wavelength static dielectric constant eo within the RPA 
(4.25) and TDSHF (6.10) approximations, respectively, thereby fulfilling the 
other ,~rule of thumb, that self-energy corrections increase with ~o. Thus, 
although it formally violates conservation criteria, the TDSHF approximation 
gives in practice better results for the quasi-particle band structure and for the 
optical properties than the RPA approximation (cf. also sect. 8). 

iii) At any given k, the magnitude of self-energy corrections increases 
away from the gap region, resulting in a narrowing of the valence bandwidth. In 
particular, the Hartree-Fock bandwidth (29.0 eV) is reduced to 25.2 eV by the 
TDSHF calculation, a value which is rather close to the experimental value of 
24.2 eV. To assess the importance of the energy dependence of the self-energy 
operator across the valence bands, an additional calculation has been performed 
where the energy dependence of the matrix elements (9.13) has been (almost) 
neglected by taking their values at E = 0 and cutting off the energy integration 
of eq. (9.11) past the plasma resonance. The result is that, while the energy gap 
is found practically unchanged with respect to the full calculation, the valence 
band width now comes out to be essentially unrenormalized with respect to the 
Hartree-Fock value. This suggests that an energy-independent approximation 
works well at energies about the gap, while the energy-dependence of the self- 
energy becomes progressively important as soon as we leave the gap region 
moving down through the valence bands. This finding corresponds to an 
increasing weight of the plasma resonance in the energy integration of eq. (9.11) 
with respect to the low-lying electron-hole continuum, as one proceeds deep in 
the valence bands. To make a further check on this point, the contribution of the 
plasma resonance to the full calculation has been neglected by terminating the 
energy integration before the onset of the plasma resonance. No variation has 
been consistently found on the gap. Similar results have been found for 
silicon [42], confirming that quasi-particle properties in the vicinity of the gap 
are essentially entirely determined by coupling to electron-hole excitations. 

iv) The self-energy corrections of figs. 6 and 7 show a weak, although 
noticeable, k-dependence, being in general more pronounced away from the 
centre of the Brillouin zone. This is consistent with the short-range property of 
the mass operator discussed after eqs. (9.10) and indicates that self-energy 
corrections are essentially dominated by large albeit rigid shifts of the valence 
and conduction bands. 

A comment on the self-consistency of the single-particle Green's function is 
in order at this point. For the purpose of evaluating the matrix elements of the 
mass operator, the single-particle Green's function entering eq. (9.11) has been 
represented in the form (8.48) with the bands taken from a previous X~ 
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calculation which is closer to the final result than the Hartree-Fock calculation. 
Once the new quasi-particle band structure has been obtained by solving eq. 
(9.9), however, the calculation should in principle be repeated using again for G1 
an approximate expression of the type (8.48), until self-consistency is attained. 
While in the original calculation for diamond this kind of self-consistency has not 
been achieved, later work [44] has verified that iteration causes only a small 
further change for the spectrum which is whithin the estimated numerical error 
(0.2 eV). 

We finally discuss the decay of (valence) quasi-holes in diamond which can be 
calculated whenever the approximation for the mass operator is energy 
dependent. Within the GW approximation the mechanism responsible for this 
decay is the Coulomb interaction among the electrons which leads to radiation- 
less transitions to final states with more than one hole in the valence bands 
(intra-band multiple Auger processes). Clearly, these processes must be 
consistent with energy conservation and the decay rate must vanish below a 
threshold, rising sharply beyond it. For diamond the decay rate can be estimated 
to become noticeable about 10 eV below the top of the valence bands. In fig. 8 the 
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Fig. 8. - Imaginary part of quasi-hole levels in diamond along two different symmetry 
directions within the TDSHF approximation (from ref. [19]). o along A, + along A. 

imaginary part of the eigenvalues En(k) of eq. (9.9) is shown versus the real part 
along two symmetry directions. (Recall that the corresponding lifetime of the 
approximate ( N -  D-particles states is given by (2Im(E,(k)})-l.) The characte- 
ristic value of about 1 eV for this quantity sets an intrinsic limit of consistency on 
the validity of the quasi-particle approximation which has extensively been used 
in our calculations. 

Some of above results can be understood, at least qualitatively, in an 
analytical way. To this end, we represent the (time-ordered) polarizability 
matrix ZT entering eq. (9.12) in the form (5.9) (where A and B are now identified 
with the density operator), and we perform the energy integration in eq. (9.11) 
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by suitably closing the contour in the complex energy plane. We obtain for the 
diagonal matrix elements of the remainder M' 

~k) u~.(r') = (9.14) d r d r '  u * ( r ) M ' ( r ,  r ," 

f ) I- - r '  r '  = ~ d r  dr '  u*(r )  u~.,(r) v ( r  - -- Z iCj, 

where o~ are the excitation energies of sect. 5. For ~k at the top of the valence 
bands the first term within brackets at the right-hand side of eq. (9.14) 
dominates over the second one, yielding a positive self-energy shift, while for ~k 
at the bottom of the conduction bands is the second term that dominates over the 
first one, yielding a negative self-energy shift. Combination of the two effects 
results then in a net narrowing of the band gap compared with the Hartree-Fock 
value. However, if one neglected the energy dependence of the screened 
interaction altogether and took W ' ( r ,  r'; E )  outside the energy integral in eq. 
(9.11), one would obtain a self-energy correction 

(9.15) d r d r '  u*(r )  M ' ( r ,  r ,  ~ )  u~(r') 

f r ' ) ~ ( r ' )  2 2 ,  = E E O ( ~ r - ~ k  ') d r d r ' u * ( r ) u k . ( r ) v ( r -  
s ~ 0  k' 098 

which is manifestly positive for both electrons and holes [51]. The fact that s o m e  

sort of energy dependence of the screened interaction should be retained is borne 
out, in particular, in the prescription for obtaining the COHSEX 
approximation [5], which is sometimes used for comparison with the full 
dynamical calculations [41, 44]. 

To get additional insight, we may further simplify eq. (9.14) by neglecting 
the local-field effects in the screening (although they are important for getting 
good quantitative results), and by approximating the low-lying electron-hole 
continuum and the plasma resonance (in which the energy range covered by the 
dielectric function is usually partitioned) by two modes with dispersion ~(q) and 
~2(q), respectively. We thus take 

(9.16) e~l(q; oJ) = 1 + ~- 
o~ 2 - (o~,(q) - i~) 2 ~o 2 - (coz(q) - i3) 2 ' 

where the sign of the infinitesimal imaginary frequency corresponds to a time- 
ordered quantity, and the coefficients ~9~ and ~22 are related to the plasma 
frequency by the sum rule (E.5) 

(9.17) t)~ + D~ = ~o~. 
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The self-energy shift now becomes 

(9.18) 
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f r. drdr' u~(r)M'(r, r ,  sk)uk(r') ~-- 

0 ( ~ , -  ~F) 7 

~ 2~o~(q) [~k - ~'  + ~o~(q) - i~ ~k - ~k' - ~'J 

which shows at glance that the valence bandwidth Asva~ is shrinked by the plasma 
resonance for A~v~<~o2(q). A corresponding analysis can be done for the 
imaginary part of the self-energy shift. 

10. - S c r e e n i n g  o f  s t a t i c  i m p u r i t i e s .  

The mass operator considered in the previous section was assumed to 
possess the full symmetry of the crystal. In real materials this symmetry is often 
destroyed by the presence of impurities which may sit either at crystalline sites 
(substitutional impurities) or at interstitial sites (interstitial impurities). In both 
cases, the electronic density rearranges about the impurities which, therefore, 
test the screening properties of the crystal both locally and at large distances. 

In the simplest case of a single weak impurity the theory of linear response to 
an external (static) scalar potential can be applied. In fact, the change in the self- 
energy operator to lowest order in the (bare) impurity potential Vamp(r) is given 
by 

(10.1) I ( ~G~1(1'2)) vimp(3)= 2~(1, 2 ) -  Z(1, 2 ) = -  d3 ~(1, 2)~(1, 3)-~ ~U(3) " 

-- - r 2) Vimp(1) + f d3F(1, 2; 3) Vunp(3), 

where 2; is the self-energy operator of the perfect crystal. Equation (10.1) has 
been obtained by combining Dyson's equation in the form (B.4) with the 
definition (C.6) for the reducible scalar vertex function. Notice that, upon 
insertion of eq. (10.1) into eq. (3.14), the first term at the right-hand side of eq. 
(10.1) cancels with the potential term. One may thus regard the second term at 
the right-hand side of eq. (10.1) as the effective change in the self-energy 
operator over and above the perfect crystal expression [18]. 

The screened impurity potential can be introduced at this point by recalling 
the definitions (3.17) for the irreducible scalar vertex function and (3.19) for the 
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inverse (longitudinal) dielectric matrix. One obtains 

(10.2) f d3 F(1, 2; 3) Vimp(3) = - f d3 ~V~ 1(1, 2) Vimp(3) = 
~U(3) 

( ~G1 1(1, 2) ~V(3) 
Vimp(4) = f d34/~(1, 2; 3) � 9  1(3, 4) Vimp(4) = = -- Jd34 ~ ~U(4) 

= f d3/~(1, 2; 3) r 

where use has been made of the ,,chain rule, (A.8) and 

(10.3)  r ---- fd2  � 9  2) Vimp(2) ---- fdr2 � 9  1"2; oJ ---- 0) Vimp(r2) 

is the (statically screened) impurity potential. Since at zero frequency the time- 
ordered inverse dielectric matrix in eq. (10.3) coincides with its retarded 
counterpart (cf. sect. 5), eq. (10.3) could have alternatively been obtained within 
linear response theory as the change in the Hartree potential resulting from the 
induced charge density about the (static) impurity [52]. Retaining only the 
effects of the impurity potential (10.3) corresponds to approximating 
/~(1, 2; 3)= ~(1, 2)~(1, 3) in eq. (10.2), i.e. to neglecting vertex corrections. It 
has been shown [18] that for a Coulombic impurity, whereby the Hartree 
potential (10.3) is O(r-1) at large distance r from the impurity, vertex corrections 
produce terms of shorter range [O(r-2)]. Within the GW approximation used 
previously, this feature results from the converge properties of the single- 
particle Green's function far from the impurity centre. 

We do not enter here into the question whether vertex corrections within 
linear screening or nonlinear screening effects (due to higher terms in the 
expansion (10.1)) might be relevant to the calculation of specific impurity 
levels [53]. Rather we focus on the impurity potential (10.3) (or, equivalently, on 
the corresponding induced charge density) and take advantage of the knowledge 
of � 9  l(r, r'; ~) developed in sects. 8 and 9 to determine the size of the corrections 
introduced by local-field and excitonic effects. Details of the calculations are 
given in refs. [33] and [54] where embedding a pointlike impurity with positive 
unit charge both at substitutional and interstitial positions in crystalline diamond 
and silicon was considered. Different levels of approximation are again identified 
by the acronyms TDSHF, RPA, and RPA where the latter now means 
neglecting the electron-hole attraction and taking �9 diagonal in the reciprocal 
lattice vectors. Figures 9 and 10 show the induced-charge density along two 
different directions for a substitutional impurity in diamond and silicon, 
respectively. These results demonstrate that in diamond both local field and 
excitonic effects introduce corrections of comparable magnitude. In addition, 
since these corrections are of the same magnitude of the isotropic RPA 
screening, both effects are crucial for a microscopic description of the impurity 
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screening. In silicon, on the other hand, there is a smaller difference between the 
RPA and the TDSHF approximations. Similar trends show up also at large 
distances from the impurity centre as it results, e.g., from the value of the total 
induced-charge density Qind = (1 - e0)/e0. For silicon one gets the values e0 = 10.9 
in the RPA, e0 = 10.3 in the RPA, and e0 = 11.6 in the TDSHF, that give values 
of Qmd within a 1% range. For diamond, there is about a 10% difference among 
the corresponding values of Qind- 

The fact that the electronic charge in silicon is more easily polarizable than in 
diamond manifests also in the strong anysotropy of the screening charge 
distribution which is more pronounced in diamond than in silicon. By analysing 
the contour plots in selected crystal planes [54, 33], one finds that charge flux 
toward the impurity in diamond is preferentially directed along the bonds, while 
in silicon this asymmetry is less pronounced. 

Finally, a parallel study conducted for an interstitial impurity shows that in 
both materials the screening is locally more efficient for the substitutional than 
for the interstitial case [54, 33]. 

Although the screened impurity potential (10.3) considered in this section 
was strictly static, other self-energy terms beyond the Hartree potential entail 
in general dynamical screening effects through the frequency dependence of the 
dielectric matrix. On the other hand, in the theory of excitons which is 
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considered in the next section (whereby bound states originate from the 
interaction of an excited electron with the hole left behind), the static linear- 
response screening of eq. (10.3) is replaced by an ,effective, screening function 
that depends self-consistently on the excitonic binding energy. 

11.  - E x c i t o n i c  s t a t e s .  

We have seen in sect. 5 from the Lehmann representation of the density- 
density correlation function that the poles of this function occur at the exact 
excitation energies of the subset of states which are coupled to the ground state 
through the density operator. For a crystalline semiconductor above the 
fundamental single-particle energy gap ~g these poles merge into a continuum 
and one may apply the methods of sect. 8 to calculate the strength of the 
absorption coefficient at any given frequency. It is below this edge, however, 
that the most striking two-particle effects over and above single-particle 
excitations take place, with the appearence of sharp peaks in the absorption 
coefficient that correspond to bound electron-hole pairs [55]. This new kind of 
states is associated with truly isolated poles of the density-density correlation 
function and is produced by the same many-body mechanism which is responsible 
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for the shift of the single-particle peaks in the continuum toward the low-energy 
side. In this section we describe an algorithm to locate these poles, which 
reduces the Bethe-Salpeter integral equation for the two-particle correlation 
function to an effective eigenvalue problem [12, 10, 8]. The need for this kind of 
algorithm arises also to circumvent the uncertainties in the single-particle band 
structure that might in practice be even larger than the spacing of the bound 
excitonic levels we are looking for. We shall, in fact, regard the underlying 
single-particle band structure as given (at worst, by fitting the energy gap to the 
experimental value) and concentrate on two-particle effects by calculating the 
excitonic binding energies. 

The derivation of the effective eigenvalue problem starts from the analysis of 
the linear combinations of the four time variables in the two-particle Green's 
function G2(1, 2; 1', 2') to identify its particle-hole portion for the relevant types 
of excited states. One may take, in particular, the symmetric combinations 

( 1 1 . 1 )  z l  = t l  - -  t l , ,  "~2 = t2 - t 2 , ,  ~ = t 1 - t 2 

with t I ---- (1/2) (t l  + tl ,)  and t 2 = (1/2) (te + t2,), as independent time variables, and 
conveniently group the 24 terms of the two-particle Green's function into 6 
classes with 4 terms each, as discussed in appendix G. The 8 terms that contain 
the phase factors exp [ i (E~-  Eo)t  1] and exp [ i (E~-  Eo)t  2] are then called the 
particle-hole Green's function. Upon setting t2, = te+~(~-o0 § and Fourier 
transforming the variable t2, we obtain 

(11.2) LPh(x1, X2; Xl',  X2'ltl, tl,; oJ)- 

+ ~  

- f dt2 exp[-icote]LPh(Xltl ,  x2t2; x~,t~,, x~,t~) = 

= - / exp [ -  ico(t 1 - �9 
h 

zPh(x1, X1,; T1)~Ph(x2, X2,; - -  8) e x p  [ -  i (E~ - E0)lz~l. 1 
~ h~ - (E~ - E0) + iv L 2h J + 

i 

i + ~  exp [ -  ico(tl+ 1 11/2)] �9 

•Ph(x2, X2,; - -  9) ~Ph(xl, Xl,; T1) [ (Es - E0) l~l l  1 
s h~ + (Es - E0) - iv exp [ -  i ~-~ -j, 

where v---) 0 § and the transform of the single-particle factor in eq. (4.1) has been 
dropped, since it vanishes provided oJ is nonzero. 
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The Bethe-Salpeter equation (4.5) can be Fourier transformed accordingly. 
Assuming a particular (simple) pole at h ~  = E ~ -  E0 > 0 to be isolated from the 
other singularities in the complex o~ plane, we may pick up the corresponding 
residue by integrating over an infinitesimal contour enclosing the pole. We 
obtain 

(11.3) Z[h(xl, xr; ~1) exp [-ico~t 1] = 

= f d33'44'Gl(1, 3)GI(3', 1')-~(3, 4'; 3', 4)z~h(x4, x4,; ~4) exp[-ioJ~#], 

which can be regarded as a (homogeneous) bound-state  equat ion  for the right- 
hand particle-hole amplitudes (G.3a). 

Equation (11.3) holds for hco~ < s~, whereby the single-particle term at the 
right-hand side of eq. (4.5) gives no contribution and the pole at hco~ lies on the 
real energy axis. It can, therefore, be applied in the present form to determine 
binding energies of valence excitons. For core excitons, on the other hand, for 
which the core hole decays by Auger effect and the associated poles have finite 
imaginary widths, the procedure to obtain an effective eigenvalue equation 
requires a suitable generalization [56]. 

Equation (11.3) holds quite generally regardless of the specific form of the 
effective two-particle interaction Z which embodies the dynamics of the bound 
electron-hole pair. Similarly to the calculation of the optical properties described 
in sect. 8, we take S of the form (cf. eqs. (4.4), (3.11), (3.12), and (8.44)) 

(11.4) S(3, 4'; 3', 4) --- - ih~(3, 3') r § 4') v(3, 4) + 

+ iha'(3, 4) ~(3', 4') W(3 § 3') ; 

we now keep, however, the full time dependence of the dynamically screened 
interaction W without resorting to the static approximation (8.45). In this way, 
we can address studying the effects of dynamical screening on the excitonic 
binding energy E~ over and above the effective-mass limit in which E~ is much 
smaller than the energy gap eg and z reduces to a Coulomb potential modified by 
the (static) macroscopic dielectric constant e0 of the insulating medium [10]. 

We further represent the single-particle Green's functions entering eq. 
(11.3) by the quasi-particle approximation (8.48) that we known from sect. 9 to 
work well whenever the relevant single-particle excitations occur in the 
neighbourhood of the energy gap. We can then: i) project both sides of eq. (11.3) 
onto uc(xl)u*(x~,), where c and v stand for conduction- and valence-band 
quantum numbers, respectively, and make use of the assumed orthonormality of 
the single-particle wave functions; ii) take the limit as ~1 = 0- and drop the 
common factor exp[-i~ostl]; iii) multiply both sides by [~c- ~v- hoJs]. The 
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result  is 

(11.5) [$c - -  gv - -  ~OJs] f dXl  dx1,  u ~ ( x l )  U v ( X l , )  zsPh(Xl, Xl ' ;  - -  8) = 

= -- f dx2 dx2, uc*(x2) uv(x2) v(r2 - r2,) zPh(x2 ,, X2,; - -  8) + 
+~ 

+ f 
�9 [O(z) exp [iv~v/h] + 0(- z) exp [iv(~c - ho~t)/h]] Z~h(x2, x2,; v). 

For  the s ta tes  of interest  to us we can insert  into eq. (11.5) an approximate 
expression for the right-hand particle-hole amplitudes which is obtained from the 
definition (G.3a) by  expanding the field operators  in te rms of the single-particle 
wave  functions uk(x) introduced above and retaining the same approximation 
that  has led to the energy  denominators of eq. (8.48). We thus set  

(11.6) r r z[h(x, X'; z) = -- exp [icosH/2] ~ ue(x)u,,(x )At(v, c'). 
v' c' 

�9 [0(z) exp [ -  ier ~] + 0( -  ~) exp [ -  i~,, z]], 

where  the expansion coefficients As(v, c) can be expressed as transition matrix 
elements in te rms of creation and destruction operators 

(11.7) As(v, c)= (Nla*~ar s). 

The unknown excitation energies hoJ8 and the associated expansion coeffi- 
cients At(v, c) of eq. (11.6) are then determined as the eigenvalues and the 
associated eigenvectors of the eigenvalue problem (11.5)�9 In fact, inserting eq. 
(11.6) into eq. (11.5) and performing the integration over z yield 

(11.8) [~c-~v-h~t]As(v, c)+ ~As(v',,,o, c')((c, v'lvlv, c') - 

f dho~ exp[-i~oS] (c, v'lW(o~)lc', v) .  - i  ~ 

, h(oJs - ~o) - (~, - ~) + i~ h(oJs + ~o) - (~r - ~r + i 

(~---~ 0§ where  we have introduced the notation 

(11.9a) 

( l l .9b)  

(c, v' ]vlv, c') = f dx (lx' u*(x) u*(x') v(r - r') uv(x) uc,(x'), 

(c, v'JW(~)]c', v) = f dxdx' u*(x)u~(x') W(x, x'; ~)uo,(x)uv(x'), 
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for the Coulomb matrix elements and their (dynamically screened) exchange 
counterparts (cf. also eq. (8.56)). 

Equation (11.8) constitutes a self-consistent eigenvalue problem whereby 
the Hamiltonian matrix and its eigenvectors As depend on the eigenvalue h~o~, 
akin to the eigenvalue problem (9.2) for single-particle energy levels 
supplemented by the condition (9.6). Moreover, the Hamiltonian matrix in eq. 
(11.8) is Hermitian consistently with the assumption that the eigenvalue ho)~ lies 
on the real energy axis below the threshold of the single-particle continuum. 

Equation (11.8) should be read as follows. The first term describes an 
uncorrelated electron-hole pair for which the two-particle interaction is 
effectively switched off. Interaction effects are contained in the two terms within 
braces. The first term is independent of the screening properties of the medium 
and, being of short-range character, does not affect the excitonic binding energy 
when the excitonic radius is relatively large. This term is responsible for the 
longitudinal-transverse splitting of excitonic states and induces a mixing of 
different spin-orbit eigenstates, to be discussed below. The second term within 
braces in eq. (11.8) bounds the electron-hole pair since at large electron-hole 
distances it reduces to an attractive Coulomb potential screened by e0. 
Dynamical screening effects occur at shorter distances. To show this, we recast 
this term in a more meaningful form by making use of the relation between 
the time-ordered (T) and retarded (R) density-density correlation functions 
(cf. sect. 5) 

(11.10a) i .  p .  Re{z~(r, r ,  09)} --Re{zR(r, r ,  o~)}, 

r .  i .  (ll.10b) Im{ZT(r, r ,  09)} = sgn(09) Im{z~(r, r ,  09)} 

(~0 real), of the property 

t .  (11.11) Im{zR(r, r'; - 09)} = - Im{ZR(r, r ,  09)}, 

and of the Kramers-Kr6nig relation 

(11.12) Re{zR(r, r ,  09)} P ix ,. 09,)} d~o' Im{zR(r, r ,  
t 

09 - - 0 9  

where P means that the principal part is to be taken in the integration of the 
singularity. We obtain 

+ ~  

f dh09 (11.13) i -~[-r exp[-ioJ~](c, v'lW(~o)jc', v)" 

.( 1 1 )__ 
h(09~ - ~) - (so,- ~) + i~ h(09~ + 09) - (so - s~.,) + i~ 

= f dxdx'  u*(X)Uc,(X) j dr" ej~,~,c,(r, r"; 09~)v(r"- r')uv(x')u*(x'), 
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where we have introduced the effective inverse dielectric matrix 

%) ~(r r') + _~ dr" v ( r -  ~') dho~ . (11.14) e~,vc,(r, r ,  '�9 = - 
0 

( 1 ) 
�9 ( -  1) I m  {)~R(r", r'; o))} h ( %  - ~o) - ( s o , -  ~v) + i~  h ( %  - ~o) - (so - s~,) + i " 

The diagonal (c = c' and v = v') elements of expression (11.14) can be interpreted 
as describing the density response of the system with a hole in the state v probed 
by an electron excited into a conduction-band state c. Equation (11.14) has to be 
contrasted with the ordinary inverse dielectric matrix of linear response theory, 
namely, 

(11.15) e~l(r, r'; ~o) -- e ( r -  r') + ~ d r " v ( r -  r") f d~o'. 

o 

" ~o')} (~ 1 -4 1 t �9 (--1)Im{zR(r" , r ,  --co'+i~ ~o+~o'+i~ ' 

whereby an external (test) charge probes the density response of the system in 
the ground state. The effective and the ordinary dielectric matrices coincide, 
however, in the static limit when the differences h%-(s~,-Sv)  and 
h% - (~ - s~,) can be neglected in comparison with the characteristic energies in 
the loss matrix - Im {)~R(r, r'; ~o)}, which are at least of the order of the energy 
gap % In other words, whenever E B << sg the effective potential at the right-hand 
side of eq. (11.13) reduces to a statically screened Coulomb potential with 
asymptotic form eelr- r'l-1 egl for large values of I r -  r'l. Deviations from static 
screening need otherwise to be considered. 

Numerical solution to the effective eigenvalue equation (11.8) could be 
tackled by converting it into a local-orbital representation along the approach 
described in subseet. 8.4. This procedure, which is appropriate to intermediate 
binding [57], is sketched in the appendix of ref. [56]. Here we restrict ourselves 
to considering the leading corrections to the effective-mass limit of eq. (11.8), 
whereby one follows the steps yielding the usual effective-mass equation for 
excitons [55], but retains the full effective inverse dielectric function and not just  
its static limit�9 

For  a crystalline semiconductor, a Bloeh wave vector Q can be associated 
with the many-particle state IN, s} of eq. (11.7), wherein the single-particle 
labels v and c stand for the triad of a band index n, a Bloeh wave vector k, and a 
spin index ~. Translational symmetry also requires k~ = k~ + Q in eq. (11.7) (up to 
equivalence in reciprocal space) and identifies Q as a good quantum number for 
the eigenveetors of eq. (11�9 In the following, we shall adopt for simplicity the 
model of a semiconductor with simple (i.e., nondegenerate) valence and 
conductor bands. Consistently with the effective-mass limit, we assume 
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A~(~,  ~c; kv, Q) to be sharply peaked about a particular value of k~ (say k0) that 
coincides with an extremum (maximum) of the simple band ~v(kv). By the same 
token, kv + Q is confined to a small neighbourhood of an extremum (minimum) of 
ec(kc) which we take at vanishing Q for the excitonic state to be excited by an 
electromagnetic field�9 

The eigenvalue equation (11.8) can now be transformed into a differential 
equation by multiplying both sides by (2=)- 3 exp [ik~. r] and integrating over the 
whole k~-space, and by expanding the single-particle band eigenvalues about the 
relevant extrema up to quadratic order. One obtains 

h Z ( 1  + 1 ) (11.16) ~ ~ - .  ~ VZF~(~, ~rc; r) + 

+ Y f 
dk, dk~, 

[i(k,  - ko).  r] j ze; k, ,)  ~ l ' t2o.  ...... . ~ exp (-~)~A~(~v,, 

( 

�9 Ifim (e~kv + Q, =~,k~,lv[ qvkv, r + Q) + 

k 

] ~ dh~o + i  --~-r exp[-i~o~] (=~k~, Ov, k~,lW(~)l=~,kv,, ~ k v ) "  

1 
�9 h2 h 2 ~- 

+ ~mc* (k,, - ko) ~ + ~ (k~ - ko) 2 + hoJ - i3 

~ h2 h z 
E~ + ~ (k~ - ko) ~ + ~ (k~, - ko) - h,o - ie  

= - E~F~(~ ,  ~,; r ) ,  

where m* and m* are the effective masses associated with the (isotropic) valence 
band maximum and conduction band minimum, respectively, 

(11.17) E~ = ~c(k0) - ~(k0) - h% 

is the excitonic binding energy referred to the relevant single-particle energy 
gap, and 

(11.18) F~(~v, ~c; r ) =  f 
dkv 

exp [i(kv - ko)" r] A~(~,  ~; kv) 

is the envelope function. Notice that the limit Q--* 0 has been explicitly indicated 
for the Coulomb matrix elements in eq. (11.16), since they behave pathologically 
in the neighbourhood of Q = 0. To extract this behaviour, the Bloch functions 
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entering the Coulomb matrix elements can be represented in terms of Wannier 
functions (cf. eq. (8.51) where a single local orbital is now associated with each 
simple band), yielding 

(11.19a) 

(11.19b) J~r = ~ exp [iQ . l] f dr  dr' r r v(r  - r') r - l) r - l) ,  

where only dipole-like excitations on the same lattice site have been retained. 
Assuming further that  dipole like excitations at l r 0 do not overlap with the one 
in the central cell ( l=  0), we can expand the Coulomb integrals in eq. (11.19b) 
into multipoles and retain only the leading dipole-dipole interaction terms: 

(11.20) J~(Q) ~ I d rdr '  r r - r') $*~ (r') r + 

exp [ iQ . l] [d~ . d~r - 3(~. d*o) (1. d~)] 
+ 2 itl~ 

where we have introduced the dipole moment of the excitation v--)c 

(11.21) d~r -- e f dr  ~*~ (r) rf~(r) . 

For  a cubic material in the small Q limit the dipolar sum in eq. (11.20) acquires 
the form [58] 

(11.22) ~ exp [iQ. l] 
[ ~ .  d.~- 3(1. d*) (l. d.c)] 

4. [s(Q. d*~)(Q, d~) _ d~*~.doc~ 
= 3Do [ Q2 j 

which is a piecewiee continuous at Q = 0 and has a rapid angular variation about 
this point. 

Within the above approximations, the second te rm at the left-hand side of 
eq. (11.16) becomes 

(11.23) 
fdkv 

~ exp [i(k~ - ko)" r] A~(zr ~,; k,,) ~ ' ~ o "  
%, zr 

" l im(a~k,+Q,  z,,k~,lvtz~k~, z ~ , k r  
Q~O 
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This term, being of short-range character, does not affect the excitonic binding 
energy when the excitonic radius is relatively large. This term, however, is 
responsible for the longitudinal-transverse splitting of the excitonic states, since 
eq. (11.22) has different values when d~,c is parallel or orthogonal to Q [59], and it 
induces a mixing of different spin-orbit eigenstates that leads to an inversion of 
the 2:1 intensity ratio [60]. 

The dynamically screened exchange matrix elements (11.9b) that enter the 
last term at the left-hand side of eq. (11.16) may instead be approximated by 
neglecting both the variation of the periodic part of the Bloch functions about the 
extrema and the local field effects. One obtains 

(11.24) 

where 

(11.25) 

1 W(k~, -  k~,,; oJ) 

W(q; oJ) = v(q) ~ l(q; w) 

is the Fourier transform of the dynamically screened interaction obtained by 
neglecting off-diagonal screening. Alternative procedures may be followed at 
this point to evaluate the integrals over wavevector and frequency in the last 
term at the left-hand side of eq. (11.16), yielding, e.g., the Haken potential (cf. 
appendix H) or the asymptotic dynamically screened Coulomb potential. To 
obtain the latter, we neglect the dispersion of the single-particle energy levels in 
the energy denominators and make use of a simplified form of eqs. (11.13) and 
(11.14). The last term at the left-hand side of eq. (11.16) then becomes 

(11.26) E f dk~ dk~., exp [i(k~,- ko) " r] f ~,, ~:~ ~ A ~ ( ~ v , ,  " kv,)~ /'E2o �9 

.i i ~ dh~o 

( 1 
h 2 h 2 . 

E~ + ~ (k~,, - kofi + ~ (k~ - ko) + ho~ - ~ 

+ 
h 2 2 

E ~  + (k~, - k o f i  + ~ (k~,, - k o )  2 - ho~ - i ~  

[f q ] = - ~ exp [iq. r]v(q) ~-l(q; E~) F~(z~, ~c; r) ,  

where we have introduced the wave vector dependent effective inverse 
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dielectric function 

(11.27) 
F _2 (-  1) Im {efil(q; 0) )}  

-l(q; E~) = 1 - | dho~ 
= 0~ h~ + E~ 

Dynamical effects thus modify the statically screened electron-hole attractive 
interaction, which is usually considered in the effective mass limit for 
excitons [55], by replacing it with the more attractive interaction within 
brackets at the right-hand side of eq. (11.26). Notice that the static limit can be 
recovered by setting E~ = 0 in eq. (11.27). A plot of ~0(E~) - [~-~(q = 0; E~)]-~ is 
shown in fig. 11 for the loss function - I m  {e~ l(q; ~)} corresponding to silicon. 

12 

11 

8 

I I I I ' 
70 0.1 0.2 0.3 O.h 0.5 

E: (eV) 

Fig. 11. - Effective dielectric function (silicon) for vanishing momentum transfer versus 
the excitonic binding energy E~ (adapted from ref. [56]). 

Inserting the results (11.23) and (11.26) into eq. (11.16), we obtain eventually 
the desired differential equation for the envelope function 

(11.28) h2[ 1 + 1 ~ W F ' z  

+ ~(r)t2olimJvc(Q)~voo • F~(~v,, zc,; r)~,,~c,- 
Q~O 

_ f  dq exp [iq. r]v(q) e-~(q; E~)F~(~, ~; r ) = -  EB F~(~v, ~; r). 

The spin structure of eq. (11.28) can be organized into a singlet solution, for 
which F l ~ ,  $ ; r ) = F i $ ,  ~,;r), and a triplet solution, for which 
F i  t ,  1' ; r) = - F i  $, $ ; r). In accordance with the results of appendix D, only 
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the singlet solution is affected by the longitudinal-transverse splitting. (In 
particular, only the singlet transverse excitonic state can be excited optically.) 

Numerical solution to eq. (11.28) shows that the inclusion of dynamical 
screening effects within the effective mass limit leads to a negligible increase of 
the binding energy over the corresponding static value. However, in the case of 
core excitons a suitable modification of eq. (11.28) to include band structure 
effects (such as intervalley mixing and centrall-cell corrections) in an effective 
manner by modifying the screened Coulomb potential at short electron-hole 
separation, leads typically to a (20 + 30)% increase of the binding energy due to 
dynamical screening effects over and above static screening [56]. Moreover, 
deviations from static screening lead also to a narrowing of the Auger width 
when passing from the core hole to the core exciton [56], an effect which is a 
fingerprint of dynamical screening, since it cannot be obtained within the 
framework of a static theory. 

The author is indebted to Prof. F. BASSANI for his continuous interest and 
support during the course of this work. Helpful discussions with C. C A S T E L L A N I ,  

R. DEL SOLE, L. PELITI, and G. WENDIN are gratefully acknowledged. The 
author is also indebted to C. ROMERO for the precious typing and help in 
preparing the manuscript. 

A P P E N D I X  A 

A functional derivative identity. 

Let F[~F(x)] be a functional and let SF[~r(x)] be its first variation when a 
small change $~F(x) is made in the argument function ~F(x). The functional 
derivative ~F/~F(x) is then defined as that function of x for which 

(A.1) l ~F[W(x)] = F[W(x) + ~t~ - F[W(x)] = d y ~ W ( y ) ,  
J ~W(y) 

to first order in $~. This definition can be considered as a generalization of the 
ordinary (partial) derivatives of a function F({xi}) whereby the variables {xi} 
(i-- 1, ..., N) are specified at N points of a lattice: 

(A.2) ~ F  F({x~ + ~x~}) - F({xi}) = --$x~. 
i = 1 ~Xi 

This remark implies that the usual rules for differentiation can also be derived 
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for functional derivatives. We consider some examples. 

~ ( x )  
(A.3) i) - ~(x - y). ~ ( y )  

~F[F(x)] G[W(x)] + F[W(x)] (A.4) ii) F[T(x)] G[W(x)] = ~T(y) 
~G[T(x)] 

~T(y) 

(A.5) iii) ~ F[T(x)] 1 [~F[F(x)] ~G[T(x)] 1 
~T(y)-----] G[F(x)-----~-G[~F(x)]2~ ~ G[~'(x)]-F[W(x)] ~ ].  

iv) Let F[W(~); x, y] be the inverse of G[T(D; x, y] in the sense that  the 
following identity is satisfied: 

(A.6) f dzF[T(~); x, z] G[F(~); z, y] = ~(x-  y) 

for any ~(~). Then 

~F[F(~); x, Y] ~G[~(0; ~, 
- Jd~dvF[F(~);F x, ~] V]F[W(0; 7, Y]. (A.7) $W(z) = ~T(z) 

v) Let  F[G[W(x); y]]. Then 

f ~F ~G(y) ~F _ dY ~G(y) ~T(x) ' (A.8) ~ ( x )  

which is referred to as the ,,chain rule,.  

We are now in a position to derive eq. (3.9) of the text. To this end, we recall 
that  all the U-dependence in the generalized single-particle Green's function 
(2.9) is explicit in the S factor. Varying the potential U by a small amount SU and 
keeping only first-order terms then yields (cf. eq. (A.5)): 

(A.9) $G1(1, 2)= 
i (NIT[~S~(1)~t(2)]I N)  
h (NIT[S]IN) 

(NIT[~S]IN) 
- GI(1, 2) <NIT[g]IN) �9 

Since $S appears only within a time-ordered product wherein boson like 
operators, such as ~t(x, t § ~F(x', t), can be treated as though they commute, we 
can evaluate ~S as follows: 

(A.10) 
+ ~  

~S = - -~ _~ dt dxdx' ~*(x, t § ~U(x, x'; t) ~(x', t). 

Entering eq. (A.10) into eq. (A.9) and recalling the definition (2.10) of the 
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generalized two-particle Green's function result into 

i 
x 

(A.11) ~G1(1, 2)= dtf " t) [ -  G2(1, x' dr dr'  8U(x, x ,  t; 2, x t  +) + 

+ G1(1, 2) Gl(x' t, xt+)]. 

Comparison with eq. (A.1) eventually identifies the expression within brackets 
in eq. (A. 11) with the functional derivative of G1(1, 2) with respect to U(x, x'; t), 
namely, 

(A. 12) 
~G1(1, 2) 

" t) ~U(x, x ,  
- - G2(1,  x '  t; 2, x t  +) + GI(1, 2) G l ( x '  t,  x t + ) .  

For a local potential of the type (2.5) we can write instead 

(A.13) 
~G1(1, 2) 

~U(3) 
- G2(1, 3; 2, 3 +) + G1(1, 2)G1(3, 3+). 

The generalized single-particle Green's function can thus be considered as a 
generating functional for higher-order Green's functions, while the external 
potential U acts as a source. 

APPENDIX B 

Dyson's  equat ion.  

In the absence of both the interaction among the electrons (v) and the 
external potential (U), the (zeroth-order) single-particle Green's function G~ ~ 
satisfies the equation 

(B.1) [ ih~-~-h (1 ) lG~~176  , 

whereby the corresponding inverse Green's function is given by 

The introduction of G~ ~ 1 allows us to express eqs. (3.14) of the text as follows: 

(B.3a) f d3[a~ ~ 1(1, 3 ) -  U(1)8(1, 3 ) -~ (1 ,  3)] GI(3, 2)= 8(1, 2), 

(B.3b) f d3 G1(1, 3)[G~ ~ 1(3, 2) - U(2) 8(3, 2) - 2(3, 2)] = 8(1, 2). 
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Equations (B.3a) and (B.3b) identify the expressions within brackets as the left 
and right inverse of G~, respectively. Demanding these two inverses to coincide 
leads thus to the identification 

(B.4) 

and 

(B.5) 

G~I(1, 2) = Gt~  2) - U(1)~(1, 2) -Z(1 ,  2) 

Z(1, 2)= 2(1, 2). 

The integral form of Dyson's equation (3.14) can readily be obtained by 
multiplying eq. (B.4) from the left by G~~ 1) and from the right by G1(2, 4), and 
integrating over 1 and 2. The result acquires the familiar form 

G1(1, 2) = Gt~ 2) + f d34G~~ 3) [U(3) r 4) +2:(3, 4)] G1(4, 2). (S.6) 

A P P E N D I X  C 

Reducible v s .  irreducible parts of the correlation functions. 

a) Scalar and vector vertex functions. Generalized Green's functions of 
the form (2.9) and (2.10) can also be defined when the interaction Hamiltonian 
(2.4) is replaced by, e.g., the interaction Hamiltonian between a system of 
charged particles and the electromagnetic field: 

(c.1) Itt'(t) =q f dx~(r, t)~(x) - q  f dxA(r, t).j(x)+ ~ f dxA2(r, t)~(x). 

Here ~(r; t) and A(r, t) are the scalar and vector potentials of the electro- 
magnetic field, respectively, q is the charge of a particle in the system, and ~(x) 
and fix) are the density and current operators 

(C.2) ~(x) = #*(x) #(x), 

(C.3) j(x) = 2~m [#*(x) v#(x) - (v#*(x)) ~(x)]. 

In what follows we shall omit the diamagnetic term of eq. (C.1) since its 
contribution vanishes in the limit A--* 0 which will eventually be taken. 

Following the procedure outlined in appendix A one can readily show that 

(C.4) ~G1(1, 2) = L(1, 3; 2, 3+), 
~(q~(3)) 

(C.5) 
$G1(1, 2) 

-2hm[(V~-V~,)L(1, 3; 2, 3')]~,=~+. 
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It is convenient at this point to introduce the (reducible) scalar and vector vertex 
functions according to the definitions 

~G~- ~(1, 2) 
(C.6) /"(1, 2; 3 ) -  , 

~(q~(3)) 

(C.7) F(1, 2; 3)-= 
~G~ 1(1, 2) 

These functions can be related to the two-particle correlation function 
L(1, 3; 2, 3') by eqs. (C.4) and (C.5) and rule iv) of appendix A, to obtain 

(C.8) L(1, 3; 2, 3§ fd45G~(1, 4)G1(5, 2)/"(4, 5; 3), 

(C.9) h f 2i--~[(V3-V~,)L(1, 3; 2, 3')]~,=3. = d45G1(1, 4)G1(5, 2)F(4, 5; 3). 

Equations (C.8) and (C.9) could alternatively be considered as definitions for/" 
and F [16]. 

The integral equations satisfied by F and /"  can be obtained by combining 
eqs. (C.8) and (C.9) with the Bethe-Salpeter equation (4.5) for L. The result is 

(C. 10) 

and 

2) F 

F(1, 2; 3)=8(1, 3)~(2, 3)+ J d4567-z~7~'ot~1~a, 5) 
- - G 1 ( 4 ,  6)G1(7, 5)F(6, 7; 3) 

(C.11) F(1, 2; 3) = 2/-~ [(V~ - V3,) ~(1, 3') ~(2, 3)]~,~3 + 

+ f ~2:(1, 2) d 4 5 6 7 ~  G1(4, 6) G1(7, 5) F(6, 7; 3). 

Equation (C.10) has to be compared with eq. (3.18) for the scalar irreducible 
vertex function F whose kernel is ~M/$G~ instead of ~S/~G1. The difference 
between the two kernels is just the Coulomb term (cf. eq. (4.6)) 

(C.12) Sc(3, 5; 4, 6)= -ih~(3, 4)~(5, 6)v(3, 6) 

with respect to which/~ is defined to be irreducible. The irreducible counterpart 
of the vector vertex function can also be introduced through an equation of the 
form (C.9) (see below). 

For a system which is homogeneous in space and time the integral equations 
(C.10) and (C.11) can be rewritten using the Fourier representations (D.13), 
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once the spin variables have been eliminated by summing over ~3 

r dp' 
(C.13) I'(p; q) = 1 + J ~ - s ( P ,  p'; q)G~(p' + q/2)G~(p' - q/2)F(p'; q), 

dp' 
(C. 14) r(p; q) = hp + ( _ _ ~ s ( p ,  p'; q) Vl(p' + q/2) Vl(p' - q/2) F(p'; q). 

m ~ (2=) 4 

Notice how these equations involve only the effective interaction (D.8a) for the 
singlet channel since the four-momentum q corresponds to a Coulomb line that 
carries no spin. 

b) The irreducible two-particle correlation function.  By breaking the 
effective two-particle interaction (4.4) as the sum of the Coulomb term (C.12) 
and of the remainder 

(C.15) -R(3, 5; 4, 6 ) -  - -  
6M(3, 4) 
~G1(6, 5) 

(cf. eq. (4.6)), one can introduce the irreducible part L of the two-particle 
correlation function as the solution to the integral equation 

(C.16) L(1, 2; 1', 2 ' )=  

GI(1, 2') G1(2, 1 ' )+ f d3456Gl(1, 3)G1(4, 1 '~ = /~R~ ~ /3, 5; 4, 6)L(6, 2; 5, 2') 

with kernel ZR. Once L is known, the full two-particle correlation function L can 
be obtained by solving the additional integral equation 

(C.17) L(1, 2; 1', 2 ' )=  

2; 1', 2') + fd3456L(1, 4; 1', 3)~c(3, 5; 4, 6)L(6, 2; 5, 2'). = L(1, 

The system of equations (C.16) and (C.17) is, in fact, equivalent to the original 
Bethe-Salpeter equation (4.5) for L. 

Several quantities can be expressed in terms of L. We give some examples. 
i) The irreducible polarizability (3.25) is given by 

(C.18) )~(1, 2)= - i hL (1 ,  2; 1 +, 2§ 

in analogy with eq. (4.13) for the full polarizability in terms of L. 

ii) The irreducible scalar vertex function (3.17) can be obtained from 

(C.19) L(1, 3; 2, 3 +) = f d45G1(1, 4) G1(5, 2)/~(4, 5; 3), 

in analogy with eq. (C.8) for the full-scalar vertex function in terms of L. 
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iii) The irreducible many-particle T-matrix can be defined as 

(C.20) L(1, 2; 1', 2 ' ) -  G~(1, 2')G~(2, 1 ')= 

f d3456 GI(1, 3) G~(4, 1') T(3, 5; 4, 6) G1(6, 2') G1(2, 5), 

in analogy with eqs. (4.9) and (4.12). Alternatively, T can be obtained as the 
solution to the integral equation 

(C.21) T(1, 2; 1', 2 ' )= 

=-:R(1, 2; 1', 2 ' )+ f d3456ZR(1, 4; 1', 3)G1(3, 6) G1(5, 4) ~(6, 2; 5, 2'), 

which is the analogue of eq. (4.11) for the full T-matrix T. T and T can further be 
related through the identity 

(C.22) T(1, 2; 1', 2') = T(1, 2; 1', 2 ' ) - ih fd33 '[~(1 ,  1'; 3)W(3, 3')/~(2, 2'; 3'). 

Equation (C.22) implies, in particular, that for the triplet channel T coincides 
with T, while for the singlet channel an additional contribution due to 
polarization is present (cf. also appendix D). 

c) Density-current and current-current correlation functions.  Together 
with the (time-ordered) density-density correlation function 

i (N[T[~'(1)~'(2)][N), (C.23) y.(1, 2) = - ~ , 

we can also consider the density-current and current-current correlation 
functions 

(C.24a) ~(1, 2) = - ~ (NIT[~'(1)j'(2)]IN) , 

(C.24b) ~,(1, 2) = - ~ (NIT[j ' (1)y(2)]IN) , 

3(1, 2) = - / (NIT[j ' (1) j ' (2)]IN),  (C.24c) 

where 

(C.25a) 

(C.25b) 

~ ' ( 1 )  = ,~(1) - ( N ] ~ ( 1 ) ] N ) ,  

j '(1) = j ( 1 ) -  (N[j(1)[N),  

are the density and current deviation operators, respectively. More general 
definitions of the type (3.22) may also be considered. 
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The correlation functions (C.23) and (C.24) can be expressed in terms of the 
(reducible) vertex functions as follows: 

(C.26a) z(1, 2 ) - - i h L ( 1 ,  2; 1 +, 2+)=-ih fd45G1(1 ,  4)G1(5, 1)/"(4, 5; 2), 

(C.26b) 

= - ih f d45 GI(1, 4) G1(5, 1)/'(4, 5; 2), 

(C.26c) 

= - ih f d45 G1(2, 4) G1(5, 2)/'(4, 5; 1), 

(C.26d) )~(1, 2 ) - - i h  (Vl -  Vl,) (V2- V2,)L(1, 2; 1', 2') = 
1,=1 + 
2 ,=2 + 

= - ih f d4567 Fo(7, 6; 1) G1(6, 4) G1(5, 7)/'(4, 5; 3), 

where F0 is the noninteracting part of F (cf. eq. (C.11)) 

(C.27) F0(1, 2; 3)= 2-~m [(V8- Vs,) r 3')8(2, 3)]8,=8. 

Equation (C.26a) follows from eq. (C.8), while eqs. (C.26b) to (C.26d) follow from 
eq. (C.9). Notice also that the four equations (C.26) have a similar structure and 
could accordingly be expressed as a single tensor equation of rank 4. 

The irreducible correlation functions associated with x, ~, and ~ can be 
defined in analogy with eqs. (C.26), whereby the two-particle correlation 
function L is replaced by its irreducible part L. We have already seen, in fact, 
that the irreducible density-density correlation function can be expressed as (cf. 
eqs. (C.18) and (C.19)) 

(C.28) ;~(1, 2)= - i hL (1 ,  2; 1 § 2+) = - ih fd45Gl (1 ,  4)G1(5, 1)F(4, 5; 2). 

We can similarly define 

(C.29a) 
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(C.29b) 

(C.29c) ~1,  2) - - ih (Vl - V~,) (V2 - V2,)L(1, 2; 1', 2') . 
1' = 1 + 
2' = 2 + 

Furthermore,  in analogy with eq. (C.28), we can also introduce the irreducible 
vector vertex function/~ (1, 2; 3) defined as the solutionto the integral equation 
obtained from eq. (C. 11) by replacing the kernel ~/~G~ with ~M/~G1. In terms of 
F we can then express 

(C.30a) ~(1, 2) = ~(2, 1) = - ih f d45 G1(1, 4) G1(5, 1)/~(4, 5; 2), 

(C.30b) ~(1, 2)= - ih f d4567Fo(7, 6; 1)G1(6, 4)G1(5, 7)/~(4, 5; 3). 

Once the irreducible correlation functions (C.28) and (C.29) have been 
determined, their reducible counterparts can be obtained from eq. (3.24) and 
from 

a) ~(1, 2) = ~(1, 2) + ] d34 2(1, 3) v(3, 4) ~(4, 2), (c. 3 1 

- f -" (C.31b) ~(1, 2)= ~0, 2)+ d34 ~(1, 3)v(3, 4)~(4, 2). 

A P P E N D I X  D 

El iminat ion  of  the spin variables and transformation to the energy- 
mo m e n tum  representation.  

The value of the spin variable ~ does not change along a single fermion line 
whenever the Hamiltonian is spin independent. This implies, in particular, that 

(D.1) 

(D.2) 

(D.3) 

(D.4) 

(D.5) 

G1(1, 2) = ~1~2 G(xI, x2), 

M(1, 2)= ~l~2M(xl, x2), 

f d~j~(1, 2; 3) = %~j~(x~,~ x2; x3), 

f d~ d~2x(1, 2) = X(Xx, x2), 

f d~e c 1(1, 2) = e l(Xl, x2) , 
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where we have introduced the notation x =-(r, t). These identities allow us to 
readily remove the spin variables from the set of coupled equations discussed in 
sect. 3. Elimination of the spin variables from the Bethe-Salpeter equation, on 
the other hand, requires to distinguish between the two alternative paths that  
can be followed by joining the vertices of the effective interaction ~. Specifically, 
we can set 

(D.6) 1 , ,~, x ~ ) ~ +  ~ t ( x ~ ,  x~; x~, x~)~,~, ~(3, 5; 4, 6)=  ~'~,-~2~tx~, x~; x4, 

where 2 ~ and ~, ~ correspond to pairing the fermion lines in the way shown in 
fig. 12a) (the factor 1/2 in front of ~ ~ has been introduced for later convenience). 
For  example, the Hartree-Fock approximation for the self-energy yields 

(D.7) ~ ( 3 ,  5; 4, 6)=~,[-ihc?(x~, x~)v(x~, x~)e(x~, x ~ ' ) ] ~  + 

+ ~o[ih~(x~, x~)v(xL xD~(x~, x~)] ~,~o, 

whereby the Hartree and the Fock terms correspond to a ~ and to a 2 ~  
pairing, respectively (fig. 12b). Alternatively, we could introduce the effective 
interactions for the singlet and the triplet channels 

(D.8a) z~({x~)) = z~ ~ ({x,)) + ~ ({x~)), 

(D.8b) Zt({Xi} ) = ~,~, ({Xi}),  

3 6 3 6 . x , , /  

z,. 5 

~) ~Howtree ~) 

/ 1 = T ,1 
c) 

Fig. 12. - a) Alternative pairing of fermion lines in the effective interaction; b) lowest- 
order (Hartree and Fock) terms in the effective interaction; c) Bethe-Salpeter equation 
for T~ and T~. 
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and express the spin dependence of the (total) effective interaction Z in terms of 
the Pauli matrices as follows: 

(D.9) �9 �9 - -  z 1 
Z(3, 5; 4, 6)= ~%~%~=~[x3, xs; x4, x6)-~-~0"~3~4" o'~556,-~t(x3, x5; x4, x6). 

The T-matrix can similarly be decomposed. From the Bethe-Salpeter 
equation (4.11) one then finds that T~ ~ is obtained by iterating Z~ ~ only, while T~ 
derives from both Z ~ and Zr ~ and couples also with T~ ~ as shown graphically in 
fig. 12c). The couplec~ equations for T~ and T~ ~ can, however, be transformed by 
introducing the T-matrices Ta (a = s, t) for the singlet and triplet channels in 
analogy with eqs. (D.8), yielding two uncoupled equations for Ts and Tt: 

(D.IO) T~(x,, x2; xr ,  x2,)= Z~(Xl, x2; xr,  x2,) + 

+ f dx3 dx4 dx~ dx6s x4; xr,  x3) Gl(x3, x6) Gl(xs, x4) Ta(X6, x2; xs, x2,). 

The transformation to the energy-momentum representation can be done 
after the elimination of the spin variables has been performed. To this end, we 
adopt the following convention for the Fourier representation: 

(D.11) f (x)  = f dk (-~=)4 exp [ik.  x] f(k), 

where k - (k, oJ), dk = dk d~, and k.  x = k .  r - ~t. In particular, for any system 
which is translationally invariant in time and space we can write 

(D. 12a) M ( X l ,  x 2) - -  M ( x  1 - x2) , 

(D.12b) /~(xl, x2; x3)--/~(xl- x~, x2-  x3), 

(D.12c) 3(x~, xs; x4, x~)= _=(x~- x6, x4 -  x6, x5 -  x6). 

This implies the following Fourier representations: 

(D.13a) 

(D.13b) 

M ( x b  x2 ) = f dq exp [iq. (xl - x2)] M(q) , 

/~(xi, x2 ;x~)=f  dp dq 
(2~)  4 (27~)4 exp [i(p + q/2) . (x, - x~)]. 

�9 exp [ -  i(p - q/2). (x2 - x3)]f(p; q), 

(D.13c) ~(x3, xs; x4, x 6 ) = f  (~-~4dP (2~) 4dp' (2=) -----~dq exp[i(p+q/2) .x3]exp[i(p ' -q/2) .xs] .  

�9 exp [ -  i(p - q/2). x4] exp [ -  i(p' + q/2). x6]Z(p, p'; q), 

which are shown graphically in fig. 13. 
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M ( q )  = 

~(P ; q) = 

p+_~ _t+ q 

E(p,pt;q) = 

q / q 
p - - f  p - -~  

Fig. 13. - Structure of M(q), F(p; q), and 2(p, p'; q) from energy and momentum 
conservation. 

Elimination of the spin variables for the two-particle correlation function 
proceeds as follows. The functions L(Xl~l, x2z2; x~,zl,, x2, ~2,) corresponding to 
the six possible arrangements of the spin projections {m} at the four external 
legs (cf. fig. 2a)) can be expressed as linear combinations of the singlet (s) and 
triplet (t) amplitudes 

(D.14)  Ls, t(xl, x2; Xl,, x2,)=L(Xl~, x2J ' ;  Xl, ~' , x2,~)• 

+- L(Xl t ,  x~ $ ; Xl, t ,  x2, $ ), 

with the + ( - )  sign referring to singlet (triplet), provided the ground state IN} 
possesses overall spin rotational symmetry (i.e., it is a spin singlet). In this case 
one may show that Ls and Lt satisfy two distinct Bethe-Salpeter equations with 
kernels ~s and ~t, respectively. 

APPENDIX E 

The Thomas-Reiche-Kuhn sum rule. 

In this appendix we show that a ,,~-derivable, approximation preserves the 
information about the (ground state) expectation value of the equal-time density- 
current commutator, thereby fulfilling the so-called Thomas-Reiche-Kuhn sum 
rule. In fact, a combination of eqs. (7.9) and (7.10) yields 

(E.1) a <NIT[~,(1 ) W(3) ~t(3')]lN > + V1. (NIT[j '(1) ~(3) wt(3')]IN > = 

= (r 3') - 8(1, 3)) (NIT[~(3) ~t(3')]lN) ; 
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applying then the operator (h/2im)(V3-  V3,) to both sides of eq. (E.1) and 
setting 3 ' =  3 + leads eventually the equal-time density-current commutator in 
the form 

(E.2) ih (Nl~(x')lN} V' ~(x, x ' ) .  (Nl[Z(x), j(x')]lY) : m 

The connection between the Thomas-Reiche-Kuhn sum rule and the commutator 
(E.2) can now be readily established by expressing (in the absence of magnetic 
fields): 

(E.3) E (E~ - E0)J~(&)] 2 = 
s 

=---1 f dxdx'  exp [ -  i k .  r'] (Nl[[~(x'),/t],  ~(x)]lN) exp [ik . r] 
2V 

= i.__h__h f dxdx '  e x p [ i k . ( r -  r ')]V'-(Yl[~(x), j(x')]lN} 
2V 

where V is the volume occupied by the system, E s -  E0 are the excitation 
energies of the system, and 

(E.4) [3s(k ) = V-1/2 f d x  e x p  [ -  i k .  r] (NI~(x)IN, s} 

are the corresponding matrix elements of the fluctuation density operator of 
wave vector k between the ground state IN} and an excited state IN, s}. 
Insertion of eq. (E.2) into eq. (E.3) gives finally 

(E.5) h2k2 1 F . . 

Z, (Es - Eo)];,(k)] 2 - 2m V J dx(N]~(x)]N} , 

for any ,,~-derivable, approximation. Since the integral on the right-hand side of 
eq. (E. 5) is taken to give the total number N of particles which are present in the 
volume V, eq. (E.5) reproduces the desired sum rule. In particular, taking 
k--(0,  0, k) with k small, one can approximate 

(E.6) ~s(k) ~- - ikV-1/2 q-~(NI~lzlN ' s )  , 

where dz is the (z-component of the) dipole moment operator and q is the charge 
of a particle. Equation (E.5) thus acquires the more familiar form [61] 

(E.7) E ( E  _Eo)](NI~I~]N , s} 2 h 2N 2 
= - ~ m  q �9 

Well-known examples of conserving approximations for which the sum rule (E. 7) 
can be explicitly verified are the RPA and the RPAE approximations [62]. 
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A P P E N D I X  F 

77 

The Clausius-Mossotti  relation. 

The formalism presented in subsect. 8"4 provides a link between calculations 
based on the microscopic properties of the material and the macroscopic theory 
of the dielectric constant eM(o~). One then expects to recapture from it the 
classical Clausius-Mossotti relation for the macroscopic dielectric constant 

(F.1) eM(~) - 

8 1 + -~ =~(~) 

4 1 - ~ =~(~) 

in the limit of completely localized electrons, such that  the electronic excitations 
are represented by the polarization of po in t  dipoles  at the (Bravais) lattice sites 
(that we take throughout of cubic symmetry). In eq. (F.1) a(o~) is the site 
polarizability per unit volume that  relates the polarization density (cf. eq. (8.8)) 
to the local electric field acting on the individual point dipoles [63]. The single 
function a(oJ) thus provides the eigenfrequencies of the longitudinal and 
transverse excitations in the long-wavelength limit by considering the zeros of 
the numerator  and of the denominator in eq. (F.1), respectively [64]. 

In the limit of extreme localization, we may retain only the form factors 
(8.53) with l =  0 and approximate 

(F.2) Ac(q + O) = - iq .p~, 

where Pc is the dipole matrix element 

(F.3) Pc = f drr rr 

between an occupied (v) and an unoccupied (~) local orbital. The net charge 
corresponding to this dipole excitation is thus zero. Notice that  the integral in 
eq. (F.3) is limited in practice within the volume of the reference cell centred at 
r = 0. Combining eq. (F.2) with eqs. (8.26) and (8.59) yields for the macroscopic 
dielectric function 

(F.4) eM(~o) = 1 - 4~e2 E p~Scc,(q = 0; ~)p~*, 
~o  r 

where ~ denotes any  Cartesian component of the vector (F.3). The proper 
screening matrix S given by eq. (8.60) can be considerably simplified in the limit 
of extreme localization, by expanding the Coulomb matrix elements of eq. (8.61) 
into multipoles. To leading order, we get the dipole-dipole interaction 

(F.5) 1 T ] Z  [ \ 4~e 2 ~ , 

- v c, qj -- q .pc pc. + 

[(p* .pc,)Jmj 2- 3(m .p*)(m-po,)] 
+ e ~ ~' exp [- iq. m] 

m Iml 5 
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where the prime on the summation means that the term m = 0 is omitted. In 
other words, we have assumed that the exchange Coulomb matrix (8.56) (and 
possible modifications to it due to electronic correlation effects beyond the 
TDSHF approximation considered in subsect. 8"4) removes the self-interaction 
term from the proper Coulomb matrix (8.61)[65]. Proviso of this self- 
polarization correction, albeit irrelevant if the electronic wave functions are 
extended throughout the crystal, becomes indeed essential when the wave 
functions are localized [66]. 

The right-hand side of eq. (F.5) can be evaluated by the Ewald's method. 
Taking advantage of the results given in sect. 30 and appendix VI of ref. [28], we 
split the dipolar sum into a term that absorbs all that is nonregular at q = 0 and a 
regular remainder. The nonregular term corresponds to the ,,macroscopic field, 
and cancels with the first term at the right-hand side of eq. (F.5), while the 
regular term corresponds to the so-called (,inner field)) and gives 

1 .  sx, 4r:e2 . 
(F.6) ~-C(q = 0) - ~vc~,tq = 0) -~ -~oPc "Pc,. 

Insertion of eq. (F.6) into eq. (8.60) and of the result into eq. (F.4) requires us to 
sum the geometric series 

(F.7) 1 1 [ 
~p~Scr = O; ~)p~,* = ~ o  ~P~L ( -  ih)N~162 = O; co) - 

. 4~e 2 . . ]p~* 
- Z ( -  ih)N~ = O; ~)-~op~,, .p~.,(- ih)N~ev(q = O; ~) + . . . . .  J 

c,,c. 

=1__ ~ p ~ ( _  ih)N~c,(q = 0; oJ)p~* �9 

] 3 ~o ~p~,,(-ih)N~ ~o)p~* +.. .  - 

i~ 
~_~i  ' 1 + 0(~)  

where 

(F.8) 
1 1 

~o((~) _= ~ ~ p,~(_ ih) N~ = O; ~o) p~* = lira --1. ~O(q + 0, q + O; ~o) 
, q ~ O  q, 

is defined in terms of the polarizability for noninteracting particles (cf. eq. (8.58) 
with N replaced by N~ Combining eq. (F.7) with eq. (F.4) leads eventually to 
the Clausius-Mossotti relation (F. 1), provided we identify - e ~ ~~ with the site 
polarizability per unit volume a(o~), computed without regard to the dipole 
interactions [64]. To this end, it is sufficient to consider the polarization density 
at the reference celt produced by the (self-consistent) local electric field 
(whereby the self-polarization correction has been subtracted [66]) set up by a 
purely longitudinal perturbing electric field. We thus write 

1 f drrpind(r; ~o) = (F.9) P(r  = 0; ~) = ~00 o0 
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= e~ f drr f dr '~~ r ';  o~)~o~(r'; ~) = 
o0 J e2! = - -  d r r  dr '  2~ r'; 09) [~l~(r--- 0; co) - r ' .  El~(r = 0; ~) + . . . ]  = 

~0 a a 

= - e---~2 f drdr'r~~ r'; 09)r' .Eloe(r= 0; 09) + . . . ,  
~o a0 

where  use has been made  of the  short-range proper ty  of ;~~ r'; 09) to confine 
both integrat ion variables to the reference cell as well to neglect  the  spatial 
variation of the local electric field over the exent  of the induced dipole, and of the  
cell neutra l i ty  condition [67] 

(F.10) f dr';~~ r ';  09) 0 
D o 

tha t  follows directly from the orthogonali ty of the pair  of loealized orbitals 
en ter ing  eq. (F.3). The condition (F.10) can fur ther  be exploited to identify 

1 f drdr'r~~ r'; 09)r'---~~ (F.11) -~  ~ 

thereby  yielding the  desired resul t  

(F.12) P(r = 0; 09) = - e2~~ = 0; 09). 

A P P E N D I X  G 

The particle-hole Green's function. 

The two-particle Green's function 

(G.1) G2(1, 2; 1', 2')=(-~)2(N[T[~(1)~(2)~*(2')~*(1')],N) 

can be expressed  as the  sum of the  following six functions: 

(G.2a) G~(1, 2; 1', 2')=(-h)2(N]T[~'(1)~+(I')]T[~(2)~+(2')]IN) �9 

(G.2b) G~I(i, 2; 1', 2')=(-~)2(NIT[~(2)T+(2')]T[~'(i)~'+(1')][N) �9 

o(= 1r r 
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(G.2c) G~(1, 2; 1', 2 ' ) = -  - (NfT[~/'(2) ~'(1')]  T[i~(1)~'~(2')]rN) �9 

�9 o ~ ~ - ~ + ~ + y - ~  

(G.2g) G~V(1, 2; 1', 2') = - - (N]T[i~(1) ~'(2 ' )]  T[~(2) ~'~(l')]lX) �9 

�9 o ~ ~ - ~ - +  +-~- - ~  ~ + E +  , 

(G2e) GV(1, 2; 1', 2') = - (NIT[~F(1) ~(2)] T[~/~'(2 ') ~ ' ( l ' ) ] l g )  �9 

�9 o - 5 +  - g  + ~ - - ~  - g  ~ - - - ~ +  , 

(G.2f) e~(1, 2; ~', 2') -- - (NIT[/~'(2') ~/~ T[~/'(1) ~/~(2)]IN) �9 

2 2 2 " + g - g  - g  " - g +  " 

Inserting a complete set of N-particle states (for functions I-IV), of (N + 2)- 
particle states (for function V), and of ( N -  2)-particle states (for function VI) 
between the two time-ordered products in eqs. (G.2), and introducing the fight- 
and left-hand particle-hole amplitudes 

(G.3a) x~h(x~, xj; t, - tj) = (N[ T[~(i) ~*(j)][ N, s) exp [i(E8 - Eo) (t~ + tj)/2h],  

(G.3b) ~[h(x~, Xs; t~ - t s) = ( N ,  s[ T[~(i) ~t(j)][N) exp [ -  i(E8 - Eo) (t~ + ts)/2h], 

the right- and left-hand particle-particle amplitudes 

(G.4a) z F ( x ,  xj; t ~ -  t s) = ( N [ T [ ~ ( i )  ~(j)][N + 2, s ) .  

�9 exp [i (E~(N + 2) - E0) (t~ + ty2h] ,  

(G.4b) z[P(x~, xs; t ~ - t j ) =  ( N + 2 ,  s [T[~ t ( i )  ~ t ( j ) ] [ N )  �9 

�9 exp [ -  i (E~(N + 2) - Eo) (t~ + ts)/2h], 

and the right- and left-hand hole-hole amplitudes 

(G.5a) z,~ (x~, Xs; t ~ -  ts) = ( N [ T [ ~ * ( i )  ~ '*( j )]IN - 2, s )  . 

�9 exp [i(E~(N - 2) - Eo) (ti + tj)/2h],  

(G.5b) ~h(x~, Xs; t~ - ts) = ( N  - 2, s t T [ ~ ( i )  ~(/)][N) �9 

�9 exp [ -  i (E~(N - 2) - Eo) (tr + ts)/2h], 
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(where the collective index s labels in each case the relevant set of states), we 
may rewrite the six functions (G.2) in the compact form 

(G.6) G2(1, 2; 1', 2 ' )=  A(a)o -~lT~l 
�9 ~ exp [i(E0 - E~(M,)) tJh] f;(.:~)g;(T,) 

s 

(a = I-VI). The entries needed in eq. (G.6) are listed in table I. 
Notice that the excitation energies Es(M~) - Eo enter eq. (G.6) only through 

the exponential factor that has been explicitly displayed. Suitable Fourier 
transformation with respect to the variable t~ thus enables us to exhibit the poles 
of the spectrum E~(M~) - Eo. In particular, to locate the N-particle excited states 
it is convenient to make use of the freedom in the choice of the time variables t2 
and t2, in the Bethe-Salpeter equation (4.5) by setting t2, = t2 + ~ (~-o 0§ With 
this choice and Fourier transforming the variable t2 we may only retain the so- 
called particle-hole Green's function 

(G.7) G~h(1, 2; 1', 2 ' )=  G~(1, 2; I', 2 ' )+  G~(1, 2; 1', 2'), 

since the functions III-VI are nonsingular at the frequencies of interest. 

APPENDIX H 

The Haken potential. 

In this appendix we show how the often-quoted Haken potential, that 
contains corrective terms to the electron-hole attractive interaction - e 2 r  - 1 e~ 1 
in the effective-mass approximation, can be derived from the last term at the 
left-hand side of eq. (11.16). To this end, we adopt the approximation (11.24) for 
the dynamically screened exchange matrix elements and take the (time-ordered) 
inverse dielectric function of eq. (11.25) within the so-called plasmon-pole 
approximation (cf. sect: 25b) of ref. [5] and eq. (9.16) with a single mode) 

(H.1) E~l(q; co)= 1 + (Co- 1 ] ~ 
\ e0 ] o~ 2 - ( ~ ( q ) - i ~ )  2' 

where ~o0=~(q=0). Equation (H.1) enables us to perform the frequency 
integration in eq. (11.16) in a close form. Changing in addition the integration 
variables k. and kv, into p = k , , -  ko and q = k , -  k,,, we obtain 

I dk~ 
(H.2) E j (2=) 3 

% '  ~e' 

r- f dkv, A z exp [i(kv - ko)" ] J (-~=)3 s( ~', ac,; k~,) ~4"~o" 

+ ~  

�9 i f dh~o e x p [ -  i ~ ]  (~ck~, ~ k v l W ( ~ ) l ~  k~, ~ k v }  " 
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( 1 
h 2 h 2 

E~ + ~ (k~, - ko) ~ + ~ (k~ - ko) ~ + ho~ - i,~ 

+ 

E B + h 2 -- 2 h ~ (k~ - ko) + ~ (k~, - ko) 2 - hco - / ~  

f dq fdp --- ~ exp [iq. r] ~ exp [ip. r] A,(~, ~; p + ko) v(q). 

[-1+ ( ~~ hJ I hoJ(q) + h2 --2 (p + q)2 
Ey + ~ + h ~ zm~ 2m* 

+ 1 h2p2.] ~ 
ho~(q) + E~ + h 2 (p + q)2 

Equation (H.2) may be further simplified by neglecting i) the p-dependence in 
the energy denominators owing to the localization of the coefficient A, about 
p = 0, ii) the q-dependence of the dispersion relation ~(q) that we assume to be 
weak in comparison with the q-dependence of the single-particle energy levels 
about the extrema, and iii) the excitonic binding energy E B in comparison with 
the characteristic screening energy ho~0. The result is the product of the envelope 
function F,(~, ~c; r) times the Haken potential (cf., e.g., ref. [59], sect. 7b)) 

(H.3) v~(r)=- v(r)[10 + (e~ (exp [ -  T/Tel -Jr exp [ -  rlru])]. 

In eq. (H.3) re and rh stand for the electron and hole polaron radii, respectively, 

f h ] I'~ f h ] ~ 
(H.4) re=--[T-m,-~o,~j, rh-12m, o-----~j , 

and the quantity within brackets defines an r-dependent effective inverse 
dielectric function that interpolates smoothly between the values e~ 1 for r--. 0o 
and 1 for r =  0. It should be recalled, however, that the potential (H.3) is 
meaningful insofar as it describes the leading corrections for large r to the 
electron-hole interaction in the effective-mass approximation. 
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