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Past work, treating simple metals in t8&V approximation, has largely neglected effects of self-consistency
and higher-order vertex corrections on occupied bandwidths. This work presents self-coi@isteasults,
plus nearly self-consistent higher-order results, for jellium, illustrating that both effects are large, yet largely
canceling(e.g., 0.65-eV effects on the sodium bandwidth, but a combined effect of only 0.13Té\s
supports findings that many-body effects substantially reduce such bandyiiii$3-182006)01736-3

INTRODUCTION I'(12,3=6(12)6(13)

The notion of electron energy bands continues to provide 53(12)
fundamental insight into understanding basic properties of +f d(4567I'(67,9G(46)G(75) 5G(45)
solids. Lately, the newfound capacity fab initio prediction (49
of band energies has stimulated materials research all the 2

more. Such an accomplishment relies on the abilities both to

solve the one-electron Sclimger equation in a crystal, and G, is the Green's function wheB =0, » the bare electron-

to determine many-body corrections to electron band €Nelslectron interaction, antV the dynamically screened inter-

gies, i.e, to det_ermlne_ self-energy effects. The rol_e of self; ction. The above arrangement of equations facilitates ex-
energy effects is particularly clear when computing bantg

1 insulati ; } the standard local-densi ansion of 3 using W, not », avoiding divergences
gaps In insulating systems. €.g., the standard local-densilysq,ciateq withy. Hopefully, this expansion also converges

approximation(LDA) (Ref. 1) predicts a band gap of 0.55 : G : -
eV for silicon vs the measured value 1.17 eV, whereas in_rapldly as terms with increasing powers Wfare included,

. because oW’'s smallness. In practice, the coupled expan-
clusion of self-energy effects leads to a gap around 1.29 eV us S SS pract up P

Equally fundamental quantities are the occupied bandwidth.Sions ofG, X, W, andI" must be terminated at some level.
quatly q b %eyond Hartree's approximatior®&0), one next assumes

in sample metals, quantities perhaps considered first in the ; i -
classic Sommerfeld theory, which the LDA may overesti—F Fi(rlz%(z(ij) ,nﬁ)arl?edr?zfllsng?h(iizévl\/G;tf)rg\;\ilrf;[?én” has

0,
maéeurt;)e/naﬂbo%;orﬁst successful approach which describ lelded remarkably accurate, predicted band enefgidit
Y, e . . bp . . “two significant caveats remain largely unaddressed. In prin-
electron excitations in solids uses diagrammatic techniques

to estimate self-energy effects. The electron Green'’s functioﬁ'ple’. expansion OE.ShOUId be ca_lrned out using the self-
, i consistent, renormalize@. In practice, though, only an un-
G obeys Dyson’s equatién

renormalizeds has been used. Depending on the solid, from
10% to 50% of spectral weight & is transferred from
[E+ %Vrz_vext(r)_VH(r)]G(rir,;E) quasiparticle peaks t_)y seIf—en(_ergy effects, to form plasma-
rons and other satellites, the “incoherent” part®f Also,

little work has quantitatively assessed the roledghamical
vertex correctionghigher terms inl"), in studies of realistic
systems. One can speculate that simultaneous neglect of

S is the self-energy operatov,,, andVy, are external and renormalization and vertex corrections produces two, largely

Hartree potentia's_ The exa& andz may be found using Canceling errors in the behavior Ef e.g., one can obtain a
well-known coupled equatiofs density-response function which obeys fasum rule, when

both effects are omitted or included, whereas inclusion of
one effect without the other can have drastic consequences
G(12)=GO(12)+J’ d(34)Gy(13)3,(34)G(42), regaydmg adherence to that. rdle.

Simple metals have provided a great challenge for spec-
troscopic measurement of electron excitatidrad assess-
ment of the role of vertex corrections when describing such

2(12):if d(34)G(13")W(14)T'(34,2), excitations®® Here | present fully self-consiste@®W calcu-
lations, which use a renormalize®, for jellium with
Wigner-Seitz radius  ranging from 2 to 5, and nearly self-
W(12)=»(12) consistent calculations at the same densities, which include
lowest-order dynamical vertex corrections. Compared to
one-electron theory, a self-consiste@\W treatment pro-
duces no substantial reduction in the occupied bandwidth

—j d3r"3(r,r";E)G(r",r’;E)=0. )

+ f d(3456 v(13)I' (45,3 G(46)G(65W(62),
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Er )
Liz(12) = (p"""zl N m 2, E:dekf—“dE A(k,E) L (E+K2/2) .
4 -1 2 1 Lg,\’i_,_fr' N J‘ dgkfdeE AKE) .

FIG. 1. Low-order diagrams for electron self-energy){( in A(k,E) is the spectral functiom(k,E)=|Im G(k,E)|/77.

terms of renormalizgd Green's functi@ (double ling and dy- In the GW approximation, working within a plasmon-pole
namically screened interactiof (wavy line). model, one may write

d® d _
with an unrenormalize, but rather an increase. Including 3, (k,E)= +i —qsv(q)f —we“”“’
vertex corrections restores a reduction in bandwidth, and the (2m) 2m
results suggest that effects of any remaining non-self- [J'EF A(K+0,€) Joc A(k+q,e€)

(henceforth simply “bandwidth), as does & W treatment f

consistency(in the higher-order calculationsare minor.
Thus, renormalization o6& and vertex corrections can each
have significant effects, but the combined effects largely can- 5
cel. In what follows, | elaborate further on technical details, 14 _p( 1 B 1 ”
present the main results, and discuss the comparison of this 20g\0—wqtin otwg—in/|

and other work. | also suggest directions for future theoreti- )

cal and experimental work, and provide some conclusions. . L .
with #» being a positive infinitesimal, and, and o, being

plasma and plasmon-pole frequencies, respectielizas a

real, energy-independent term, because of the constant in the
Given an adequate expression b evaluatingG is re-  second bracketed factor, plus two energy-dependent terms.

duced to expanding usingG, which remains to be solved The imaginary part of the firssecond term is the frequency

€ —— €
-« Etw—€e—iny Er Eto—etin

X

COMPUTATIONAL DETAILS

self-consistency, anw. This yields(see Fig. 1 convolution of the advance@etardedl spectral function for
G and retardedadvancedl “spectral function” for W.
—i2(12)=G(12")W(21) When evaluatings (k,E) from Gy(k,E) and (k,E), the

energy dependence of Rék,E) reduces quasiparticle pole
: strengths, as the spectral weight shifts to energies where
+ . o
IJ dEHG(IIWAHC(3HW(32)G(42) ImX(k,E) is nonzero, primarily further tham, from Eg,
N 3) below and abovéEr . Effects of renormalizings, when a
given G is used to comput&, include quasiparticle pole

This work terminatesS after two terms, a nonconserving Strengths being closer to unity, and the correlation-induced
approximatiorﬂ but the magnitude of related prob|ems bandW|dth red_uctlon belng W-eakened. This correlation-
should vary only as higher-order effecW. is e v, where induced reduction competes with a comparable exchange-
e is the dielectric function. For densities considered, alnduced increasgbecause of the energy-independent term in
p|asm0n_p0|e model foefl Sufﬁces:? The model used here 2), so a 10% Change in bandwidth is a rather delicate effect.

gives accurate» and w1 moments of Ine~ (g, »), as dic- Regarding the sensitivity of a comput@dto the input
tated by thef-sum rule andthrough Kramers-Kmig rela- G, renormalization is more important than mere bandwidth
tions) by Ree (g, w=0), which is found using compression (where quasiparticles retain unity pole
strength, provided that the inpuE is approximately right,
x%(q,0=0) which can usually be achieved by rigidly shifting the energy
€(q,0=0)=1-v(q) 1=1(9)°(q 0=0) (4)  of all spectral weight as needed. To illustrate this, many-
DxAa, body effects reduce the sodiumigE3.96) bandwidth by
where x°(q,w) is the Lindhard polarizability, andi(q) fa- ~0.6 €V, while we havéiw,~6 eV. So renormalizing>
cilitates a good fit, at alt considered, to quantum Monte shifts the spectral weighitvith respect tdg) by about 6 eV
Carlo data fore (g, w=0):*° (plus or minus some of the 2.65-eV bandwigtiwhile band-
width narrowing correspondingly shifts spectral weight by
f(q) =K, (n)[kZ/(k2+0.089%)]. (5) tenths of an eV.

| first performed “nonrenormalized’{using aG, shifted

Ky(n) is dV,(n)/dn, and V,(n) is the exchange- to have the correcEr) and “renormalized” (using a self-
correlation potentidlin an electron gas with density and  consistent G) GW calculations, by tabulatingA(k,E)
Fermi momentunk . [=A(|k[,E)] on an energy-momentum grigt000 E’s, at

There is less known abo@ a priori, although Ceperley- intervals ranging from 0.005 to 0.001 a.u., and 6R0s, at
Alder electron-gas dath provide two absolute criteria for intervals ranging from 0.006 to 0.010 a.u., interval sizes
validity of a givenG. For Fermi energyEg, one knows varying withr). Slightly coarser grids produced similar re-
Er= kf2/2+VXC(n), andV,4(n) may be found at all densities sults;(smal) effects of electron states at all higher momenta
from the data. Also, the total energy per electrde&/N) or energies were estimated and included. In essence, the
should agree with that found using the Galitskii-Migdal above equation and Dyson’s equation were solved self-
formulal? consistently. Care was taken to describe both discrete poles



7760 ERIC L. SHIRLEY 54

TABLE I. For variousrg, renormalization constantZ{s) at k=0 andk=kg, occupied bandwidthv
(eV), andEg (hartreg. Results are given for nonrenormaliz€dlly self-consistentGW approaches and for
a higher-order approach, and exact valuesHprare given.

rs GW Higher order Exact
Z(0),Z(kg) w Er Z(0),Z(kg) w Er Er

2 0.59,0.77 11.89 0.100 0.53,0.75 1157 0.081 0.103
(0.63,0.81 (13.28 (0.130

3 0.52,0.69 5.03 —0.052 0.48,0.67 5.044) —0.060 —0.042
(0.58,0.74 (5.99 (—0.036)

4 0.47,0.63 2.63 —0.091 0.45,0.61 2.68) —0.091 —0.075
(0.55,0.70 (3.29 (—0.083)

5 0.43,0.58 1.59 —0.099 0.39,0.56 1.72) —0.093 —0.082

(0.53,0.66 (2289  (—0.083)

and continua inA(k,E) adequately. Evaluating Rein-  the correctEg also permit}ed an association of accuracy in
cluded the Kramers-Kirtig transformation of I. This was ~ the total energycomputeda la Galitskii-Migdal) with accu-
done only after convoluting 1% with a (0.016 hartregfull- racy in the degrees of normalization and bandwidth reduc-
width tepee function: otherwise, spurious gaps in continuou$§on. Computed total energies were affected far more by
parts of In®, (because of discrete integration oegrinduced ~ renormalization than by bandwidth reduction, and were too
spurious oscillations in R& positive when obtained from the Galitskii-Migdal formula

| next used resulting spectral functions as input to higherusing an unrenormalize@.
order (vertex-corrected calculations of2. Then, though,
only quasiparticle properties were examined: incoherent RESULTS
parts ofG were not studied further. For ea&h this permit- . .
ted approximating occupied and unoccupied, incoherent Tables I and 1l show nonrenormalized and self-consistent
parts ofG each as one pole to three poles, while the cohererfg W results, and higher-order results for computed band-
part had one poleS, was found using analytical frequency, widths, quasiparticle pole strengths;’s, a_n_d total energies,
and Monte Carlo momentum integrations. The balance oP!US known values of the last two quantities. The total ener-
1/q2 Coulomb-potential and? phase-space factofassoci- ~ 91€S o.btamed.by Lundqvist are also g!v’e°’ras are the total
ated with interaction-line momentum integratipgsovided ~ SNergies obtained by Hartree_—Fock. Flgure 2 shows spectral
importance sampling. Results were converged with respedtinctions(for rs=4) used as input to higher-order calcula-
to the maximumg sampled, and care was taken with regardtion in approachegA) and(B).

to spurious fluctuations in Rebecause of the higher-order  Jelllum and simple melt_als Al, L, T]a' and K rllfave been
term. (Such fluctuations resulted from imperfect sampling'treated at a nonrenormalized but otherwise self-consistent

there was quasiparticle decay because of interaction with th€ W Ie\éel by Northrup, Surh, Hybertsen, and Louie
electron-hole continuum. Whereas these interactions are su -;HL)' dTQEéSGe metalst_halve Qotmtlr?a'LS of 2.IO7£ 3'2‘2’ g
pressed at th&W level, provided one uses a plasmon-pole°-7°, and .66, réspectively, but their one-eiectron band-
model, these interactions are only partially suppressed at tH@'r‘]jt?? and many-bogy b{ir:lqlmdth C‘?t”e?'onst,d'fffr s?]mte-
next-higher-order level, even when using a plasmon-pold/nat from corresponding Jeilium results. 10 estimate what a
model) .

Bandwidths and quasiparticle pole strengths in higher-tret;r;\B;Ee;tltzorf;?r?husrS'réZ?r:tenr?c:E{ezirr rifl?zt;ﬁlm g:vl\ff_-
order results were found in two way®A) a G, shifted to 3 P . - y
correctE. . was used to comput® in GW, and the result- consistent GW approaches, those given in Ref. 13, and exact val-
. Fo . P . ! . ues. Based on results of the higher-order calculationstext),
Ing, non-_self-conaste_r(tenormal|zed spec_tral function was lesser weight should be given to the present, self-consi&amt
used as input for a higher-order calculation;(By the self-

consistentGW spectral function was used as that input. Inresuns'

comparing method&\) and(B), method(A) produced closer E/N

consistency in bandwidths and pole strengths input and out-

put by theyhigher-order calculaﬁon, SO regsuh!s) &Fx)re pre- FS PresenGW Ref. 13 Hartree-Fock Exadt

sented. Insensitivity of final results to such distinctions of2 —0.004 —0.005 0.047 0.002

input G’s suggest that these higher-order results exhibit (—0.003)

minimal residual, non-self-consistency effects. 3 —0.070 —0.069 —0.030 —0.067
| shifted spectral weights i5’s rigidly to achieve the (—0.068)

correctEg, when preparing input for all self-energy calcu- 4 —-0.078 —-0.078 —0.045 -0.077

lations, except in iterations beyond the first in the self- (—0.073)

consistent calculations. This prevented complete selfs —0.074 —0.076 —0.047 —0.076

consistency for Ep, but permitted a more absolute (—0.073)

investigation of the role of various diagrams3n Achieving
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Al, 2.65(5) eV for Na, and 1.6() eV for K. Considering
separate effects of renormalization or vertex corrections, the

' final agreement with experiment is no worse than warranted,
(@) ‘ differences being much smaller than the changes produced
when either effect is taken separately.
T 15 e
2 14 DISCUSSION
5 :
£ }“3 1 i Besides differences in bandwidths and renormalization
E 3 AN e constants, there are further differences between the results of
§ 1.0 | P e M Figs. 2a) and(b). There are more features in Figb? than
& 09 in Fig. 2@). Meanwhile, the satellites present in both parts
E 0.8 (. : differ somewnhat. Before discussing the results both above
E 0.7 : ' and below the occupied quasiparticle band, a few points
g gg ; Pl should be mentioned. First, what are discrete poles in these
Z 04 T . figures, when using a plasmon-pole model, should broaden
03 e ? somewhat when such a model is abandoned. This is because
0.2 : of quasiparticle damping which would occur because of in-
0.1 teractions with the electron-hole continuum, except for states
— — _ at energyEr. Second, satellites are easily motivated as re-
25 <20 15 -10 -Esnergoy (e\% 1015 20 25 sulting from the frequency convolution implicit in E7).

Where the self-energy has a nonzero imaginary part, there is

g nonzero spectral weight. Features present only in Fig) 2
®) are motivated as resulting from the frequency convolution in
L Eq. (7) of satellites built into the renormalized spectral func-
LA tion in Eq. (7). All such higher-order features should be
T 15 . fj Bl viewed with particular scrutiny here, however, because in-
2 14 f'/ = clusion of vertex corrections is required to form a complete
g 13 ///c picture of these features and other, equally important effects.
z ii o pesgribing §ate||ite§ is simplest aboke . There, spt.act'ral
g 10 [~ weight is confined to Il_e at energies abtﬁq:—z+h_wp: th!s is
S 09 N\ p— the onset of the quasielectron-plasmon continuum in a sys-
E 0.8 PURY N f tem where electrons would not couple to plasmons, but the
2 07 N coupling (in the interacting cageintroduces nonzero one-
g 06 \C & electron spectral weight in this energy region. Meanwhile,
s 05 R : 3 there is a particularly large density of states arofiag, plus
0.4 | the quasiparticle energy, which may be attributed to the fact
gi Py that the partial plasmon density of states, weighted in the
01 P self-energy, has a maximum &tw,, and is strictly zero

L below that energy. Additional structure may be seen in Fig.
5 0 5 10 15 20 25 2(b) around Z w, plus the quasiparticle energy, whigbre-
Energy (eV) sumably is a satellite of the peak arourido, plus the qua-
siparticle energy.

FIG. 2. Partially renormalizeda) and fully renormalizeda la Below the occupied quasiparticle band, the spectral
GW) (b) electron spectral functions fot=4. The spectral function  weight is confined to lie at energies beld#¢ -7 w,, the
is plotted in arbitrary units, in stack-plot fashion, for various mo- onset of the quasihole-plasmon continuuffihe reader is
menta and energies, and discrete poles are indicated by spikes. Fegminded that, beloviEg, energies of many-body states cre-
a given momentum, the base line is chosen so that a value of zemgted wherremovingan electrorincreaseto the left) A dis-
for the spectral function corresponds to the indicated momentum ogrete pole is sometimes present to the left of a broad feature
the left-hand axis. Furthermore, whereas all results here have beg |ow momenta. In Fig. ), satellites themselves gives rise
normalized similarly for the sake of presentation, the integral oftg fyrther satellites, so that even third-order effects are barely
each spectral function over all energy is unity. discernible at sufficiently low energy and momentum. The
éarigin of discrete poles in satellites is motivated in detail in
the Appendix. The limited energy range spanned by features
below the occupied band, as opposed to by those above that
band, is easily motivated: the occupied spectral weight lies
Mvithin a more compact part of the energy-momentum phase
gpace. However, the rule

-25 =20 -15 -10

higher-order, renormalized, self-consistent treatment woul
give for bandwidths in these metals, | adjust NSHL's jellium
corrections by combiningl) discrepancies between my jel-
lium results and their jelliun@ W results with(2) their com-
puted discrepancies between many-body corrections in je
lium and the real materials. This gives respective bandwidth
of 10.21) eV, 3.088) eV, 2.685) eV, and 1.8611) eV.}*
There are only small differences from NSHL's accurate re- fw dw A(k,0)=1 ®)
sults. Available experimental bandwidths are 1D)&V for o
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still limits the overall filling of the phase space by the spec-peak(relative to that of the quasiparticle pgakspecially at
tral weight function. the bottom of the band. Indeed, my relative strength is 0.66,
In comparison to other work, thEW results agree well compared to 0.54 found by Hedin, at the bottom of the band,
with those of Lundqvist®="who performed extensiv6é W  coinciding with Hedin’s results fok~kg/2, and being 0.08
calculations using one iteration of Dyson’s equation, and aat the Fermi momentum, compared to Hedin’s 0.21. Thus,
least some calculations with two or more iterations, althougtihis level of agreement is satisfactory.
the nature of the Green’s-function input into the self-energy TheI' used in Refs. 9 and 20, henceforth called, in
on the second iteration is not clear to the present author. Ireplacing 2 ~iGW—Z3X~iGWI'’', might not represent the
some work, Lundqvist also used a different plasmon-poldgrueI. It is readily shown that, when used with a renormal-
model than that used het®Indeed, it was a model whose izedG, the truel’ must depend otwo momentum-frequency
static dielectric function differed from that given by a combinations—not only that of an interaction line—to sat-
random-phase-approximatigiRPA) treatment in a fashion isfy the f-sum rule. However['’ has only the later depen-
opposite to the way that the present, static dielectric functiomlence. Indeed, Ref. 9 finds effects of the above replacement
differs. Lundqvist also carried out analogous results usingpposite to those found here. At least one fbexamines
the full, RPA dielectric function(i.e., no plasmon-pole the higher-order correction used here, for silicon, but using
model was used’ The results were quite similar to those an unrenormalized, finding minor effects for vertex cor-
using Lundqvist's plasmon-pole model, and Lundgqvist'srections in silicon, in agreement with othér® Such
total-energy result$ are based on a full, RPA treatmeand ~ authoré® are presumably the first to consider the higher-
the Galitskii-Migdal formula. Also, Lundqvist discussed, in order corrections in a more complete model than jellium.
less detail, the additional discrete poles treated in the Appen- Incoherent parts of electron spectral functions have en-
dix. joyed relatively little, unambiguous experimental manifesta-
Hedin has also considered ti@WGWGterm, in con- tion, partly because their signals are frequently superposed
junction with several additional approximatiolfisFurther-  with those of lifetime-broadened coherent parts in photo-
more, his work(and references thergitouch on many issues emission or x-ray emission spectra, or with secondary-
related to those discussed here. As for other theoretical aglectron background. Resonant x-ray fluorescence experi-
pects discussed in that work, issues regarding appropriateaents, made practical by third-generation light soufées,
ness of expansions of the Green'’s function and self-energy tmight reveal occupied incoherent parts more clearly. In prin-
various orders ofV are raised. As cited by Hedin, it has been ciple, they could isolate fluorescence by occupied plasma-
argued® that expansion o6, rather than of the self-energy, rons just outside of the Fermi sea in alkali metals, where the
should be performed consistently at each order. In these reoherent parts should not exhibit fluorescence. Core holes
gards, the higher-order results in this work omit contribu-could be created at such momenta using resonant photoexci-
tions toG which are, at lowest, third order W. Again, the tation to just aboveéEg. In particular, the proposed experi-
argument for the smallness of such terms may be invokednent may provide tremendous momentum selectivity, the
although a better understanding of the difficulties whichdesirability of which was noted by Hedii.However, spec-
might occur in self-energy calculations may be a worthwhiletra may also reveal phonon- and plasmon-assisted self-
basis for further work. Hedin also presents three sum rulesnergy effects and/or nonvertical recombinations with quasi-
for the spectral function, which are followed automatically particles in the Fermi sea, or x-ray-edge effécts.
throughout the present work, at least at G®&/ level. (One One potential, future extension of this work would be to
subtlety, however, is that, when evaluating the first fre-cease using a plasmon-pole ansatz. However, it is not trivial
guency moment of the spectral function, care must be taketo go about this, since the frequency dependence of the true
to evaluate the Fock term in the self-energy using the renordielectric function is not as well known as it static value.
malizedG, which reflects single-particle occupancies differ- This work was carried out to maximize accuracy in the latter.
ing from the occupancies found in a noninteracting picjure. Nonetheless, because such an ansatz may affect bandwidth
Meanwhile, further care may be needed in this work to fullycompression by many-body effects by only 25%yhereas
analyze satellites output by the higher-order calculations. the effects of self-consistency and tBaNGWGterm can
Interestingly, Hedin provides results for the oscillator affect that compression by 200%, the conclusions of this
strengths of the first plasmon satellites fQe=2. It is diffi- ~ work should be unaffected by use of a plasmon-pole model.
cult to compare these results with those presented here, didore fundamentally, this work should apply primarily to
rectly, but an attempt shall now be made. Difficulties in com-simple metals and conventional semiconductfirsthe lat-
parison arise becausd) the results by Hedin ostensibly ter, the smallness of band gafs bandwidths and plasma
reflect a different set of approximations than those maddrequenciesand the nearly-free-electron character of valence
here, (2) issues regarding the degree of self-consistencynd conduction bands permit one to entertain that assertion.
achieved in Hedin’s work are not cledi3) certain details On the other hand, the approach GfV or higher-order
depend on one’s assumed dielectric function, @hdhere is  self-energy calculations to more strongly correlated systems
ambiguity regarding the precise corresponding quantity irpresents a greater challeng&W calculations have been car-
the present results. Therefore, | instead consider the totaled out with great success in Rfi,but to a lesser degree of
occupied incoherent spectral weight output by the non-selfsuccess in NiG® This suggest a more complex nature of
consistentGW calculations, which should be close to the correlation in transition-metal oxides and other similar com-
analogous results of th@early self-consistephigher-order  pounds, as corroborated by the quantum Monte Carlo results
calculations. This substitute should bias positively my esti-of Mitas?’ who found that the correlation energy in MnO
mate of therelative oscillator strengtiof the first plasmon was more difficult to account for than in other systems, such
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1
E+i7]—|:|

as silicon. Obviously, the strong correlation in many systems .
indicates the greater difficulty in finding a diagrammatic ex- ~ H=e€gla)(q +> [ZolP)(pI+(Vpelp){al+H.c)].
pansion to describe correlation effects. Of interest in their P
own right, strongly correlated systems are beyond the scop@/e desire the partial density of stat@DO9
of this work.
Finally, consider the range of densities examined, which
represents typical metallic systems. At densities higher than 1
those considered, the bandwidth exceéds,, leading to S(E)=—|Im{ g aji
unreliability of a plasmon-pole mod&lwhereas the correla-
tion effects should still be well treated by a fllW treat- Meanwhile, the reader is reminded that, because we are dis-
ment. At densities lower than those considered, correlationsussing hole states, higher-energy solutions of this Hamil-
should become increasingly stronger with increasingso  tonian are reflected at lower energies in the electron spectral
that the convergence of an expansion such as the one usgghction.
here must eventually become doubtful. For instance, one The energieg® and¢® are those ohoninteractinghole or
may consider the breakdown_ of a jellium picture noted i”hole-plus-plasmgn sta@es. Only at the former would the
Ref. 10, and references therein. above PDOS be nonzero, in the absence of any coupling. In
the present of coupling, some of the PDOS is transferred to
CONCLUSIONS trée range R) spanned b>{§3}, and the pole, originally at
) _ €4, Will move because of level-repulsion effects. This can all
In summary, | examined effects of self-consisteridg-  he demonstrated using first- and second-order Rayleigh-
tailed renormalizationand dynamicalvertex corrections on Schradinger perturbation theory. However, in certain cir-
predicted properties of metals. While a non-self-consistent, | stances. a discrete pole also forms at even higher ener-
low-order (GW) treatment reduces occupied bandwidths bygies providéd thaR is limited
10-30 % (compared to independent-electron theprself- The exact PDOS may be i‘ound analytically, being given
consistency leads to overall increased bandwidths. Subs%—S '
guent inclusion of the next-order term {(GWGWQ re-
stores reduced bandwidths, which agree well with

experiment. TheGWGWGterm was typically a tenth as S(E):i im 1
large as theGW term, suggesting that even higher-order T ] 0 5 . 0
terms are correspondingly smaller, affecting bandwidths E+in— fq‘% Voo N(E+in—¢p)

minimally.
In many solids, bandwidths and plasmon energies ar8y inspection, one can already infer a nonzero PDOS at a
larger than crystal-potential effects on energy bands. Hencgole lower thaneg, as well as spectral weight occurring
these results may describe effects in many solids charactefthen E lies within R. Meanwhile, the real part of the de-
ized reasonably as nearly-free-electron systems, rangingominator will be zero for at least two energies, once at the
from simple metals to conventional semiconductors. Howpole already mentioned, and once elsewhere. To estimate
ever, future investigations should address both ramificationsoth energies, one may consider the expansion
of going beyond a plasmon-pole model in such systems, as
well as consider tackling the many-body physics present in

2
more strongly correlated systems, such as transition-metal 2 |qu|0~ A + B s+,
oxides. v E-¢p E=(O) (E=()
where({) is an appropriately weighted average of szﬁes
ACKNOWLEDGMENTS Such an expansion is valid outsideRif Considering the first

term only, the zeros would occur at
| profited from discussions with D. R. Penn, Z. H. Levine,

M. D. Stiles, M. P. Surh, and R. U. Datla. 10 5 >
E%§[6q+<g>i \/(eq_<§>) +4A]
APPENDIX 1] o 0 2A
~2 Eq+<§>i|€q_<§>| 1+|6 _<§>|2_"' '
q

Here the presence of discrete poles in the incoherent, oc-
cupied spectral weight in Fig.(@ is motivated. Other dis- provided that both energies lie outsideRfThe first will lie
crete poles may occur for analogous reasons. This motivatiobelow R, but the second may lie withiR or above it. In the
uses an intuitive picture based on a model Hamiltonian. Conlatter case, the high-energy pole betrays a state resulting
sider states involving either one hole, or one hole and onérom the strong level repulsion betweéq) and a unique,
plasmon. Conservation of momentum permits us to considezoherent superposition of th@)'s. This is a bound state
only one state having a hole, labelfgh, and the subset of analogous to a two-hole, quasibound final states found in
hole-plus-plasmon states having the same total momenturduger spectroscopy of solids. In the former case, the above
{|p)}. In the basis of all states mentioned, the Hamiltonianexpansion must be abandoned, and one instead finds an en-
would be diagonal, except thid) is coupled to each state, hancement in the density of states somewherR.iAs the
{|p)}, with couplingV,4. One has, therefore, such a Hamil- pole approacheR from above, the density of states fis
tonian: enhanced on the high-energy side.



7764 ERIC L. SHIRLEY 54

1w. Kohn and L. J. Sham, Phys. Rel40, 1133(1965. Theory of Many-Particle Systenm{®1cGraw-Hill, New York,
2M. S. Hybertsen and S. G. Louie, Phys. Rev. L&, 1418 1971), pp. 67-69.
(1985; Phys. Rev. B34, 5390(1986. 13B. 1. Lundqyist and V. Samathiyakanit, Phys. Konden. Mager.

3J. E. Northrup, M. S. Hybertsen, and S. G. Louie, Phys. Rev. Lett, 231(1969.
59, 819(1987); Phys. Rev. B39, 8198(1989; M. P. Surh, J. E. Uncertainties include statistical uncertainties, systematic uncer-

Northrup, and S. G. Louidbid. 38, 5976(1988. tainties regarding hoyv to in_clude discrepandias ratios or dif-
4| use atomic units, where the energy unit is the Hartree energy, ference, and uncertainties in Ref. 3.
(27.2114 eV, as well as the electron voleV). B. I. Lundqvist, Phys. Koden. Mate6, 193 (1967).

16 :

5See L. Hedin and S. Lundqvist, Bolid State Physicedited by 17B' g Lungqv!st, PEys. Kongen. Mate, 206 (1967).
H. Ehrenreich, F. Seitz, and D. Turnb@cademic, New York, 185' ||_| qun g\aSt, Z y;'l K407n7 elrg.sMateY, 117(1968.
1969, Vol. 23, p. 1. The index “1” denotes space, spin and - nedin, Fhys. Scere, ( 0.

time coordinates; a 4" superscript denotes adding a positive B Bergesen, F. W. Kus, and C. Blomberg, Can. J. PR§s102
ume co S perscrip gap (1973; P. Minnhagen, J. Phys. & 3898(1970.
infinitesimal to time.

20R. Del Sole, L. Reining, and R. W. Godby, Phys. Revi® 8024
5See X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Phys. g ¥, Py ®

. (1994.
. Rev. B51, 6868(1999, and references therein. 21p. A. Bobbert and W. van Haeringen, Phys. Rev4® 10 326
G. Baym and L. P. Kadanoff, Phys. Rel24, 287 (196J). (1994

®E. W. Plummer, Phys. SciT17, 186 (1987, and references 22pqr instance, see J. A. Carlisi al, Phys. Rev. Lett74, 1234
therein; B. S. Itchkawitz, In-Whan Lyo, and E. W. Plummer, (1995,

Phys. Rev. BA1, 8075(1990. ZThis is reviewed by S. Doniach and E. H. Sondhein@reen’s

°G. D. Mahan and B. E. Sernelius, Phys. Rev. Lé®, 2718 Functions for Solid State PhysicistéBenjamin/Cummings,
(1989. Reading, MA, 197% pp. 200-212.
10c. Bowen, G. Sugiyama, and B. J. Alder, Phys. Re60B14 838  24G. D. Mahan(private communication
(1994. 25F, Aryasetiawan and U. von Barth, Phys. Se5, 270(1992; F.
11D, M. Ceperley and B. J. Alder, Phys. Rev. Let§, 566 (1980, Aryasetiawan, Phys. Rev. 86, 13 051(1992.
as parametrized by S. H. Vosko, L. Wilk, and M. Nusair, Can. J.25F. Aryasetiawan and O. Gunnarsson, Phys. Rev. [7et3221
Phys.58, 1200(1980. (1995.

2This is derived in A. L. Fetter and J. D. Waleck@uantum 271 . Mitas, Bull. Am. Phys. Soc41, 253(1996.



