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Past work, treating simple metals in theGW approximation, has largely neglected effects of self-consistency
and higher-order vertex corrections on occupied bandwidths. This work presents self-consistentGW results,
plus nearly self-consistent higher-order results, for jellium, illustrating that both effects are large, yet largely
canceling~e.g., 0.65-eV effects on the sodium bandwidth, but a combined effect of only 0.13 eV!. This
supports findings that many-body effects substantially reduce such bandwidths.@S0163-1829~96!01736-5#

INTRODUCTION

The notion of electron energy bands continues to provide
fundamental insight into understanding basic properties of
solids. Lately, the newfound capacity forab initio prediction
of band energies has stimulated materials research all the
more. Such an accomplishment relies on the abilities both to
solve the one-electron Schro¨dinger equation in a crystal, and
to determine many-body corrections to electron band ener-
gies, i.e., to determine self-energy effects. The role of self-
energy effects is particularly clear when computing band
gaps in insulating systems: e.g., the standard local-density
approximation~LDA ! ~Ref. 1! predicts a band gap of 0.55
eV for silicon vs the measured value 1.17 eV, whereas in-
clusion of self-energy effects leads to a gap around 1.29 eV.2

Equally fundamental quantities are the occupied bandwidths
in sample metals, quantities perhaps considered first in the
classic Sommerfeld theory, which the LDA may overesti-
mate by about 10%.3

Currently, the most successful approach which describes
electron excitations in solids uses diagrammatic techniques
to estimate self-energy effects. The electron Green’s function
G obeys Dyson’s equation4

@E1 1
2 ¹ r
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S is the self-energy operator.Vext andVH are external and
Hartree potentials. The exactG andS may be found using
well-known coupled equations5
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G0 is the Green’s function whenS50, n the bare electron-
electron interaction, andW the dynamically screened inter-
action. The above arrangement of equations facilitates ex-
pansion of S using W, not n, avoiding divergences
associated withn. Hopefully, this expansion also converges
rapidly as terms with increasing powers ofW are included,
because ofW’s smallness. In practice, the coupled expan-
sions ofG, S, W, andG must be terminated at some level.
Beyond Hartree’s approximation (S50), one next assumes
G5d(12)d(13), producingS(12)' iG(121)W(21).

For many materials this ‘‘GW approximation’’ has
yielded remarkably accurate, predicted band energies,2,6 but
two significant caveats remain largely unaddressed. In prin-
ciple, expansion ofS should be carried out using the self-
consistent, renormalizedG. In practice, though, only an un-
renormalizedG has been used. Depending on the solid, from
10% to 50% of spectral weight inG is transferred from
quasiparticle peaks by self-energy effects, to form plasma-
rons and other satellites, the ‘‘incoherent’’ part ofG. Also,
little work has quantitatively assessed the role ofdynamical
vertex corrections~higher terms inG), in studies of realistic
systems. One can speculate that simultaneous neglect of
renormalization and vertex corrections produces two, largely
canceling errors in the behavior ofS: e.g., one can obtain a
density-response function which obeys thef -sum rule, when
both effects are omitted or included, whereas inclusion of
one effect without the other can have drastic consequences
regarding adherence to that rule.7

Simple metals have provided a great challenge for spec-
troscopic measurement of electron excitations,8 and assess-
ment of the role of vertex corrections when describing such
excitations.3,9 Here I present fully self-consistentGW calcu-
lations, which use a renormalizedG, for jellium with
Wigner-Seitz radiusr s ranging from 2 to 5, and nearly self-
consistent calculations at the same densities, which include
lowest-order dynamical vertex corrections. Compared to
one-electron theory, a self-consistentGW treatment pro-
duces no substantial reduction in the occupied bandwidth
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~henceforth simply ‘‘bandwidth’’!, as does aGW treatment
with an unrenormalizedG, but rather an increase. Including
vertex corrections restores a reduction in bandwidth, and the
results suggest that effects of any remaining non-self-
consistency~in the higher-order calculations! are minor.
Thus, renormalization ofG and vertex corrections can each
have significant effects, but the combined effects largely can-
cel. In what follows, I elaborate further on technical details,
present the main results, and discuss the comparison of this
and other work. I also suggest directions for future theoreti-
cal and experimental work, and provide some conclusions.

COMPUTATIONAL DETAILS

Given an adequate expression forW, evaluatingG is re-
duced to expandingS usingG, which remains to be solved
self-consistency, andW. This yields~see Fig. 1!

2 iS~12!5G~121!W~21!

1 i E d~34!G~13!W~14!G~34!W~32!G~42!

1•••. ~3!

This work terminatesS after two terms, a nonconserving
approximation,7 but the magnitude of related problems
should vary only as higher-order effects.W is e21n, where
e is the dielectric function. For densities considered, a
plasmon-pole model fore21 suffices.3 The model used here
gives accuratev andv21 moments of Ime21(q,v), as dic-
tated by thef -sum rule and~through Kramers-Kro¨nig rela-
tions! by Ree21(q,v50), which is found using

e~q,v50!512n~q!
x0~q,v50!

12 f ~q!x0~q,v50!
, ~4!

wherex0(q,v) is the Lindhard polarizability, andf (q) fa-
cilitates a good fit, at allr s considered, to quantum Monte
Carlo data fore21(q,v50):10

f ~q!5Kxc~n!@kF
2/~kF

210.08q2!#. ~5!

Kxc(n) is dVxc(n)/dn, and Vxc(n) is the exchange-
correlation potential1 in an electron gas with densityn and
Fermi momentumkF .

There is less known aboutG a priori, although Ceperley-
Alder electron-gas data11 provide two absolute criteria for
validity of a givenG. For Fermi energyEF , one knows
EF5kf

2/21Vxc(n), andVxc(n) may be found at all densities
from the data. Also, the total energy per electron (E/N)
should agree with that found using the Galitskii-Migdal
formula,12
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A(k,E) is the spectral functionA(k,E)5uIm G(k,E)u/p.
In theGWapproximation, working within a plasmon-pole

model, one may write
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with h being a positive infinitesimal, andvp andvq being
plasma and plasmon-pole frequencies, respectively.S has a
real, energy-independent term, because of the constant in the
second bracketed factor, plus two energy-dependent terms.
The imaginary part of the first~second! term is the frequency
convolution of the advanced~retarded! spectral function for
G and retarded~advanced! ‘‘spectral function’’ forW.

When evaluatingG(k,E) fromG0(k,E) andS(k,E), the
energy dependence of ReS(k,E) reduces quasiparticle pole
strengths, as the spectral weight shifts to energies where
ImS(k,E) is nonzero, primarily further thanvp from EF,
below and aboveEF . Effects of renormalizingG, when a
given G is used to computeS, include quasiparticle pole
strengths being closer to unity, and the correlation-induced
bandwidth reduction being weakened. This correlation-
induced reduction competes with a comparable exchange-
induced increase~because of the energy-independent term in
S), so a 10% change in bandwidth is a rather delicate effect.

Regarding the sensitivity of a computedS to the input
G, renormalization is more important than mere bandwidth
compression ~where quasiparticles retain unity pole
strength!, provided that the inputEF is approximately right,
which can usually be achieved by rigidly shifting the energy
of all spectral weight as needed. To illustrate this, many-
body effects reduce the sodium (r s53.96) bandwidth by
'0.6 eV, while we have\vp'6 eV. So renormalizingG
shifts the spectral weight~with respect toEF) by about 6 eV
~plus or minus some of the 2.65-eV bandwidth!, while band-
width narrowing correspondingly shifts spectral weight by
tenths of an eV.

I first performed ‘‘nonrenormalized’’~using aG0 shifted
to have the correctEF) and ‘‘renormalized’’ ~using a self-
consistent G) GW calculations, by tabulatingA(k,E)
@[A(uku,E)# on an energy-momentum grid~4000 E’s, at
intervals ranging from 0.005 to 0.001 a.u., and 600uku ’s, at
intervals ranging from 0.006 to 0.010 a.u., interval sizes
varying with r s). Slightly coarser grids produced similar re-
sults;~small! effects of electron states at all higher momenta
or energies were estimated and included. In essence, the
above equation and Dyson’s equation were solved self-
consistently. Care was taken to describe both discrete poles

FIG. 1. Low-order diagrams for electron self-energy (S), in
terms of renormalized Green’s functionG ~double line! and dy-
namically screened interactionW ~wavy line!.
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and continua inA(k,E) adequately. Evaluating ReS in-
cluded the Kramers-Kro¨nig transformation of ImS. This was
done only after convoluting ImS with a ~0.016 hartree!-full-
width tepee function: otherwise, spurious gaps in continuous
parts of ImS ~because of discrete integration overq) induced
spurious oscillations in ReS.

I next used resulting spectral functions as input to higher-
order ~vertex-corrected! calculations ofS. Then, though,
only quasiparticle properties were examined: incoherent
parts ofG were not studied further. For eachk, this permit-
ted approximating occupied and unoccupied, incoherent
parts ofG each as one pole to three poles, while the coherent
part had one pole.S was found using analytical frequency,
and Monte Carlo momentum integrations. The balance of
1/q2 Coulomb-potential andq2 phase-space factors~associ-
ated with interaction-line momentum integrations! provided
importance sampling. Results were converged with respect
to the maximumq sampled, and care was taken with regard
to spurious fluctuations in ReS because of the higher-order
term. ~Such fluctuations resulted from imperfect sampling:
there was quasiparticle decay because of interaction with the
electron-hole continuum. Whereas these interactions are sup-
pressed at theGW level, provided one uses a plasmon-pole
model, these interactions are only partially suppressed at the
next-higher-order level, even when using a plasmon-pole
model.!

Bandwidths and quasiparticle pole strengths in higher-
order results were found in two ways:~A! a G0, shifted to
correctEF , was used to computeS in GW, and the result-
ing, non-self-consistent~renormalized! spectral function was
used as input for a higher-order calculation; or~B! the self-
consistentGW spectral function was used as that input. In
comparing methods~A! and~B!, method~A! produced closer
consistency in bandwidths and pole strengths input and out-
put by the higher-order calculation, so results~A! are pre-
sented. Insensitivity of final results to such distinctions of
input G’s suggest that these higher-order results exhibit
minimal residual, non-self-consistency effects.

I shifted spectral weights inG’s rigidly to achieve the
correctEF , when preparing input for all self-energy calcu-
lations, except in iterations beyond the first in the self-
consistent calculations. This prevented complete self-
consistency for EF , but permitted a more absolute
investigation of the role of various diagrams inS. Achieving

the correctEF also permitted an association of accuracy in
the total energy~computedá la Galitskii-Migdal! with accu-
racy in the degrees of normalization and bandwidth reduc-
tion. Computed total energies were affected far more by
renormalization than by bandwidth reduction, and were too
positive when obtained from the Galitskii-Migdal formula
using an unrenormalizedG.

RESULTS

Tables I and II show nonrenormalized and self-consistent
GW results, and higher-order results for computed band-
widths, quasiparticle pole strengths,EF’s, and total energies,
plus known values of the last two quantities. The total ener-
gies obtained by Lundqvist are also given,13 as are the total
energies obtained by Hartree-Fock. Figure 2 shows spectral
functions~for r s54) used as input to higher-order calcula-
tion in approaches~A! and ~B!.

Jellium and simple metals Al, Li, Na, and K have been
treated at a nonrenormalized but otherwise self-consistent
GW level by Northrup, Surh, Hybertsen, and Louie
~NSHL!.3 These metals have nominalr s’s of 2.07, 3.25,
3.96, and 5.86, respectively, but their one-electron band-
widths and many-body bandwidth corrections differ some-
what from corresponding jellium results. To estimate what a

TABLE II. For variousr s , total energy per electron,E/N ~har-
trees!. Results for the present nonrenormalized~fully self-
consistent! GW approaches, those given in Ref. 13, and exact val-
ues. Based on results of the higher-order calculations~in text!,
lesser weight should be given to the present, self-consistentGW
results.

E/N
r s PresentGW Ref. 13 Hartree-Fock Exact

2 20.004 20.005 0.047 0.002
(20.003)

3 20.070 20.069 20.030 20.067
(20.068)

4 20.078 20.078 20.045 20.077
(20.073)

5 20.074 20.076 20.047 20.076
(20.073)

TABLE I. For variousr s , renormalization constants (Z’s! at k50 andk5kF , occupied bandwidthw
~eV!, andEF ~hartree!. Results are given for nonrenormalized~fully self-consistent! GW approaches and for
a higher-order approach, and exact values forEF are given.

r s GW Higher order Exact
Z(0),Z(kF) w EF Z(0),Z(kF) w EF EF

2 0.59,0.77 11.89 0.100 0.53,0.75 11.57~5! 0.081 0.103
~0.63,0.81! ~13.28! ~0.130!

3 0.52,0.69 5.03 20.052 0.48,0.67 5.04~4! 20.060 20.042
~0.58,0.74! ~5.95! (20.036)

4 0.47,0.63 2.63 20.091 0.45,0.61 2.66~4! 20.091 20.075
~0.55,0.70! ~3.28! (20.083)

5 0.43,0.58 1.59 20.099 0.39,0.56 1.72~4! 20.093 20.082
~0.53,0.66! ~2.28! (20.083)
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higher-order, renormalized, self-consistent treatment would
give for bandwidths in these metals, I adjust NSHL’s jellium
corrections by combining~1! discrepancies between my jel-
lium results and their jelliumGW results with~2! their com-
puted discrepancies between many-body corrections in jel-
lium and the real materials. This gives respective bandwidths
of 10.2~1! eV, 3.08~8! eV, 2.68~5! eV, and 1.86~11! eV.14

There are only small differences from NSHL’s accurate re-
sults. Available experimental bandwidths are 10.6~1! eV for

Al, 2.65~5! eV for Na, and 1.60~5! eV for K. Considering
separate effects of renormalization or vertex corrections, the
final agreement with experiment is no worse than warranted,
differences being much smaller than the changes produced
when either effect is taken separately.

DISCUSSION

Besides differences in bandwidths and renormalization
constants, there are further differences between the results of
Figs. 2~a! and ~b!. There are more features in Fig. 2~b! than
in Fig. 2~a!. Meanwhile, the satellites present in both parts
differ somewhat. Before discussing the results both above
and below the occupied quasiparticle band, a few points
should be mentioned. First, what are discrete poles in these
figures, when using a plasmon-pole model, should broaden
somewhat when such a model is abandoned. This is because
of quasiparticle damping which would occur because of in-
teractions with the electron-hole continuum, except for states
at energyEF . Second, satellites are easily motivated as re-
sulting from the frequency convolution implicit in Eq.~7!.
Where the self-energy has a nonzero imaginary part, there is
nonzero spectral weight. Features present only in Fig. 2~b!
are motivated as resulting from the frequency convolution in
Eq. ~7! of satellites built into the renormalized spectral func-
tion in Eq. ~7!. All such higher-order features should be
viewed with particular scrutiny here, however, because in-
clusion of vertex corrections is required to form a complete
picture of these features and other, equally important effects.

Describing satellites is simplest aboveEF . There, spectral
weight is confined to lie at energies aboveEF1\vp : this is
the onset of the quasielectron-plasmon continuum in a sys-
tem where electrons would not couple to plasmons, but the
coupling ~in the interacting case! introduces nonzero one-
electron spectral weight in this energy region. Meanwhile,
there is a particularly large density of states around\vp plus
the quasiparticle energy, which may be attributed to the fact
that the partial plasmon density of states, weighted in the
self-energy, has a maximum at\vp , and is strictly zero
below that energy. Additional structure may be seen in Fig.
2~b! around 2\vp plus the quasiparticle energy, which~pre-
sumably! is a satellite of the peak around\vp plus the qua-
siparticle energy.

Below the occupied quasiparticle band, the spectral
weight is confined to lie at energies belowEF2\vp , the
onset of the quasihole-plasmon continuum.~The reader is
reminded that, belowEF , energies of many-body states cre-
ated whenremovingan electronincreaseto the left.! A dis-
crete pole is sometimes present to the left of a broad feature
at low momenta. In Fig. 2~b!, satellites themselves gives rise
to further satellites, so that even third-order effects are barely
discernible at sufficiently low energy and momentum. The
origin of discrete poles in satellites is motivated in detail in
the Appendix. The limited energy range spanned by features
below the occupied band, as opposed to by those above that
band, is easily motivated: the occupied spectral weight lies
within a more compact part of the energy-momentum phase
space. However, the rule

E
2`

`

dv A~k,v!51 ~8!

FIG. 2. Partially renormalized~a! and fully renormalized~á la
GW) ~b! electron spectral functions forr s54. The spectral function
is plotted in arbitrary units, in stack-plot fashion, for various mo-
menta and energies, and discrete poles are indicated by spikes. For
a given momentum, the base line is chosen so that a value of zero
for the spectral function corresponds to the indicated momentum on
the left-hand axis. Furthermore, whereas all results here have been
normalized similarly for the sake of presentation, the integral of
each spectral function over all energy is unity.
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still limits the overall filling of the phase space by the spec-
tral weight function.

In comparison to other work, theGW results agree well
with those of Lundqvist,15–17who performed extensiveGW
calculations using one iteration of Dyson’s equation, and at
least some calculations with two or more iterations, although
the nature of the Green’s-function input into the self-energy
on the second iteration is not clear to the present author. In
some work, Lundqvist also used a different plasmon-pole
model than that used here.16 Indeed, it was a model whose
static dielectric function differed from that given by a
random-phase-approximation~RPA! treatment in a fashion
opposite to the way that the present, static dielectric function
differs. Lundqvist also carried out analogous results using
the full, RPA dielectric function~i.e., no plasmon-pole
model was used!.17 The results were quite similar to those
using Lundqvist’s plasmon-pole model, and Lundqvist’s
total-energy results13 are based on a full, RPA treatment~and
the Galitskii-Migdal formula!. Also, Lundqvist discussed, in
less detail, the additional discrete poles treated in the Appen-
dix.

Hedin has also considered theGWGWG term, in con-
junction with several additional approximations.18 Further-
more, his work~and references therein! touch on many issues
related to those discussed here. As for other theoretical as-
pects discussed in that work, issues regarding appropriate-
ness of expansions of the Green’s function and self-energy to
various orders ofW are raised. As cited by Hedin, it has been
argued19 that expansion ofG, rather than of the self-energy,
should be performed consistently at each order. In these re-
gards, the higher-order results in this work omit contribu-
tions toG which are, at lowest, third order inW. Again, the
argument for the smallness of such terms may be invoked,
although a better understanding of the difficulties which
might occur in self-energy calculations may be a worthwhile
basis for further work. Hedin also presents three sum rules
for the spectral function, which are followed automatically
throughout the present work, at least at theGW level. ~One
subtlety, however, is that, when evaluating the first fre-
quency moment of the spectral function, care must be taken
to evaluate the Fock term in the self-energy using the renor-
malizedG, which reflects single-particle occupancies differ-
ing from the occupancies found in a noninteracting picture.!
Meanwhile, further care may be needed in this work to fully
analyze satellites output by the higher-order calculations.

Interestingly, Hedin provides results for the oscillator
strengths of the first plasmon satellites forr s52. It is diffi-
cult to compare these results with those presented here, di-
rectly, but an attempt shall now be made. Difficulties in com-
parison arise because~1! the results by Hedin ostensibly
reflect a different set of approximations than those made
here, ~2! issues regarding the degree of self-consistency
achieved in Hedin’s work are not clear,~3! certain details
depend on one’s assumed dielectric function, and~4! there is
ambiguity regarding the precise corresponding quantity in
the present results. Therefore, I instead consider the total
occupied incoherent spectral weight output by the non-self-
consistentGW calculations, which should be close to the
analogous results of the~nearly self-consistent! higher-order
calculations. This substitute should bias positively my esti-
mate of therelative oscillator strengthof the first plasmon

peak~relative to that of the quasiparticle peak!, especially at
the bottom of the band. Indeed, my relative strength is 0.66,
compared to 0.54 found by Hedin, at the bottom of the band,
coinciding with Hedin’s results fork'kF /2, and being 0.08
at the Fermi momentum, compared to Hedin’s 0.21. Thus,
this level of agreement is satisfactory.

The G used in Refs. 9 and 20, henceforth calledG8, in
replacingS' iGW→S' iGWG8, might not represent the
trueG. It is readily shown that, when used with a renormal-
izedG, the trueG must depend ontwomomentum-frequency
combinations—not only that of an interaction line—to sat-
isfy the f -sum rule. However,G8 has only the later depen-
dence. Indeed, Ref. 9 finds effects of the above replacement
opposite to those found here. At least one work21 examines
the higher-order correction used here, for silicon, but using
an unrenormalizedG, finding minor effects for vertex cor-
rections in silicon, in agreement with others.2,20 Such
authors21 are presumably the first to consider the higher-
order corrections in a more complete model than jellium.

Incoherent parts of electron spectral functions have en-
joyed relatively little, unambiguous experimental manifesta-
tion, partly because their signals are frequently superposed
with those of lifetime-broadened coherent parts in photo-
emission or x-ray emission spectra, or with secondary-
electron background. Resonant x-ray fluorescence experi-
ments, made practical by third-generation light sources,22

might reveal occupied incoherent parts more clearly. In prin-
ciple, they could isolate fluorescence by occupied plasma-
rons just outside of the Fermi sea in alkali metals, where the
coherent parts should not exhibit fluorescence. Core holes
could be created at such momenta using resonant photoexci-
tation to just aboveEF . In particular, the proposed experi-
ment may provide tremendous momentum selectivity, the
desirability of which was noted by Hedin.18 However, spec-
tra may also reveal phonon- and plasmon-assisted self-
energy effects and/or nonvertical recombinations with quasi-
particles in the Fermi sea, or x-ray-edge effects.23

One potential, future extension of this work would be to
cease using a plasmon-pole ansatz. However, it is not trivial
to go about this, since the frequency dependence of the true
dielectric function is not as well known as it static value.
This work was carried out to maximize accuracy in the latter.
Nonetheless, because such an ansatz may affect bandwidth
compression by many-body effects by only 25%,24 whereas
the effects of self-consistency and theGWGWG term can
affect that compression by 200%, the conclusions of this
work should be unaffected by use of a plasmon-pole model.
More fundamentally, this work should apply primarily to
simple metals and conventional semiconductors.@In the lat-
ter, the smallness of band gaps~vs bandwidths and plasma
frequencies! and the nearly-free-electron character of valence
and conduction bands permit one to entertain that assertion.#

On the other hand, the approach ofGW or higher-order
self-energy calculations to more strongly correlated systems
presents a greater challenge.GW calculations have been car-
ried out with great success in Ni,25 but to a lesser degree of
success in NiO.26 This suggest a more complex nature of
correlation in transition-metal oxides and other similar com-
pounds, as corroborated by the quantum Monte Carlo results
of Mitáš,27 who found that the correlation energy in MnO
was more difficult to account for than in other systems, such
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as silicon. Obviously, the strong correlation in many systems
indicates the greater difficulty in finding a diagrammatic ex-
pansion to describe correlation effects. Of interest in their
own right, strongly correlated systems are beyond the scope
of this work.

Finally, consider the range of densities examined, which
represents typical metallic systems. At densities higher than
those considered, the bandwidth exceeds\vp , leading to
unreliability of a plasmon-pole model,3 whereas the correla-
tion effects should still be well treated by a fullGW treat-
ment. At densities lower than those considered, correlations
should become increasingly stronger with increasingr s , so
that the convergence of an expansion such as the one used
here must eventually become doubtful. For instance, one
may consider the breakdown of a jellium picture noted in
Ref. 10, and references therein.

CONCLUSIONS

In summary, I examined effects of self-consistency~de-
tailed renormalization! anddynamicalvertex corrections on
predicted properties of metals. While a non-self-consistent,
low-order (GW) treatment reduces occupied bandwidths by
10–30 % ~compared to independent-electron theory!, self-
consistency leads to overall increased bandwidths. Subse-
quent inclusion of the next-order term inS(GWGWG) re-
stores reduced bandwidths, which agree well with
experiment. TheGWGWG term was typically a tenth as
large as theGW term, suggesting that even higher-order
terms are correspondingly smaller, affecting bandwidths
minimally.

In many solids, bandwidths and plasmon energies are
larger than crystal-potential effects on energy bands. Hence,
these results may describe effects in many solids character-
ized reasonably as nearly-free-electron systems, ranging
from simple metals to conventional semiconductors. How-
ever, future investigations should address both ramifications
of going beyond a plasmon-pole model in such systems, as
well as consider tackling the many-body physics present in
more strongly correlated systems, such as transition-metal
oxides.

ACKNOWLEDGMENTS

I profited from discussions with D. R. Penn, Z. H. Levine,
M. D. Stiles, M. P. Surh, and R. U. Datla.

APPENDIX

Here the presence of discrete poles in the incoherent, oc-
cupied spectral weight in Fig. 2~a! is motivated. Other dis-
crete poles may occur for analogous reasons. This motivation
uses an intuitive picture based on a model Hamiltonian. Con-
sider states involving either one hole, or one hole and one
plasmon. Conservation of momentum permits us to consider
only one state having a hole, labeleduq&, and the subset of
hole-plus-plasmon states having the same total momentum,
$up&%. In the basis of all states mentioned, the Hamiltonian
would be diagonal, except thatuq& is coupled to each state,
$up&%, with couplingVpq . One has, therefore, such a Hamil-
tonian:

Ĥ5eq
0uq&^qu1(

p
@zp

0up&^pu1~Vpqup&^qu1H.c.!#.

We desire the partial density of states~PDOS!

S~E!5
1

p
ZImK qU 1

E1 ih2Ĥ
UqL Z.

Meanwhile, the reader is reminded that, because we are dis-
cussing hole states, higher-energy solutions of this Hamil-
tonian are reflected at lower energies in the electron spectral
function.

The energieseq
0 andzp

0 are those ofnoninteractinghole or
hole-plus-plasmon states. Only at the former would the
above PDOS be nonzero, in the absence of any coupling. In
the present of coupling, some of the PDOS is transferred to
the range (R) spanned by$zp

0%, and the pole, originally at
eq
0 , will move because of level-repulsion effects. This can all
be demonstrated using first- and second-order Rayleigh-
Schrödinger perturbation theory. However, in certain cir-
cumstances, a discrete pole also forms at even higher ener-
gies, provided thatR is limited.

The exact PDOS may be found analytically, being given
as

S~E!5
1

pU ImS 1

E1 ih2eq
02(

p
uVpqu2/~E1 ih2zp

0!D U .
By inspection, one can already infer a nonzero PDOS at a
pole lower thaneq

0 , as well as spectral weight occurring
whenE lies within R. Meanwhile, the real part of the de-
nominator will be zero for at least two energies, once at the
pole already mentioned, and once elsewhere. To estimate
both energies, one may consider the expansion

(
p

uVpqu2

E2zp
0 '

A

E2^z&
1

B

~E2^z&!3
1•••,

where^z& is an appropriately weighted average of thezp
0’s.

Such an expansion is valid outside ofR. Considering the first
term only, the zeros would occur at

E' 1
2 @eq

01^z&6A~eq
02^z&!214A#

' 1
2 Feq

01^z&6ueq
02^z&uS 11

2A

ueq
02^z&u2

2••• D G ,
provided that both energies lie outside ofR. The first will lie
belowR, but the second may lie withinR or above it. In the
latter case, the high-energy pole betrays a state resulting
from the strong level repulsion betweenuq& and a unique,
coherent superposition of theup& ’s. This is a bound state
analogous to a two-hole, quasibound final states found in
Auger spectroscopy of solids. In the former case, the above
expansion must be abandoned, and one instead finds an en-
hancement in the density of states somewhere inR. As the
pole approachesR from above, the density of states inR is
enhanced on the high-energy side.
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