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A few approximate schemes to solve the Hedin equations self-consistently introduced in Phys. Rev. B
94, 155101 (2016) are explored and tested for the three-dimensional (3D) electron gas at metallic densities.
We calculate one-electron spectra, dielectric properties, compressibility, and correlation energy. Considerable
reduction in the calculated bandwidth (as compared to the self-consistent GW result) has been found when
vertex correction was used for both polarizability and self-energy. Generally, it is advantageous to obtain the
diagrammatic representation of polarizability from the definition of this quantity as a functional derivative of
the electronic density with respect to the total field (external plus induced). For self-energy, the first-order
vertex correction seems to be sufficient for the range of densities considered. Whenever it is possible, we
compare the accuracy of our vertex-corrected schemes with the accuracy of the self-consistent quasiparticle G W
approximation (QSGW), which is less expensive computationally. We show that the QSGW approach performs
poorly and we relate this poor performance with an inaccurate description of the screening in the QSGW method

(with an error comprising a factor 2-3 in the physically important range of momenta).

DOI: 10.1103/PhysRevB.96.035108

I. INTRODUCTION

Many-body perturbation theory (MBPT) diagrammatic
approaches offer a path to the solution of the quantum
many-body problem of solids, which complements alternative
methods such as QMC (quantum Monte Carlo) and CC (couple
cluster). This approach received attention for over half a
century but there is no complete understanding of how the
different selection of diagrams performs for different physical
quantities. These insights are important in the search for
predictive first-principles methods for correlated solids. In
this work we investigate these questions in the framework
of the homogeneous electron gas (HEG) in a neutralizing
positively charged background. The HEG is very useful for
testing, in a simplified setting, the methods presently being
developed to study the electronic structure of solids for two
reasons: it requires less computational effort and there is
a natural benchmark since some properties have also been
calculated using QMC methods [1-5]. This model describes
the properties of alkali metals well.

Most common uses of diagrammatic approaches are based
on noninteracting Green functions such as LDA (local density
approximation) Green’s function. In this work, however, we
are interested in self-consistent (sc) diagrammatic approaches.
Hence we do not consider ambiguities related to the choice of
noninteracting Green’s function for reference. We consider
two classes of methods. One, initiated by Hedin [6], which
carries out a perturbative expansion in the fully self-consistent
(renormalized) Green’s function (which obeys the Dyson equa-
tion) and screened interaction W. An alternative philosophy
(QSGW) uses the lowest order diagrams for polarizability
and self-energy with Green’s function which is determined
by means of quasiparticle self-consistency condition [7]. In
this work we perform QSGW calculations using a previously
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introduced linearized approach [8] that has an advantage of
being implementable on Matsubara frequencies.

An important cornerstone in the application of self-
consistent MBPT-based approximations to the HEG, is the
work by Holm and von Barth [9], where the authors applied
scGW approximation (i.e., lowest order diagram in the
perturbation series in terms of G and W) to calculate the total
energy and spectra of HEG. Their principal conclusions are
that scGW severely overestimates the bandwidth but gives the
total energy very close to the QMC results. Thus, the work
[9] raised the question of how (if at all) one can get accurate
spectra of HEG using scMBPT approach. Progress on this
question was made by Shirley [10] who showed that if an
accurate W is known (he used QMC input to evaluate W)
then the self-consistency in Green’s function G and the lowest
order vertex corrections in self-energy mostly cancel out
each other. This observation justifies, in a certain degree, the
so called one-shot GoW approaches (lowest order approach
using a noninteracting Green’s function G,) without vertex
corrections to self-energy. Takada [11,12] used QMC data
to parametrize electron-hole four-point irreducible interaction
and performed sc vertex-corrected GW calculations with the
vertex defined from a condition that Ward identity (WI) is
satisfied. In this respect, his approach resembles the idea of
QSGW method, where WI is imposed by construction. The
importance of vertex corrections in electron gas studies was
reported recently in non-self-consistent calculations [13,14].
From other studies on the subject, one can mention interesting
applications of quantum chemical methods (first of all of
ab initio coupled-cluster theory) to studying the spectra [15]
and correlation energy [16,17] of electron gas.

In this study we go beyond the earlier diagrammatically
inspired works by removing an important limitation related to
the use of Monte Carlo data for parametrization of screened
interaction or electron-hole four-point irreducible interaction.
We examine fully self-consistent (in both G and W) diagram-
matic schemes involving diagrams of higher order. We study
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relative importance of different diagrams for polarizability and
self-energy.

The paper begins with a brief presentation of self-consistent
schemes we use to solve Hedin’s equations (Sec. II). Section III
provides the results obtained and a discussion. The conclusions
are given afterwards.

II. METHOD

Detailed account of the vertex-corrected schemes we use in
this work has been given in Ref. [18]. For completeness, below,
we briefly repeat the essentials of the approach and point out
the simplifications in technical implementation in the case of
electron gas.

We solve Hedin’s equations [6] self-consistently using
different approximations for three-point vertex function T'.
Three-point vertex function enters formally exact expressions
for polarizability and self-energy (in space-time variables)

P(12) = ZG“(13)F“(342)G°‘(41), 1)

T4(12) = —GY(13)['*(324) W (41), 2)

where the integration/summation over repeated arguments is
understood, and « is the spin index.

We consider two different types of approximations for I'.
The first type consists in expanding vertex function in terms
of the screened interaction to a specified order. Keeping only
zero-order term (I" = 1) in both P and ¥ corresponds to the
famous GW approximation. We will also consider expansion
of the vertex up to the first order (I'y = 1 + WGG) in both
polarizability and self-energy expressions. This approximation
is conserving (like GW) as the corresponding P and X
can alternatively be obtained by differentiating the same W
functional [19,20].

The second type of approximation for I" consists in solving
the Bethe-Salpeter equation

T(123) = §(12)8(13) + 2% (12)

R e B B
e ﬂ(45)G A6)rf(673)G#(75),

3

with a certain approximate expression for the functional
derivative ® = E in (3). We will consider two expressions
for the kernel ® in this work. The first is obtained by using
the GW form for X in the functional derivative and neglecting
the derivative of the screened interaction E’ ire.,® =W (we
will call the corresponding vertex as FGW). Diagrammatically
it corresponds to keeping only the first term on the right-hand
side of Fig. 1. In the second approximate expression for ©®
we also are using GW form for self-energy in the functional
derivative but we keep the terms up to the second order in
W in the derivative 2 5— (we will use abbreviation I'gy for
the corresponding vertex). In this case, the obtained vertex
function corresponds to keeping all three terms for ® (Fig. 1).
It is important to point out that the diagrams resulting from gvg
allow the spin flips (as it is clear from Fig. 1), the importance
of which was pointed out in Ref. [21].

In the particular case, when G and W have been found
self-consistently with ¥ = GW and P = GG, vertex ['gw

yields physical polarizability in scGW approximation (defined
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FIG. 1. The approximation for the irreducible four-point vertex
function ®.

as a functional derivative of electronic density with respect
to the total electric field). In other cases, when gy is
evaluated with ¥ and/or P including additional diagrams,
the kernel shown in Fig. 1 is only an approximation to
the derivative g—é, and, as a result, the vertex I'gy does
not provide physical P anymore. Thus, in a search for an
optimal approximation, we have to trade between the number
of diagrams included in ¥ in the Dyson equation for G
and the degree of the “deviation” of polarizability from the
physical one. Another potential problem which can arise
when higher order diagrams are summed up uncontrollably
is an appearance of negative spectral functions. This issue
has been known since the works by Minnhagen [22,23] and
a solution (positive-definite diagrammatic expansion for the
spectral function and for the density-response spectrum) was
found recently in Refs. [14,24,25]. Below we demonstrate that
our calculated spectral functions are positive.

With our four (as specified above) approximations for
the vertex functions (1; FI;FOGW; I'cw) we are able to form
different self-consistent schemes for solving Hedin’s equations
by selecting the vertex to be used in polarizability (1) and the
vertex to be used in self-energy (2). As all our vertices are
approximate, they do not have to be the same in P and in
3. We have tried different combinations and below we will
show the results obtained with a reasonable subset of them. To
distinguish the approaches we will use the same notations as
the ones introduced in Ref. [18]. For convenience, we have
collected them in Table I (slightly modified Table I from
Ref. [18]) and we repeat here their definitions. Scheme A is the
scGW approach. It is conserving in Baym-Kadanoff definition
[26], but generally its accuracy is poor when one considers
spectral properties of solids [8,27,28]. Another conserving
sc scheme is scheme B. It uses the same first-order vertex
I'1 in both P and X. Scheme C is based on the “physical”

TABLE I. Diagrammatic representations of polarizability and
self-energy in sc schemes of solving the Hedin equations. Arguments
in square brackets specify G and W which are used to evaluate the
vertex function. Other details are explained in the main text.

Scheme P >

A GG GW

B GT\[G; W1G GT\[G; WIW
C QFGW[G' WIG GW

D GlewlG; WIG GT\[G; WIW
E GFGW[G w1G GT\[G; WIW
G G2, [G; WIG GT'\[G; WIW
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polarizability (preserves charge microscopically). In scheme
C, we perform the scGW calculation first. Underlined G and
W in Table I mean that the corresponding quantities are taken
from the scGW run. Then the vertex ['gw[G; W] is evaluated
and it is used to calculate polarizability and corresponding
screened interaction W. We use a bar above the W to indicate
that this quantity is evaluated using G and W from the scGW
calculation, but it is not equal to W because it includes vertex
corrections through the polarizability. This W is fixed (in
scheme C) during the following iterations where only the
self-energy ¥ = GW and G are renewed. So, scheme C
does not include the vertex in ¥ explicitly but only through
W. Scheme D is similar to scheme C. It also is based on
physical polarizability but it uses the first-order vertex in
self-energy explicitly (skeleton diagram). In scheme D the
screened interaction W is fixed at the same level as in scheme
C, but the final iterations involve the renewal of not only G and
%, butalso I'y. Scheme E is fully self-consistent (both G and W
are renewed on every iteration till the end). Scheme E does not
preserve the charge exactly and can be considered as a result
of a trade between the accuracy of self-energy and the degree
of deviation of polarizability from the physical one. Scheme
G is similar to scheme E, but with a simplified Bethe-Salpeter
equation for the corresponding vertex FOGW (the diagrams with
spin flips are neglected in the kernel of the Bethe-Salpeter
equation).

In accordance with the arguments above, we have found that
schemes with vertex ['gw in P and with vertex of increasing
(>1) order in X (scheme F in Ref. [18]) result in nonphysical
polarizability (first of all in its improper q — 0 behavior) and
in the deterioration of the accuracy in calculated properties.
We will not consider them further in this work.

For 3D electron gas, we solve Hedin’s equations in a
periodic cubic box with equidistant 54 x54x54 mesh. The
box contains 729 electrons. We use Matsubara’s formalism
with electronic temperature 1000 K. We do not use plasmon
pole approximation and we treat full frequency dependence of
W, as opposite to the often use of its zero frequency limit when
solving the Bethe-Salpeter equation for insulators [29] or, in
the recent paper on the electron gas [13]. Detailed formulas,
presented in the Appendix of Ref. [18] are simplified for the
electron gas considerably by omitting the indexes associated
with the band states, the muffin-tin orbitals, and the product
basis.

III. RESULTS

In Table II we compare our results for bandwidth with
those obtained by Shirley [10], who based the calculations
(partially) on QMC input. Bandwidth was determined as a
difference between the pole in the spectral function at k = 0
and chemical potential. If we assume that Shirley’s results
are close to the exact ones, we can draw certain conclusions
about our approaches. As one can conclude from Table II,
three schemes (D, E, and G) show the best performance with
small differences between themselves. Common for these
three schemes are two facts: they all include a solving of
the Bethe-Salpeter equation for polarizability (but slightly
differently as it was explained above) and they all apply
first-order vertex correction in self-energy. Scheme C also
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TABLE II. Bandwidths (eV) of the 3D electron gas compared
with the results from Ref. [10], where the QMC input was partially
used.

Ty 2 3 4 5
QSGW 13.48 5.5 3.10 1.92
A 13.61 6.08 3.44 2.21
B 12.53 5.51 3.07 1.94
C 13.21 5.90 3.28 2.10
D 11.54 5.22 2.85 1.79
E 11.59 5.10 2.78 1.73
G 11.79 5.20 2.86 1.80
[10] 11.57(5) 5.04(4) 2.66(4) 1.72(4)

involves solving of BSE for polarizability, but it does not
use vertex correction to self-energy and, as a result, shows
worse performance. Similarly, conserving scheme B, which
applies first-order vertex corrections to the P and X, shows
worse performance, because it misses the effects of BSE in
W. Nevertheless, scheme B seems to be better than scheme
C, demonstrating the importance of vertex corrections in
self-energy. Performance of the QSGW approach is slightly
better than performance of scGW, but it is not competitive with
schemes D, E, or G. Thus, for the studied range of densities
of electron gas, QSGW cannot be considered as a reasonable
approximation in terms of its predictive power.

An example of k-resolved spectral functions is shown in
Fig. 2. First, we would like to point out that all our calculated
spectral functions are positive (they are also positive for
nonzero momenta). As one can see there is a well defined
quasiparticle peak near —3 eV. All approaches (excluding
QSGW) also show plasmon satellite at higher binding energy.
Unfortunately, the exact positions of plasmon satellites are
very sensitive to the quality of analytical continuation which
we performed using the method of Vidberg and Serene
[30]. We checked the accuracy of this method to be rather
good to determine the positions of quasiparticle peaks, but
we would give an error bar about 1 eV for the positions
of plasmon satellite peaks. The accuracy in the calculated

QSGW——
A [—

Spectral function

Frequency (eV)

FIG. 2. Spectral function (k = 0, arb. units) of the electron gas
forr, = 4.
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positions of plasmon satellite peaks can be improved using
more points in frequency summations and time integrations
when evaluating the higher order diagrams with, however,
a corresponding increase in the computation time. Thus,
the positions of plasmon satellites following from Fig. 2,
namely —8 eV in scheme A, —9 eV in B, —10.5 ¢V in E
and G, and —12 eV in C and D, are only preliminary and
should be reevaluated in future more elaborate calculations.
Experimental plasmon energy (difference between position of
quasiparticle peak and the plasmon satellite) of Na (r; &~ 4) is
about 6 eV [31]. In this respect our preliminary results from
scheme B are the best. Scheme A (scGW) underestimates
the plasmon energy, whereas schemes involving higher order
diagrams (through the Bethe-Salpeter equation) overestimate
it. Whether this overestimation comes from the inaccuracy
of analytical continuation or from intrinsic insufficiencies of
the schemes is difficult to conclude at this point. Plasmon
satellites in electron gas have been studied recently using
the positive-definite diagrammatic expansion for the spectral
function [14] and the G W+cumulant approach [32-35]. Both
methods are implemented on real frequency axis and, thus,
do not involve analytical continuation as an intermediate step
in evaluating the spectral function. In these works, very good
agreement with the experimental position of plasmon satellite
in Na has been achieved.

Figure 3 presents electron occupations n; obtained for
ry =4. Temperature effects are responsible for a slight devia-
tion of the QSGW curve from the perfect step function. Other
approaches also have (in addition to the temperature effects)
a correlation-related spectral weight transfer. We compare
our results with available QMC data [36]. However, it is
hard to make this comparison conclusive. First of all, the
above mentioned temperature effects make our calculated
momentum distribution smoother than it would be at 7 = 0 K.
Second, QMC data are essentially based on the extrapolation
to the thermodynamic limit (the inset in Fig. 1 of Ref. [36]
shows that the shape of the QMC curve is almost altogether
the result of an extrapolation). Nevertheless, one can point out
that at k = 0 all our schemes (excluding QSGW) show smaller
values of n; than QMC. Close to the Fermi momentum, our
vertex corrected schemes seem to be closer to the QMC data

1 ' asGW— |
o e T A- —
--s..i.‘.n\\\ B----
0.8} 2 8 ]
D
0.6 E— — |
& G---
0.4} ame
0.2} k 1
o ‘ e
0 0.5 1 15 2
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FIG. 3. Electron occupations in the electron gas for r, = 4. QMC
data are from Ref. [36].
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FIG. 4. Inverse static dielectric function of 3D electron gas,
ry =4. We use a fit to the QMC data as provided in Fig. 6 of Ref. [4] for
comparison. Schemes C and D give identical results for this quantity.

than scGW result. But it is hardly possible to say which scheme
is the best in terms of this physical quantity.

In Fig. 4 the static (zero-frequency) inverse dielectric
function for 3D electron gas is shown for r; = 4. As one can
see from the graph, we are able to improve the agreement
with QMC data considerably when using the vertices of
increased complexity. Clearly, the best dielectric function is
obtained from the “physical” polarizability (schemes C and D),
even if the last corresponds to the scGW approximation
(in the sense that the diagrams are evaluated using G and
W from scGW). One can also point out the importance of
including the diagrams with spin flips (scheme E results
in better dielectric function than scheme G does). At the
same time scheme E is worse than schemes C/D which
reflects the above mentioned fact about trading an additional
diagram in self-energy in scheme E violates the requirement
of polarizability to be physical. One can also relate the
shortcomings of QSGW approach in the one-electron spectra
to the poor description of the screening. As one can see from
Fig. 4, in the physically important range (g * r; = 0.5-3.0) the
inverse dielectric function in QSGW approximation is larger
than the one from QMC data by a factor 2-3.

A certain insight on the origin of differences in the dielectric
function obtained with approximate methods can be gained
when one looks at the static vertex as a function of bosonic
momentum (Fig. 5). It is clear that the range of momenta where
the calculated dielectric function shows the largest differences
(g * ry = 0-4) correlates very well with the range of momenta
where the humps in the vertex function show very different
heights.

In Fig. 6 we present the calculated correlation energy of
the electron gas as a function of r;. It was obtained as the
difference between the expectation value of the Hamiltonian
corresponding to the selected level of approximation and the
expectation value of the Hamiltonian in the Hartree-Fock
approximation. In all vertex-corrected schemes the exchange-
correlation part was evaluated as a convolution of Green’s
function and self-energy. Excluding scheme C which misses
vertex corrections to self-energy and, as a result, shows rather
different from other schemes behavior, one can conclude
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FIG. 5. Static vertex (v = 0) as a function of bosonic momentum
q for ry = 4. Fermionic frequency and momentum correspond to their
values at the Fermi surface. Schemes C and D give identical results
for this quantity.

that vertex corrections make the correlation energy more
negative as compared to the correlation energy obtained
in the scGW approach. Only at r, < 1.5 this tendency is
reversed. Thus, if we assume that available QMC data are
exact, we have to state that vertex corrections systematically
worsen the scGW result. However, the slope of the curves
seems to get better at least in some of the vertex corrected
schemes. As one can see, the deviation from QMC data
in fully self-consistent schemes B, E, and G is almost r;
independent.

One more point related to the issue of correlation energy is
its precise value obtained in the scGW approximation. Since its
first evaluation by Holm and von Barth [9], the consensus was
that the scGW approximation gives very accurate total energies
of three-dimensional electron gas. However, our calculated
energies (in scGW) are systematically more negative than the
ones reported in earlier papers and in QMC studies. To make
this point clearer we present the numbers in Table III. The
most recent publication by Van Houcke e? al. [39] agrees well

-0.04 | ;
-0.06 | = ez
- ’_—-‘ 9-/
P
= -0.081 iz ]
3 5 &
e 25 A- -
01| & Bev--- |
Vg c
04121 V4 D ]
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0141 QMo
0 1 2 3 4 5 6
I,

FIG. 6. Correlation energy of 3D electron gas as obtained
from conserving approximations. The QMC results are cited from
Ref. [1].
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TABLE III. Correlation energy (Ry) of 3D electron gas in scGW
approximation compared with the QMC data.

Method \ry 1 2 4 5
scGW [37] —0.0901 —0.064

scGW [38] —0.1156 —0.0872 —0.061  —0.0538
scGW [39] —0.137 —0.0996 —0.0686 —0.060
scGW, present work  —0.1358 —0.0988 —0.0677 —0.0591
QMC [1] —0.1196 —0.0902 —0.0638 —0.0562

with our results. Our data and the data from Ref. [39] are
almost identical with a discrepancy of about 0.001 Ry or less.
Thus, common belief in reliability of scGW total energies for
electron gas needs to be reconsidered.

Below we present quantities which show relatively slow
convergence with respect to the quality of the momentum
discretization mesh (¢ mesh). They are the renormalization
factor Z, the effective mass m*/m, and the compressibility «.
Our present computational resources and specifics of our code
did not allow us to reduce an error bar on these quantities below
3%-5%. Still, we believe that the accuracy is good enough to
make certain observations. The quasiparticle renormalization
factor and the effective electron mass are presented in Figs. 7
and 8 correspondingly. In order to evaluate them, we used the
following formulas (with kr being the Fermi momentum and
u being the chemical potential):

zz{l

m* z1 5
; T + m dReX(k,0) ’ o)
kr ok k=kp, 0=/

B olmX(k,iw)
(iw)

-1
} )
k=kp,0o=p

and

0.8

0.7 |

0.5 L L L L L

FIG. 7. Quasiparticle renormalization factor Z as a function of r;
obtained with different approximations in comparison with QMC
results [36,40]. Also shown are the results based on local field
factors (LFF) which were copied from Ref. [41]. Abbreviations
associated with QMC methods: BF: backflow, SJ: Slater-Jastrow,
DMC: diffusion Monte Carlo, VMC: variational Monte Carlo, and
RMC: reptation Monte Carlo.
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FIG. 8. Effective mass of 3D electron gas as a function of r,.

correspondingly. We compare our results for Z factor with
available QMC data [36,40]. Unfortunately, QMC data involve
an extrapolation to the thermodynamic limit and show consid-
erable variations for this quantity. We also compare our results
with the ones based on local field factors (LFF) [41] which
include a certain amount of QMC input. Because of insufficient
convergence of our results and the uncertainty in QMC data it
is hard at this point to give a certain conclusion about which
scheme provides the most accurate renormalization factor.
If we assume that BF-VMC and BF-RMC results are the
best, then we can state that our schemes D, E, and G are
within uncertainty of QMC data. QSGW also shows good
performance for this particular quantity.

It is interesting that the results for the effective mass
(ry > 2) obtained from vertex corrected schemes lie in between
the results obtained in scGW and QSGW approximations
which serve as lower and upper limits correspondingly. One
can also make an important observation that the r; dependence
of the effective mass (for r; > 2) is weaker than similar
dependence of the Z factor suggesting that the frequency
derivative and momentum derivative in Eq. (§) are canceling
out considerably. This fact can have certain implications
because there are theories (for example, dynamical mean
field theory) which stress frequency dependence but ignore
momentum dependence of self-energy in localized regime (low
density).

We also checked how well our calculated vertex functions
reflect the presence of a pole in the compressibility (at about
ry = 5.25, “dielectric catastrophe” [12]). In Fig. 9 we compare
our calculated compressibilities with the results based on the
QMC data. We have obtained the QMC compressibility « as

the derivative of the chemical potential u (= Lk% + Vi) with

2m
respect to ry: % = — 4711r2 % In our vertex-corrected schemes,

we have evaluated the compressibility from the ratio of two
limits of vertex function (I'y; and T",) and the effective mass
m*/m (see for instance Ref. [12]),

P
K _m T,

Ko mT,’

(6

with two limits of vertex function defined in the Appendix.
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FIG. 9. Compressibility of the electron gas. The QMC results
have been obtained from the derivatives of the chemical potential
with respect to the r,. k is the compressibility of the noninteracting
electron gas. To make the plot, we used the vertex I'g in schemes C,
D, and E, and the vertex I'yy in scheme G.

It is clear from Fig. 9 that the behavior consistent with the
presence of a pole in the compressibility can only be obtained
based on the vertex from schemes C and/or D. In other words,
only the vertex corresponding to physical polarizability can
be useful for compressibility evaluation. It is interesting that
additional self-consistency iterations for vertex function in
schemes E and G (as compared to scheme D), which only
slightly change the one-electron spectra, worsen significantly
the quality of the calculated compressibility. Also, it is obvious
that the first-order vertex (scheme B) is totally insensitive to
the presence of a pole in compressibility.

IV. CONCLUSIONS

In conclusion, we have applied the self-consistent diagram-
matic approaches based on the Hedin equations to study the
properties of the 3D HEG. We have found that the inclusion
of the most important diagrammatic sequences can reproduce
the one-electron spectra and dielectric properties of the HEG
in the range of metallic densities with good accuracy. For the
one-electron spectra, the corrections to polarizability and to
self-energy are equally important. For dielectric properties the
vertex correction to self-energy is of secondary importance.
In all cases, the important conclusion is that the calculation of
polarizability should follow, as close as possible, its definition
as a functional derivative of the density with respect to the
total electric field. Our conclusions concerning one-electron
spectra of 3D electron gas are similar to the conclusions made
earlier for the spectra of alkali metals and semiconductors
in Refs. [18,42], namely, that the best spectra are obtained
when the set of diagrams for polarizability is obtained from
BSE, whereas the first-order vertex correction is applied to
the self-energy (schemes D, E, and G). Our benchmarks
quantified the inaccuracy the QSGW approximation to predict
one-electron spectra of the electron gas at metallic densities
(approximately 15% error). We track this inaccuracy to the
poor description of screening in the QSGW approach (with an
error up to a factor 2-3 in the physically important range of
momenta). Concerning the use of the vertex-corrected schemes
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for the calculation of spectra, one can advocate scheme D,
which combines good accuracy and computational efficiency
(time-consuming BSE has to be solved only once).
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APPENDIX: EVALUATION OF TWO LIMITS
OF THE VERTEX FUNCTION

The two limits of the vertex function, I, and I', entering
Eq. (6), were defined as follows. In the momentum-frequency
representation, the vertex function [solution of Eq. (3)] can be
conveniently considered as dependent on fermionic momen-
tum+frequncy (K,w) and on bosonic momentum-+frequency
(q,v),i.e,I'(k,w;q,v). Inthese variables, I'y = lim,_,o '(k =
kp,o — 0;q,v=0) and T, =lim_ol'k =kpr,0 — 0;
q = 0,v), with two vectors, k and q, assumed to be parallel.
Quantities I', and T, are related to the quasiparticle renor-
malization factor Z and the Landau Fermi liquid parameter
F:I,=1/Z,T, = m In order to demonstrate that

PHYSICAL REVIEW B 96, 035108 (2017)

5 ; ; : :
n
45 1
1
\
3 1
\
~ \
20! 1
|
1
17 x—)n--i(—x—x—«—u—x—n--x—x—)a-i(—x—x-”_u_,(_:
0 L L L L
0 2 4 6 8 10

Bosonic Matsubara frequency, v (eV)

FIG. 10. Limiting behavior of the vertex function I'(k;,7/B;
g = 0,v) at small v for r, = 4. Symbols x show the calculated
data points (discrete Matsubara’s frequencies), line is drawn for
convenience.

the above two limits are well defined numerically, we have
plotted the vertex function I'g from scheme D in Fig. 10.
The limit I';, corresponds to the value of the function at
v = 0 exactly (approximately 4.58 on the graph). The limit
I'), corresponds to the extrapolation of the function to zero
frequency (approximately 1.31 on the graph).
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