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3Institut Néel, CNRS, F-38042 Grenoble, France
4Lehrstuhl für Theoretische Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstrasse 7/B2, D-91054 Erlangen, Germany

(Received 22 November 2006; published 1 August 2007)

Measurable spectra are often derived from contractions of many-body Green’s functions. One
calculates hence more information than needed. Here we present and illustrate an in principle exact
approach to construct effective potentials and kernels for the direct calculation of electronic spectra. In
particular, a dynamical but local and real potential yields the spectral function needed to describe
photoemission. We discuss for model solids the frequency dependence of this ‘‘photoemission potential’’
stemming from the nonlocality of the corresponding self-energy.
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The calculation of electronic excitations and spectra is
one of the major challenges of today’s condensed matter
physics. In fact, while density-functional theory (DFT),
especially with simple and efficient approximations like
the local-density approximation (LDA) [1], has led to a
breakthrough concerning the simulation of ground-state
properties, the determination of electronic excited states
is still cumbersome. The description of spectroscopy calls
for the definition of suitable fundamental quantities (be-
yond the static ground-state density DFT is built on), and
the derivation of new approximations. For neutral excita-
tions (as measured, e.g., in absorption or electron energy-
loss spectroscopies) one can in principle work with the
time-dependent density, and try to approximate time-
dependent DFT (TDDFT) [2], for example, in the adiabatic
LDA (TDLDA). Also many-body perturbation theory
(MBPT) approaches [3], like the GW approximation [4]
for the one-particle Green’s function or the Bethe-Salpeter
equation (BSE) for the determination of neutral excita-
tions, are today standard methods for first-principles cal-
culations of electronic excitations [5]. One of the main
reasons for the success of MBPT is the intuitive physical
picture that allows one to find working strategies and
approximations. Therefore, Green’s functions approaches
are often used even when one could in principle resort to
simpler methods, in particular, density-functional based
ones—for example, one uses BSE when TDLDA breaks
down. It is hence quite logical to try to link both frame-
works [6], and derive better approximations for the simpler
(e.g., density-functional) approaches from the working
approximations of the more complex (e.g., MBPT) ones.

In the present Letter we propose a general framework for
the definition of reduced potentials or kernels, designed for
obtaining certain quantities that can otherwise be calcu-
lated from some N-particle Green’s function. In particular,
we explore the question of a local and frequency dependent
real potential that allows one to find the correct density and
trace of the one-particle spectral function and therefore to
access direct and inverse photoemission (including the

band gap). We present model results of this new approach
for metals and insulators, and discuss the relation to dy-
namical mean-field theory (DMFT) [7]. Of particular in-
terest is the conversion of nonlocality into frequency
dependence that one encounters when an effective poten-
tial or kernel with a reduced number of spatial degrees of
freedom is used to describe excitations.

In this general scheme we suppose that one wants to
calculate the quantity T that is a part of the information
carried by the N-particle Green’s function G. We symboli-
cally express this relation as T � pfGg. In the following
we will specify the formula for the one-particle G, whereas
the completely analogous case of two-particle Green’s
functions will be briefly discussed at the end. As a well-
known example we take the electronic density T � � for
which the ‘‘part’’ to be taken is the diagonal of the one-
particle G: ��rt� � �iG�r; r; t; t��. We then introduce an-
other Green’s function GT which has the part pf:g in
common with G: T � pfGTg. We also suppose that GT is
associated to an effective potential VT according to GT �
�!�H0 � VT��1, where H0 is the Hartree part of the
Hamiltonian [8]. The full Green’s function G and the
new GT are linked by a Dyson equation:

 G � GT �GT��� VT�G: (1)

We now take the part of interest pf:g of this Dyson equa-
tion. This yields the condition

 pfGT��� VT�Gg � 0: (2)

The aim is now to make an ansatz for VT with a simpler
structure than �, and for which (2) can be solved. For the
example where T is the static density �, a static and local
potential can do the job. In fact in this example VT is the
exchange-correlation potential Vxc�r�, GT is the Kohn-
Sham Green’s functionGKS, and (2) is a well-known result,
derived by Sham and Schlüter in [9]. It has subsequently
been extended to time-dependent external potentials [10],
and employed in many different contexts (see, e.g.,
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Refs. [11,12]). The Sham-Schlüter equation (SSE) is still
implicit since it is self-consistent in Vxc and GKS. Most
often it is linearized setting G � GKS everywhere, includ-
ing in the construction of �. This so-called linearized
Sham-Schlüter equation, that can also be derived using a
variational principle [13,14], is the central equation of the
optimized effective potential (OEP) method [15]. In par-
ticular, if one uses for � the exchange-only approximation
� � �x, where �x � iGKSv (v is the bare Coulomb in-
teraction), one obtains the so-called exact-exchange ap-
proximation to Vxc [16]. By construction one obtains in this
way a good description of the density, whereas there is no
reason for other features of the Green’s function, in par-
ticular, the band gap, to be correct. In our more general
scheme one can easily go beyond the case of solely the
density. According to the choice of pf:g, the ansatz for VT
has then to be modified. Below we will first explore the
problem of electron addition and removal.

Electronic structure, defined as electron addition and
removal energies, is measured by experiments like direct
or inverse photoemission. To first approximation [5] these
experiments measure the trace of the spectral function
A�r1; r2; !� �

1
� jImG�r1; r2; !�j. In other words, for the

interpretation of photoemission spectra one does not need
the knowledge of the whole Green’s function G, but just
the imaginary part of its trace over spatial coordinates
together with its full frequency dependence. We will hence
look for a potential that is simpler than the full self-energy
but yields the correct trace of the spectral function. It is
reasonable to add the condition that also the density should
be correct, which means that the diagonal in real space, and
not only its integral, is fixed. Following the general
scheme, we introduce a new Green’s function GSF � �!�
H0 � VSF�

�1 stemming from a potential VSF such that
ImGSF�r1; r1; !� � ImG�r1; r1; !�. What degrees of free-
dom are needed in VSF? A natural assumption is that VSF

should be local in space, but frequency dependent [17,18].
It is also possible to choose VSF to be real. With this ansatz
Eq. (2) yields

 VSF�r1; !� �
Z
dr2dr3dr4��1�r1; r4; !�

� Im�GSF�r4; r2; !���r2; r3; !�G�r3; r4; !��;

(3)

where ��r1; r2; !� � Im�GSF�r1; r2; !�G�r2; r1; !�� [19].
Equation (3) shows that VSF should indeed be frequency
dependent unless � is static and local (in that case the
!-dependent terms cancel trivially). Thus, in general a
local static (KS) potential will not be able to reproduce
the spectral function, whereas VSF�r;!� is the local poten-
tial that will yield the correct band gap and the correct
density ��r� of the system.

At this point it is interesting to compare our construction
with the approach of the spectral density-functional theory
(SDFT) [20], where the key variable is the short-range part
of the Green’s function: Gloc�r; r0; !� � G�r; r0; !� �

���loc�, where ���loc� is 1 when r is in the unit cell
and r0 inside a volume �loc, and 0 otherwise (see Fig. 1 of
Ref. [20]). A new Green’s function GSDFT � �!�H0 �
VSDFT�

�1 can be introduced such that GSDFT � Gloc where
Gloc is different from 0. Using this property of GSDFT, we
find that the (in general complex) potential VSDFT, defined
in the volume �loc, is
 

VSDFT�r5; r6; !� �
Z

�loc

dr1dr2

Z
dr3dr4

~G�1
SDFT�r5; r1; !�

�GSDFT�r1; r3; !���r3; r4; !�

�G�r4; r2; !� ~G
�1�r2; r6; !� (4)

where ~G�1, if it exists, is the local inverse of G in �loc

(while G�1 would be the full inverse, defined in the whole
space). In principle SDFT is a formally exact theory. The
most common approximation to SDFT is the dynamical
mean-field theory [7], which corresponds to a linearization
in Gloc.

In the limit case that � is completely localized in �loc,
then VSDFT and GSDFT coincide, respectively, with � and
G. The interesting situation is of course when this is not
true. In fact, our VSF of Eq. (3) corresponds to the case
where �loc ! 0 so that this condition is certainly not
fulfilled. Then, as we will illustrate below, the nonlocality
of � will strongly influence VSF and, in particular, lead to a
frequency dependence which is not the frequency depen-
dence of � itself. This will to a certain extent also be true
for any �loc of finite range, so that the following discus-
sions may also give useful insight for research in the field
of DMFT.

To illustrate the frequency dependence of VSF we con-
sider the case of homogeneous systems, where all local
quantities (like Vxc and VSF) are constant in space. In
particular, the xc potential is Vxc � ��p � pF;! � 0�,
while, since VSF � VSF�!�, one can directly write (here
and throughout the Letter we adopt atomic units):
 

jImGSF�r; r; !�j � 2
Z d3p

8�3 ���!��� p
2=2� VSF�!��

�

���
2
p

�
��!��� VSF�!��

�
������������������������������������
!��� VSF�!�

q
: (5)

Requiring that this is equal to jImG�r; r;!�j, one finds a
unique local potential VSF [for VSF�!�<!��]:

 VSF�!� � !���
�
����
2
p jImG�r; r;!�j

�
2
: (6)

It is first of all interesting to consider the case of simple
metals, that can be modeled by a homogeneous electron
gas (HEG). Here, we will assume a static but nonlocal self-
energy: ���r� r

0� � iG�r� r0; 0��v��r� r
0�, that is a

screened-exchange–like form where the screened
Coulomb potential is v��r� r0� � v�r� r0�e�jr�r

0j=�.
For a larger screening length �, � is more effectively
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nonlocal, since less screened. � tunes the effective range of
the interaction: from � � 0 (� � 0, Hartree approxima-
tion), to � � 1 (unscreened Hartree-Fock approximation).
Using the relation (6) we calculate VSF�!� for different
values of �, i.e., for different nonlocality ranges of � (see
Fig. 1). We find that the spatial nonlocality of the static
self-energies is completely transformed into the frequency
dependence of VSF. This is an essential property of VSF,
which radically distinguishes VSF from the static Vxc. In
particular, looking at Fig. 1, one observes that the more
nonlocal �� is, the more dynamical VSF becomes. This is
confirmed by comparing two materials: aluminum and
sodium.

The HEG is a prototype of metallic systems. Let us
consider the simplest model insulator introduced by

Callaway [21]. The Callaway’s model is obtained from
HEG by inserting a gap � between the occupied ‘‘valence’’
states �v�r� (p < pF) and the ‘‘conduction’’ states �c�r�
(p > pF). Within the Green’s functions formalism this
corresponds to a nonlocal static ‘‘scissor’’ self-energy

 ��r; r0� � �
X
c

�c�r��
	
c�r
0�; (7)

which rigidly shifts all conduction states, and produces a
gap between the valence, Ev � "F � �, and the conduc-
tion, Ec � "F � �, band edges. Because of the homoge-
neity of the model, Eq. (6) is still applicable. From Eq. (6),
one gets that VSF�!� � 0 for !< Ev �� � 0 and
VSF�!� � � for !> Ec �� � �. Between ! � 0 and
! � �, where ImG�!� � 0, there are many different
choices for VSF�!�: from (5) it is enough that VSF�!� 

!�� to get ImGSF�!� � 0. In any case a static constant
potential, like Vxc, cannot produce the correct band gap,
because at Ev �� and Ec �� it should assume different
values. The only effect of Vxc with respect to H0 would be
just a rigid shift of the whole band structure and no gap
could be opened. In fact, � in (7) corresponds to the
derivative discontinuity of Vxc when an electron is added
to the system: � � V�N�1�

xc �r� � V�N�xc �r� [11]. Our simple
example demonstrates that this discontinuity, which con-
stitutes the difference between the true quasiparticle gap
and the Kohn-Sham one, is accounted for by the potential
VSF rightly through its frequency dependence.

Knowing the exact solutions, one can also verify how
common approximations to SSE perform with these
strongly frequency dependent functions, in particular,
when we linearize the SSE by settingG � GSF everywhere
(in DFT this would correspond to the OEP approach). The
linearized SSE is still self-consistent in VSF and GSF. Yet
we can approximate it at the first order setting G and GSF

equal to the Hartree GH. In the Hartree-Fock case in HEG,
we get, for !>�"F:

 VSF

�
~! �

!� "F
"F

�
� �

2pF
�

�
1�

����
~!
p

2
ln

��������
����
~!
p
� 1����

~!
p
� 1

��������
�
;

(8)

which shows a logarithmic divergence at the Fermi energy
! � 0 and hence is very different from the exact solution
(see the inset of Fig. 1). The approximated VSF in HEG is
distant from the exact one also when the linearized SSE is
solved self-consistently. The agreement should improve
when screening is taken into account, since then VSF is
less frequency dependent and GSF is much closer to G and
GH. Already for sodium the agreement is better than for
aluminum. In any case, these results demonstrate that the
linearization of the generalized SSE is a delicate proce-
dure. In the following we will, however, show that it works
very well in certain cases, for example, for the kernel fxc of
TDDFT.

Up to now we have considered Dyson equations only for
the one-particle Green’s function. The generalization of

FIG. 1 (color online). Transformation of nonlocal statically
screened-exchange self-energy ���p� (upper panel) to the fre-
quency dependent local VSF�!� (bottom panel), for different
screening lengths � in HEG [�TF � �4pF=���1=2 is the
Thomas-Fermi length], and densities corresponding to aluminum
(lines) and sodium (open symbols). The key is common to both
panels. The ! dependence of VSF is stronger for more nonlocal
self-energies. Below band edges, where ImG � 0, VSF�!� has
been defined continuous and equal to a constant >!��. In the
inset: comparison between the exact and approximated solutions
(6) and (8) in the Hartree-Fock case.
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SSE can, however, be applied to any Dyson-like equation,
for example, involving two-particle Green’s functions, like
the four-point reducible polarizability 4	MB. In this way
we can derive an exact equation for the kernel fxc � f�1�xc �

f�2�xc of TDDFT. In particular, following Ref. [6], we con-
centrate on the term f�2�xc that describes electron-hole inter-
actions. This means that in the TDDFT polarizability 4	TD

the ‘‘gap opening’’ contribution due to the term f�1�xc is
already included by using 	QP

0 � �iGG instead of the
KS independent particle polarizability. f�2�xc is the two-point
kernel that gives the correct two-point polarizability [22]:
4	TD�1122� � 4	MB�1122� � 	�12�. Applying this condi-
tion to the Dyson equation 4	MB �

4	TD �
4	TD�FMB �

f�2�xc �
4	MB yields the generalized SSE, and hence the exact

expression of f�2�xc :

 f�2�xc �34� � 	�1�31�4	TD�1156�FMB�5678�

� 4	MB�7822�	�1�24�; (9)

where FMB � i��=�G is the exchange-correlation part of
the kernel of the Bethe-Salpeter equation, which, in the
framework of ab initio calculations [5], is most frequently
approximated by: FMB�1234� � �Wst�12���13���24�
where Wst�12� � W�r1; r2; ! � 0���t2 � t�1 � is the stati-
cally screened Coulomb interaction. An approximated ex-
pression for f�2�xc , obtained from the linearized generalized
SSE, where we set 	�12� � 	QP

0 �12� and 	3�1; 23� �
4	MB�1123� � 4	TD�1123� � 4	QP

0 �1123� �
�iG�12�G�31�, is then

 f�2�xc �!� � �	
QP
0 �
�1�!�	3�!�W�0�3	�!��	QP

0 �
�1�!�:

(10)

In this equation only the frequency dependence of the
various terms has been put into evidence, since it is mostly
interesting to note that, although W and hence FMB are
static, fxc is frequency dependent unlessW is short-ranged,
in which case the frequency dependence of the other
components cancels. This recalls the analogous transfor-
mation of static self-energies into frequency dependent
potentials discussed above. Equation (10) represents a
new derivation of a two-point linear response exchange-
correlation kernel that has previously been obtained in
several other ways [23]. It has been shown to yield absorp-
tion or energy-loss spectra of a wide range of materials in
very good agreement with experiment [23]. This means
also that the linearization of the generalized SSE in this
case turns out to be a very good approximation. The
present derivation is particularly quick and straightfor-
ward, showing one of the advantages of the generalized
Sham-Schlüter equation formulation.

In conclusion, in this Letter we propose a shortcut for the
calculation of electronic spectra, based on a generalization

of the Sham-Schlüter equation [9]. In particular, we have
introduced a local and real potential for photoemission,
with a frequency dependence stemming both from the
frequency dependence and from the nonlocality of the
underlying self-energy. We have illustrated some features
at the example of model systems. We have also applied the
approach to the derivation of an exchange-correlation ker-
nel for the calculation of absorption spectra. This work
opens the way to explore new approximations for simpli-
fied potentials and kernels that can be employed to calcu-
late a wide range of electronic spectra.
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