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The Dyson equation represents a well-defined connection between the one-particIe Green's function
and the self-energy. By means of the Dyson equation, the evaluation of the one-particle Green's function
can be reduced to the evaluation of the self-energy. As it is well known, the one-particle Green's func-

tion is composed of an advanced and a retarded part, which can be represented in the (N +1)- and

(N —1)-particle configuration spaces, respectively. The Dyson equation combines these two spaces into
a matrix in the union space. This is difficult to understand in configuration-interaction language, where

the Hamiltonian matrices for systems containing different numbers of particles are naturally separated.
Starting with the usual matrix representations of the Hamiltonian in the (N+1)- and (N —1)-particle
spaces, it is shown that it is possible to define a class of unitary transformations that mixes the two parts
and gives rise to an effective Hamiltonian matrix in the union space. This effective Hamiltonian leads to
all possible representations of the Dyson equation. The transformations used arise from suitable com-

binations of the matrices of residues of the advanced and retarded Green's functions. Several specific
members of the above class of unitary transformations are discussed in some detail also in connection
with possible approximation schemes for the Green's function. Special attention is paid to those unitary

transformations that depend on the ground state of the N-particle system as the only unknown quantity.
This investigation has given rise to some general conclusions and to an alternative approach to the one-

particle Green's function.

PACS number(s): 31.15.+q, 31.10.+z

I. INTRODUCTION

The one-particle Green's function G(co) contains
relevant information on the physical properties of many-
particle systems [1,2]. Using this function one can com-
pute the ground-state energy, ground-state expectation
values of one-particle operators, ionization potentials,
electron affinities, ionization cross sections, and the opti-
cal potential for elastic electron-molecule scattering
[1—7]. In energy representation the matrix element
G i3(co) of G(co) is explicitly given by

( qgNia i@N+1 ) ( iltN+ 1
i

t iqgtc)0 a m m ti 0

+E+—E++~+i

A basic equation in the theory of the one-particle
Green's function is the Dyson equation [1,2]. This equa-
tion connects the Green's function to the self-energy
X(co):

G(co) =Go(co)+G&(co)X(co)G(co) . (1.2)

X(co) is identical to the optical potential for elastic
scattering [3]. Go(co) represents the so-called free
Green's function

Go(co) = (col —a) (1.3)

The poles of Go are the energies of a chosen set of one-
particle states [ ~ y ) ] (orbitals), defining an unperturbed
Hamiltonian Ao.

(~ltN~at ~qt~ ')(qt~ '~a ~etc)

a —Eo"+E"
Ho=ps a a (1.4)

Here
~
4 *' ) and E 'are the exact—(¹1)-particle

states and energies, respectively. Eo represents the ener-

gy of the exact neutral (N-particle) ground state
~ %0 ) and

the operators a and a are creation and destruction
operators related to a suitably chosen basis of one-
particle states [~qr ) I. The infinitesimal quantity ri is

necessary to guarantee the convergence of the Fourier
transformation yielding Eq. (1.1) and does not have to be
considered explicitly. The first term on the right-hand
side of Eq. (1.1) is called the advanced Green's function
G+(co) and the second term the retarded Green's func-
tion G (co).

The self-energy X(co) in Eq. (1.2) can be written as a
sum of a static (co-independent) part X( oo ) and a dynamic
(co-dependent) part M(co) according to the following rela-
tion [5—7]:

X(co)=X(~ )+M(co) . (1.5)

The static part can be determined from the dynamic part
[7]. X(co) is, like G(co), a matrix the indices of which run
over the one-particle states of the set [ ~y ) ]. The dy-
namic part M(co ) possesses a spectral representation
which in matrix form reads

M(co) =m(co1 —0) 'm
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By introducing a unit matrix of the same dimension and
block structure as A

1 0
0 1 (1.8)

it is easy to see that G(co) is related to A according to the
following equation:

—1G( ) = (&I A )ttpper left blpt;k

This equation can also be formally rewritten as

1
G(co) =(1 0)(col —A)

(1.9a)

(1.9b)

From Eq. (1.1) it is seen that the one-particle Green's
function contains information on the states and energies
of different numbers of particles, namely, N+1 and
N —1. In particular these quantities emerge as eigenvec-
tors and eigenvalues of a single matrix A.

In the present work we analyze the matrix A, or
equivalently the self-energy X(co), in the language of
configuration interaction. In particular we are interested
in the relation of the matrix A and the conventional
Hamiltonian matrices of the (N+1)- and the (N —1)-
particle systems. In performing our study we investigate
the properties of the self-energy in its various representa-
tions. We pay special attention to those representations
which depend solely on the ground state of the N-particle
system as input data. One of these representations gives
rise to an interesting equation for the Green's function.

The paper is organized as follows. In Sec. II we
represent the advanced and the retarded parts of the
Green s function in configuration space, i.e., in terms of
Slater determinants. In the next step we cast the two
parts of the Green's function into a single matrix which
represents the starting point of our discussion. In Sec. III
we establish the relation between this matrix and the
self-energy X(co). We can show that they are related to
ea.'. i other by means of unitary transformations T which
arise naturally from the structure of the one-particle
Green's function. These unitary transformations lead to
all possible representations of the dynamic self-energy
and have in common that the static part of the self-
energy is uniquely reproduced. Section IV is dedicated to
a particular choice of T, which seem to us to be the most
obvious choice out of all possible transformations. %'ith
this T we obtain a closed-form formulation of the self-
energy in terms of expectation values on the exact N-
particle ground state ~tllo). Approximations for ~%0)
lead straightforwardly to approximations for the self-
energy. The simplest way to analyze our closed-form ex-

The matrix Q is the diagonal matrix of the spectral ener-
gies that are associated to the excitations of the (N+1)-
and (N —1)-particle spaces. Taking into account Eq.
(1.2) and Eqs. (1.5) and (1.6) one obtains that the poles of
the Green's function G(co} are given by the eigenvalues of
the following block matrix A:

a+X(~ } m

m 0

pressions is to approximate
~ Vo ) by Rayleigh-

Schrodinger perturbation theory. The perturbation ex-
pansion is carried out in detail up to third order and
found to lead to the well-known algebraic diagrammatic
construction (ADC) approximation scheme for the dy-
namic self-energy. The general situation encountered
beyond third order is also addressed.

The dynamic self-energy can, in principle, be expressed
as a sum of two parts assigned to different particle num-
bers. Since such a decoupling of the (N+1)- and
(N —1)-particle contributions has theoretical and practi-
cal advantages, we investigate in Sec. V which transfor-
mations T give rise to this decoupling. In particular we
pose the question whether it is possible to obtain a trans-
formation using only ~+o ) as input data. By means of a
simple counterexample which can be solved exactly we
are able to give a negative answer to this question. This
finding has led to a new approach to the self-energy and
to the Green's function. The last section of the present
work is devoted to this approach.

II. REPRESENTATION
OF THE ONE-PARTICLE GREEN'S FUNCTION

IN CONFIGURATION SPACE

As mentioned in the Introduction the one-particle
Green's function is a sum of two independent parts, the
so-called advanced [G+(co)] and retarded [G (co) ]
Green's function:

G(co) =G+(co)+G (co) . (2.1)

Each of these parts is easily expressed in configuration
space:

G+(co)=(Y+)t(col —HN+') 'Y+,

[G (co)]' =(Y ) (col+H ') 'Y

(2.2a)

(2.2b)

(Y )
—(CN+t( t ~tIIN) (2.4a)

(Y ),.=(~,"-'l..l~, ) . (2.4b)

The creation a and destruction a operators are related
to the one-particle basis set I~qr ) j. By introducing a
"composite" Hamiltonian matrix

Here H —+' represents the usual Hamiltonian matrix in
the (N+1)-particle configuration space shifted along the
diagonal by the energy Eo of the exact N-particle ground
state ~tIIO ). Introducing the complete sets [ ~4~ +')

] and
') ] of states in the (N+1)- and (N —1)-particle

spaces, respectively, these matrices read

(H"*')„,=(C",+-'~A' —Z,"~C",,'-') . (2.3)

The choice of the ~tp +') is arbitrary; they can be, for
instance, the exact eigenstates of the Hamiltonian 8 or
the eigenstates of some unperturbed Hamiltonian Ao. In
Eqs. (2.2) 1 represents the unit matrix of the same dimen-
sion as H —'. Y+ and Y are the matrices of the resi-
dues and read, respectively,
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+HN+1 0
—(HN 1)4 (2.5a)

lower right block 0 of the matrix A is spanned by the
classes of excitations of the (N+1 }-particle spaces.

and a "composite" matrix of the residues

Y+

(Y )* (2.5b)

the Green's function [Eq. (2.1)] can be written as follows:

G(co)=Y (col —H) 'Y . (2.6)

Of course, the composite Hamiltonian matrix H [Eq.
(2.5a)] and the matrix A of the Dyson equation [Eq.
(1.7)] have the same dimension. However, the ordering of
the blocks within the two matrices is different and of fun-
darnental importance. The first important observation is
that in H the two blocks along the diagonal are spanned
by the configurations of the (N+ 1)- and (N —1)-particle
spaces, respectively. These two blocks are obviously
decoupled since the Hamiltonian is a particle number
conserving operator. The matrix A, on the other hand,
is a matrix in which the (N+ 1)- and the (N —1)-particle
spaces are strictly coupled together through the self-

energy.
For the sake of convenience it is useful to divide the

sets {l4 —'
& j into subsets or "classes." Considering the

q
NN-particle ground state i@0 & of an unperturbed Hamil-

tonian 8o as the reference state we can classify the states
of the set { l4q

+ '
& j as lp, 2p lb, 3p 2h, etc. configuration

states and the states of the set {l4 '
& j as lh, 2h lp,

3h2p, etc. configuration states. With this notation we in-

dicate how many holes (h) and how many particles (p)
have been created, respectively, in the occupied and
unoccupied one-particle states of

i @0 &. For example, an

(N —1)-particle configuration state of the 2h lp class
differ from l@0 & by two holes in the occupied orbitals
and one particle in the unoccupied orbitals. Formally
one has

III. REPRESENTATION OF THE SELF-ENERGY
IN CONFIGURATION SPACE

Several different analytical and numerical approaches
have been presented in the past to determine the eigen-
values of the matrix A [7—10]. Most of the analytical
methods are based on the analysis of the Feynman dia-
grams, which describe diagrammatically the perturbation
expansion of the self-energy X(co). In this work we would
like to investigate the self-energy and the Dyson equation
from a completely different point of view, namely, in the
language of configurations. We start with the composite
Hamiltonian H, which appears in the expression for the
Green's function [Eqs. (2.5) and (2.6)] and arrive at a rep-
resentation of the matrix A and hence of the self-energy
X(co) by means of a unitary transformation. We would
like to stress at this point that in our theory we will work
with the composite Hamiltonian H equivalent to the full
configuration-interaction matrices of the (N+1)-particle
spaces. As it will become clear in the following we do not
need to truncate the Hamiltonian matrices and to make
any assumptions on their actual dimension and composi-
tion, since we will be able to use and to take account of
the orthogonality and completeness of the sets {l4 *'

& j.
To establish the relation between the two different rep-

resentations of the Green's function in Eqs. (1.9) and (2.6)
we introduce a unitary transformation matrix. We start
the discussion by analyzing in more detail the composite
matrix Y of residues [Eq. (2.5b)]. Taking into account
the usual anticommutation relations of the creation and
destruction operators, it is easy to see that the columns of
Y are normalized and orthogonal to each other. This can
be shown by explicitly considering the scalar product of
any two columns of Y. This yields

(Y Y) p=g(Y ) qYqp

{lqN+1&j {l@N 1&+]U{l()N+) &jU

{ l@N+1& j U {le%+) & j (2.7a)
=(q lu. a', lqo &+(qo la@.lqo &

=(q,"l{a.,a~jlq, &=5.~. (3.1}

= {I C, '
& j U {I C',"„'

& j . (2.7b)

The indices v and p are here cumulative indices for the
classes 2p lh, 3p2h, etc. and 2h 1p, 3h2p, etc. , respective-
ly. We wi11 refer to v and p also as to the classes of exci-
tations of the (N+1)- and (N —1)-particle spaces, re-

spectively.
As already mentioned, the upper left block of the ma-

trix A is spanned by the one-particle states of the set

&j [see Eq. (1.7)]. Splitting the set {y &j into two

subsets according to whether a labels as unoccupied (p)
or an occupied (h) one-particle state in lC)o &

(2.8)

Here we indicated with {,j the anticommutator. Equa-
tion (3.1) shows a very peculiar property of the composite
matrix of residues which derives from the fact that in the
definition of Y the (N+1)- and the (N —1)-particle
spaces are cast together in the union space. It is easy to
see that the orthonormality property is lost if one consid-
ers separately the two matrices of the residues Y+ and
Y

From the orthonorrnality of the columns of the matrix
Y it follows that the composite matrix of residues Y can
be viewed as one part of a unitary matrix. It is thus

reasonable to build up the unitary transformation matrix

T by suitably augmenting Y. The resulting unitary ma-

trix reads

we can establish a one-to-one correspondence between
the set { l)p 1~) & j ({ly~)), ) & j ) and { l@q1&~') & j ({l@q()),') & j).
Bearing in mind this correspondence it follows that the (Y )* (T )" (3.2)
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Remembering that the columns of Y are labeled with the
index cr which runs over the classes lp [(%+1)-particle
space] and 1h [(N —1)-particle space], it follows that in
order to have a square matrix T the number of columns
of T+ and (T )' has to be equal to the number of
configurations of the classes v and p together. We thus
introduce

T+
(3.3)

(N + 1) (N —1)

(~1 —H) '

for later purposes.
We now transform the composite Harniltonian and

residue matrices according to

(ab)

H=T HT,
Y=T Y,

(3.4a)

(3.4b)

(ba) (bb)

and readily obtain the following expression for G(ct)) us-

ing Eq. (2.6):

G(co)=Y (ct)l —H) 'Y . (3.5a)

—1
)upper left block (3.5b}

Because of the unitarity of T we have Y =(1 0} and
thus

FIG. 1. Schematic drawing of the action of the unitary trans-
formation T on the representation of the Green's function [see
Eqs. (3.3)—(3.5)]. The (X+1}-particle spaces which are natural-

ly decoupled in H now couple in the transformed composite
Hamiltonian H. In H the upper block (aa) is spanned by the
classes 1p and 1h and the lower block (bb) by the classes of the
(N+1)-particle excitations.

Y can be viewed as a projector onto the classes 1p and lb.
Comparison of Eqs. (3.5b) and (1.9) shows that he ma-
trices H and A are equivalent. H is unequivocally deter-
mined by the transformation matrix T and can be used to
determine the self-energy. It is important to note that the
matrix H has the same block structure as the matrix A
of the Dyson equation. For the following discussion it is
thus useful to consider H, like A, as a block matrix:

H„H,b
H= — —,H =H.

ba bb

We note that the block Hbb possesses the following sub-

structure:

(3.6)

Hbb = bb bb

bb bb

(3.7)

[, ] denote the commutator. We note that this expres-
sion is identical to the upper left block of the matrix A in

A schematic representation of the action of T is sho~n in
Fig. 1.

To better understand the relation between the matrix
A of the Dyson equation and the matrix H derived in
Eq. (3.6) we have to bear in mind that the first block of
columns of the transformation matrix T is by construc-
tion identical to the composite matrix of residues Y. As
a consequence, the upper left block H, of the
transformed Hamiltonian H is completely determined by
Y and can be given explicitly. It does not depend on the
choice of the second block of columns of T. After simple
algebra one obtains

(3.8)

Eq. (1.7}:

H„=a+X( oo ) . (3.9)

For completeness, the equivalence between Eqs. (3.8) and
(3.9) is shown in Appendix A.

Taking into account the above considerations, the fol-

lowing expression for the dynamic part M(ct)) of the self-

energy holds:

M(ct))=H, s(ct)1 —Hsb) 'Hs, . (3.10)

The static self-energy is reproduced uniquely while the
dynamic part is given in one of its possible representa-
tions. The latter depends exclusively on the explicit form
we can choose for the second block of columns of the
transformation matrix T. Choosing, for instance, T+ and
T [see Eqs. (3.2) and (3.3)] such that Hbb is diagonal,
one obtains Hbb =0 and H, b =m. The dynamic self-

energy is then in its diagonal representation and Eq. (1.6)
is recovered.

IV. NATURAL CHOICE OF TAND RELATION
TO THE ADC SCHEME

A. General

In this section we investigate a particular choice of T
which seems to us to be the most obvious choice out of all
possible transformations.

The first column of blocks Y of the transformation ma-
trix T introduced in the preceding section [Eqs. (3.2) and
(3.3)] are essentially determined from the action of a on
the ground state ~%() ) [see Eqs. (2.4)]. Since T is a uni-
tary matrix, the remaining columns of this transforrna-



2794 A. TARANTELLI AND L. S. CEDERBAUM

(4.1b)

(4.2b)

(4.2c)

(4.2d)

where the operators A and A „are defined as

A,'.. —gaJ&e,"~(a„,A,',, j~e,"& N, ,„,
(4.3a)

A„'= g 'A,'„,—ga, '&q,"~(a, , A,'„, j~q,"& M„,„.

tion must rise from the action of that set of operators on
~%0 & which is the orthogonal complement of (a j. The
simplest choice is based on the following consideration:
we introduce explicitly the set of all creation and destruc-
tion operators which produce the configuration states

( ~(p (,+)'& j and ( ~4 („)'& j when acting on the reference
state ~(po &. These operators Ao are defined by the fol-

lowing relations:

~e,"(.+)'&= A', ~e,"&, (4.1a)

~(p
( ) &=A() ~eQ&

The Ao„operators contain the sets (at2at(a, , j,
{a 3a 2a„ia; ia;2 j, etc. where u and i denote orbitals
which are unoccupied and occupied in the reference
configuration ~40 &, respectively. The A o„operators are
defined analogously but with occupied and unoccupied
indices interchanged. The sets of operators
(a j U ( A or j and (a j U ( Aor j give rise to complete
sets of functions for the (N+1)- and (N —1)-particle
spaces, respectively, also when they act on any other E-
particle state, and in particular on the exact ground state
~e,"& [11].

With this choice the elements of the second block of
columns of the matrix T can be defined explicitly as

(4.2a)

ya. [q,"&&q,"/a'. + y A, /qg&&q,"/A', =1;

(H„) &=&(P ~([a,H], a&j~ql &, a,P=u, i

(H, (, ) r=&%0~([a,H], A~]~'Po &, y=P, , v

(H~, ) &=&q(o~j[A,H], apjlq(0 & y=(u v

(H(,(, ) =&q(() ~([A,H], Ar j(q(() &, y, y'=)M, v .

(4.5a)

(4.5b}

(4.5c}

(4.5d)

These expressions give the Hamiltonian H in closed form.
Two important observations have to be made about the
above formulas. First of all we note that they contain the
ground state ~+o & as the sole unknown quantity. There-
fore the evaluation of Eqs. (4.5) depends exclusively on

~ %0 &. Different approximations for
~
BIO & lead to

di8'erent approximations for H and thus for the self-

energy. The second point concerns the block HI,I, of the
transformed matrix H. It can be easily seen from Eq.
(4.5d) that the coupling block H~(, (", between the (N+1)-
particle excitations does not vanish identically. We men-
tion that there exist representations of M(co) in which the
coupling block vanishes (see Sec. V).

B. Perturbation expansion
of the transformed Hamiltonian H

In the following we analyze the results which we have
obtained by simply expanding

~
q)0 & by Rayleigh-

Schrodinger perturbation theory (RSPT). For this pur-
pose we substitute ~%0 & in Eqs. (4.5) with its perturbation
expansion

a =u, i, y =p, v (4.4b)

in the spaces of (N+1) and (N —1) particles, respective-
ly.

With the aid of the transformation defined in Eqs. (3.2),
(3.3), (4.2), and (4.3) the transformed composite Hamil-
tonian H =T HT which determines the Green's function
and the self-energy can be given explicitly as a ground-
state expectation value:

(4.3b) ~q, &= gc, ~e, & (4.6)

Defining T+ as in Eqs. (4.2) but with the bare operators

A 0, and 30„ instead of 3 and 3„does not lead to a un-

itary matrix T. The latter operators are obtained by
orthogonalizing the former ones on the j a j and making
use of the fact that the following pairs of operators an-
ticommute: ( Ao, Ao„j =

( Ao„a; j =
( Ao„,a„j=0. The

matrices N and M represent normalization factors while
the indices i and u specify occupied and unoccupied one-
particle states, respectively. We note that T is a unitary
matrix. As shown in Appendix C the operators A ~

satis-
fy the following peculiar completeness relation:

ga".~qo~&&q,"~a.+ g A', ~qg&&qo~~A, =1;
a r

a=u, i, y=(M, v (4.4a)

and

where ~(I)~ & are configuration states spanning the N
particle space. It is reasonable to construct these states
on the same set of orbitals as done for the configurations
of the (N+1)-particle space and thus to define

( l@q & j
—le,"& u ( I+q()h „)& j u ( l@q(2/ygp) & j u. . .

(4.7)

With this choice the action of the creation and destruc-
tion operators on the ~N & is well defined. In the follow-

ing we present the expansion of the dynamic self-energy
up to and including third order of perturbation. For this
we need to consider the contributions up to second order
for the off-diagonal blocks H, & and Hb, and the contribu-
tions up to first order to the block H(, (, [see Eq. (3.10)).
The only classes of excitations which must be considered
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are v=2plb and /u=2h lp. One readily obtains for the
zeroth and first order Hbb and Hbb the following rela-0) (&)

tions:
(HPv)(0) (H/lv)(1) 0bb bb (4.10)

The coupling block H~bb vanishes in zeroth and first or-

der:

(Hb";)"'= & e"~ A0„(00—E""')A 0t.,
~

e")
(H»)'"=&+"~~, (A' —E"(")~,', ~e )

(HPP)(0) = —&0 "~ A (I —Z"(0) )W ~e~)

(4.8a)

(4.8b)

(4.9a)

(4.9b)

The superscript (n) indicates the order of the quantity in
question and BI=8—P0. The expressions for the ele-
ments of Hb, are somewhat more lengthy and are needed

up to second order. %e have to distinguish between oc-
cupied (i) and unoccupied (u) orbitals. The expressions
read

(H'")( '=0,
ba

(H ")("=&Ey
~
g (p —E "))gt~Ey )

(4.11a)

(4.11b)

(Hb")' '= & &~'o I ~0 (HI &o '"
)(2 l@q(2h2p) &cq'I2h2p)+ &4'01~0 (~0 E0 )u I+q()hip) )cq(lhlp)

q

y &
q)/v~ g g ~(y/v )c(2)

& @p/~ (p gt)/(0) )
t

~(gatv) (4.11c)

(H,')' '=0,
ba

(Hb' )"'=g [&~'o I ~0 (&0 Eo' ')/2 l@q(2h2p))cq(2h2p) &@0l(2i (~0 E0 )~0 l)C'q(2h2p))cq(2h2p) j
q

(Hb' )'&'= g [&@oI ~0 (Ho Eo ' ')(2 l@q(2h2p))cq(2h2p)+ && 0 I ~0.(~I—E0 '")(2 I&q(2h2p))cq(2h2p)
q

& C'01(2 (Ho Eo ' ') ~0 l@q(2h2p) &c(2h2p) & +01/Ii (~I +0 ) ~0 l~ q(2h2p) &cq(2h2p) ]

(HP" )( )=0
ba

)p g [cq(2h2p) & + q(2h2p) I
~ op(H0 &P )a l@o & cq(2h2p) & @q(2h2p)l(2 (&0 +0 ) ~ 0p l@P & j

q

(Hb ) Q [c (2h2 )
&@ (2h2 )1~0„(~0 &p )u l@p &+0 (2h2 )

&~' (2h2 )1~0 (&I E0 )u l@p &

(4.12a)

(4.12b)

(4.12c)

(4.13a)

(4.13b)

(HP.')"'=0,
ba

cq(2h2p) & @q(2h2p)l(2 (~0 E0 ) ~Op 1@0 & cq(2h2p) & @q(2h2p) l(2.'(H) —Eo "'
) ~op l@o & I (4 13c)

(4.14a)

(4.14b)

«b )p/ X cq(2h2p) &C'q(2h2p)l~ (~l E0 )~0plc'0 & cq'('Ihip) &@q((hip)l~ (~0 Eo ' ')~opl@o &

+ gcq(2h2p) & @
q(p2)hl 2~/2I0p I @P & & @P Iu (&0 E0 )uI I @P

J
(4.14c)

In the above formulas we expressed the operators A z in
terms of the bare operators A 0& according to the
definitions in Eqs. (4.1) and (4.3). In the expansion of the
dynamic self-energy up to third order the operators A z
can be identified with the bare ones except for the last
terms in Eqs. (4.11c) and (4.14c). These terms are due to
the components of the A which derive from the orthog-
onalization to the a . For convenience, these formulas
are obtained under the explicit assumption that the one-
particle basis set I ~/p ) ] is the set deriving form a self-
consistent restricted Hartree-Fock calculation on the

ground state ~)I/0 ). Thus there are no first-order contri-
butions to

~ %0 ) from the first class of excitations
y= lh 1p.

The formulas in Eqs. (4.8)—(4.14) are naturally given as
products of matrix elements of the Hamiltonian between
configuration classes and the coefBcient c'"' which is the
nth-order contribution of the state

~ 4q ) to the perturba-
tion expansion of

~ %0 ). If one takes explicitly account of
the form of the Hamiltonian (see Appendix A) the above
expressions can be transformed into products of two-
particle integrals V &~& and one-particle energies c . The
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formulation in these integ rais can be obtained in a

lengthy but quite straightforward way and some illustra-

tive examples are presented in Appendix B. When ex-

pressed in terms of two-particle integrals, it becomes pos-

sible to carry out a direct comparison of our result with

the well-established ADC approach [12] to the self-

energy. ADC is a general approach to the Green's func-

tion. It is essentially based on the analysis of Feynman

diagrams which describe the perturbation expansion of
M(co). By comparing order by order the power expan-
sion of a general algebraic expression (ADC form) with
the corresponding diagrammatic expansion, one obtains
an effective nondiagonal interaction matrix (K+C) and
an effective coupling matrix U. The matrices (K+C)
and U can be viewed as particular representations of the
submatrices 0 and m of the matrix A [see Eq. (1.7)].
The relation between our approach and ADC can be es-
tablished by comparing the blocks Hbb and Hb, of our
transformed composite Hamiltonian H with the ADC
effective matrices (K+C) and U, respectively. We have
rewritten all the expressions in Eqs. (4.8)—(4.14) in terms
of two-particle integrals V &z& and orbital energies c. .
The final result has been found to be identical with the
ADC equations, i.e., the self-energy M(c0) given in Eq.
(3.10) with H, b and H&b of Eqs. (4.8 —4.14) is identical to
that obtained in the third-order ADC scheme.

In principle, starting with the closed-form expressions
of Eqs. (4.5) one could proceed in the same way as done

above up to third order and calculate the approximation
schemes in any order of perturbation theory for M(co).
However, this straightforward application of RSPT
presents some problems, which we discuss briefly in the

following.
As already mentioned, the coupling block H~», ob-

tained by setting y =p and y'= v in Eq. (4.5d), does not

vanish identically. As shown above it is indeed zero in

zeroth and first order, but there appear nonvanishing
contributions in second and higher orders (see also Ap-

pendix B). A similar problem is encountered also in us-

ing the equation of motion (EOM) method for the ap-
proximation of the Dyson equation [13,14]. There, one

starts from a completely dift'erent point of attack but one

also obtains second-order coupling terms between the

spaces of the (N+ 1)- and (N —1}-particle excitations.
The presence of second-order coupling elements prevents
the possibility of reproducing analytically the fourth-

order ADC scheme. In fact the ADC approach takes ex-

plicitly into account that the dynamic self-energy can be

split into two independent contributions deriving from
the classes of the (N+1)- and (N —1)-particle excita-
tions. The Feynrnan diagrams associated to M(co) can
also be separated into two independent sets, which
respect this splitting of the dynamic self-energy (see next
section).

In order to get rid of the coupling terms between the
blocks v and p of H» one could obviously proceed by in-

troducing an ulterior unitary transformation matrix
which block diagonalizes Hbb. After the block-

diagonalization transformation, the resulting matrix
possesses blocks along the diagonal which, by construc-
tion, are decoupled from each other. In general there are

infinitely many unitary transformations which block-
diagonalize a Hermitian matrix. A recent investigation

showed, however, that under very simple and convincing
conditions the unitary transformation which block diago-
nalizes a given Hermitian matrix can be unequivocally
constructed [15]. In this way it is thus possible to obtain
for the dynamic self-energy a uniquely defined formula-

tion in which the (N+1)- and the (N —1)-particle exci-

tations are decoupled from each other. To analyze this

procedure we have investigated the simple case of a one-

particle Hamiltonian. We can show that in this case the
block diagonalization of Hbb leads to expressions in

closed form for the dynamic self-energy. This example is

quite interesting for itself and is illustrated and discussed
in detail in Appendix C.

In the general case of a two-particle Hamiltonian the
block diagonalization of Hbb does not lead to closed-form

expressions. The reason is that the block-diagonalization
matrix depends explicitly on the eigenvector matrix of
Hbb, which is in general not known. The block-

diagonalization procedure can therefore be carried out
only order by order in perturbation theory. The result

gives rise to approximation schemes for the dynamic
self-energy, in which the (¹I}-particle excitations are,

by construction, decoupled from each other at each given

order of perturbation.

V. ON THE DECOUPLING OF THE SELF-ENERGY
INTO (N + 1)- AND (N —1)-PARTICLE

CONTRIBUTIONS

The dynamic self-energy M(co) can be written as a sum
of two parts:

M( co ) =M' '( a) ) +M'~'( co ) (5.1)

where M"(co) and M'"'(co) can be uniquely assigned to
the configuration spaces of (N+1) and (N —1) particles
[5—7]. Indeed, the perturbation expansion of the self-

energy, which is commonly done in terms of Feynman di-

agrams, automatically gives rise to two distinct sets of di-

agrams, which unequivocally can be assigned to M' '(ca)

and M'"'(co) [1,2]. The ADC scheme for the self-energy
explicitly makes use of this fact [12].

Clearly, the self-energy represented in configuration
space [Eq. (3.10)] does not decouple into (N+1)- and
(N —1)-particle contributions for arbitrary transforma-
tions T. Even the appealing choice of T introduced in

the preceding section does not lead to a representation of
M(co) which decouples according to Eq. (5.1}. The diago-
nal representation of Hb& in Eq. (1.6) obviously leads to
this decoupling. Another representation which fulfills

Eq. (5.1) is obtained (per construction) by block diagonal-
izing Hbb as discussed in the preceding section.

In the following we investigate the general question of
whether a representation of M(co) exists which fulfills Eq.
(5.1) and makes use only of the exact ground state, i.e.,
the transformation matrix is determined by ~+o ). This
requirement is motivated by the fact that the Green's
function itself and the matrix of the residues Y [see Eqs.
(2.2) and (2.4)], which is an indispensable part of the
transformation T, are defined via ~+o ). Furthermore,
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this opens the possibility to straightforwardly expand T
in terms of perturbation series which are well established
for the ground state.

The most obvious way to fulfill Eq. (5.1) is achieved by
setting to zero those blocks of the transformation T
which give rise to the coupling of the (N + 1)- and
(N —1)-particle spaces in Hss. By writing

Y+ T+( ) 0
(5.2)(Y )* 0 (T („))*

the submatrix H&& of the composite Hamiltonian H be-
comes block diagonal, i.e., H~&&=0, and the self-energy
M(o)) in Eq. (3.10) trivially decouples into two distinct
parts M(")(o)) and M(")(co).

The matrix T defined above thus possesses the two re-
quired characteristics: it automatically renders the block
H&h block diagonal and can be given as a function of
l%'o & only. However, the matrix T is unfortunately
singular, since some of its columns (precisely as many as
the dimension of the one-particle basis set ( l y & ] ) vanish
identically. This statement can be proven by a simple ar-
gurnent of combinatorial analysis. Suppose that the one-
particle basis set [ l(p & J is composed of n +v states,
where n and v indicate the number of occupied and unoc-
cupied one-particle states in l4o &, respectively. n +v is
thus the number of column vectors included in the com-
ponent Y of T. Let us first consider the upper part of T
indicated by the subscript + [see Eq. (5.2}]. If d is the di-
mension of the (N+ 1)-particle space, i.e., the total num-
ber of (N+1)-particle states, then the number of column
vectors in T+(„) is obviously d —v. This is the dimension
of the class v. Y+Y+ (and Y Y ) are directly related to
the one-particle density matrices [see Eqs. (2.4)], which
for an interacting many-body system has no vanishing ei-
genvalues, i.e, the matrix Y+ does not contain linearly
dependent column vectors. Hence we have produced in
(Y+ T+) as many as n +v+d —v =n +d linearly in-

dependent and even orthogonal column vectors of length
d. This is clearly a contradiction. Because of the as-
sumed unitary of T, the vectors of T+(,) are orthogonal
to those of Y+ (and to each other) and therefore we can
conclude for a given vector that it can be chosen to be ei-
ther really orthogonal to Y+ or it vanishes identically.
In particular, the number of vanishing columns in the
matrix T+( ) is n and the number of nonvanishing or-
thogonal columns is d —n. Similar arguments apply to
the matrix T („). Denoting the dimension of the
(N —1)-particle space by d, the number of nonvanishing
columns in T—(&) is d —v and the number of vanishing
columns is v [16].

We conclude that for a generic interacting many-body
system it is, in principle, impossible to construct a matrix
which is unitary and at the same time possesses the block
structure indicated in Eq. (5.2). The rank of the (d +d )-
dimensional matrix T as given in Eq. (5.2) is at most
(d+d) —(n+v). In the special case where the Hamil-
tonian of the system is a one-particle operator, n columns
of Y+ and v columns of Y become linear dependent and
a unitary matrix T as in Eq. (5.2} can be constructed.
The explicit determination of the elements of T in this

VI. AN ALTERNATIVE APPROACH
TO THE ONE-PARTICLE GREEN'S FUNCTION

We have demonstrated in the preceding sections that it
is in general not possible to decouple the dynamic self-
energy into parts of different particle numbers by a trans-
formation T that depends on

l %o & as the only unknown
quantity. The question now arises of how the transfor-
mation matrix T looks, which depends only on l%o & and
produces a "maximally decoupled" dynamic self-energy.
By maximally decoupled we mean that the (N+1)- and
the (N —1)-particle contributions to the dynamic self-
energy arise decoupled from each other as much as possi-
ble.

We begin with the structure of T in Eq. (5.2) which
would have led to a block diagonal H&& if this T were not
singular. A convenient choice of the blocks T+(„) and
(T („))*reads

(6.1a)

The operators A ~ and A „are here defined according to

o. —X&'(~ ').p&q'olapAo. lq'o & N

(6.1b)

(6.2a)

~o„g~.'(p ').p—&+ol&o„~ply'() & M„,„.
P a,P

(6.2b)

Again the operators Ao„and Ao~„represent the bare
creation and destruction operator strings according to
Eq. (4.1). The matrices N and M in Eqs. (6.2) are nor-
malization factors [17]while the matrices p and cr are the
two complementary density matrices defined according to

p.,=&q."I ~t. lq."&, (6.3a)

& )p Jv
l

t~
l
AN & (6.3b)

This choice arises straightforwardly from that given in
Sec. IV by putting T+( )=T („)=0 to maintain the
desired block structure as in Eq. (5.2) with orthogonal

case is interesting and discussed in Appendix C.
If valid, the ansatz in Eq. (5.2} would have allowed us

to construct T in terms of l)I)o & only. Since Y+ are
determined in terms of

l %o &, it would have been
sufficient to obtain T+( ) and T („)by orthogonalizing on
Y+ and Y, respectively. As shown above, the ansatz in
Eq. (5.2) is inapplicable and we have to resort to a full
matrix T and impose the decoupling of M(o)) as a condi-
tion on T. However, we have been able to find an exam-
ple that helps to clarify the situation. The example con-
sists of a two-electron system in a restricted space of two
spatial orbitals and can be solved exactly. By means of
this example we reached the following important con-
clusion: it is not possible to obtain a block-diagonal sub-
matrix Hss of H or, equivalently, to decouple M(co) ac-
cording to Eq. (5.1), by a unitary matrix T which con-
tains l%o & as the sole unknown quantity.
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r

C+
C= 0 (6.4a)

D=
0

(D )'
0

(y&l A t I@&
—

~ )
(6.4b)

which contain only the nonvanishing columns of T in Eq.
(6.1). The vanishing columns of T will now be replaced
by some suitable vectors. Since we know that they are as
many as n +v, which corresponds to the number of one-
particle states of the set [ ly ) j, we can label them with
the one-particle index a, as is the situation for Y. Cast-
ing these new vectors into a matrix X, it is easy to see
that this matrix possesses exactly the same block struc-
ture and dimension of Y. We define

'(@N+ 1l t Iqgtv)
'

(x )' &e"lx'.Ie"-') (6.5)

The operators x f+ have to be determined under the con-
dition that the whole T matrix

T=(Y X C D) (6.6)

is unitary.

vectors. As we have seen in Sec. V, n columns of T+[ )

and v columns of T („) vanish identically. To obtain a
unitary transformation T it is necessary to replace these
vectors by n+v "long" vectors, i.e., by vectors which
have nonvanishing components in both T+ and T parts
[see Eqs. (3.2) and (3.3)]. It is easy to convince oneself
that this construction yields the maximal decoupling in
the spaces of the (N+1)-particle excitations (see also Fig.
2). To proceed we introduce the matrices

(@~+'IA t Ig 'v)

CAO

A. The extended Green's function

Before specifying the new matrix X we make some gen-
eral remarks on the transformation matrix T as defined in
Eq. (6.6). The transformed composite Hamiltonian ob-
tained by means of T now possesses the following block
structure:

H HAB
H=

HB A HBB
(6.7)

Note that the block HBB has a block-diagonal structure,
where the (N+1)- and (N —1)-particle contributions
decouple exactly from each other:

Hcc 0
HBB =

0 H»]' (6.8a)

( H..). p (qoN——I[[a.,u), ap]Iq'(~)&,

(H„, ),p=(eo"IX+ [u, a pt]le'o &+(bio"I[u,a pt]x Ie(~)&,

(6.9a)

(6.9b)

Hcc and HDD correspond to the (N+ 1)- and (N —1)-
particle spaces, respectively. Because of the appearance
of the transformation (6.6), the dimension of H~„ is twice
as large as that of H„ in the preceding sections. H~~ is a
block matrix with the following block structure:

Y Haa Hax
H„q= t H(Y X)= — — . (6.8b)

XQ XX

It should also be noted that the block H„ is still con-
tained in the Hz„.

The elements of the transformed Hamiltonian in the
above new representation explicitly read

Xl (N +1)

(AA) (BA)

(ur1 —H) '

(H..).p= & eo lx .[u,x'„]lq,"&

+(eo~l[u, x' p]x .Ieo"&,

(Hc ),p= & %o"I A.[u, atp]I+g~&,

(Hc ) p=(To~I A [H,xt+p]I+o~)

(H ) „=(+oI A.[u, A'. ]I+"o&,

(H~, )„p=—(0'o
I A„[u,ap]l+o ),

(H,„)„p=—
& q,"I A „'[u,x,]le,"),

(H»)„„,= &e,"IA„', [II, A„—]leo~& .

(6.9c)

(6.9d)

(6.9e)

(6.9f)

(6.9g)

(6.9h)

(6.9i)

(BA)

(CC) o

p (DD)

tel —H

FIG. 2. Schematic representation of the transformed com-
posite Hamiltonian which leads to the maximally decoupled dy-
namic self-energy. The upper left block ( AA ) of H is twice as
large as the H„part of the composite Hamiltonian of Fig. 1.
The large blocks (CC) and (,DD) of the (¹1)-particle excita-
tion are exactly decoupled from each other.

The evaluation of these expressions can lead to useful ap-
proximation schemes, since only l+o ) appears and the
Hcc and HDD are a priori decoupled. A possible choice
of the operators x~+ will be given below. A schematic
representation of T and of its action on the composite
Hamiltonian H [Eq. (2.5a)] is given in Fig. 2.

The block structure of H suggests the introduction of a
Green's function which is not exactly the usual textbook
Green's function. H» can now be considered as related
to a new static self-energy X(ao). Correspondingly we
can introduce the dynamical component as
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M(co)=H~~(a)1 —H~~) 'Hsq . (6.10)

X(co)=X( 00 )+M(co) (6.11)

give rise to a new Green's function G(co) which satisfies
the following Dyson-like equation:

The transformed Hamiltonian and the self-energy func-
tion X(co)

The Green's function G(co) can be viewed as a block
matrix composed of four blocks:

G„(co) G,2(co)

G„(~) G„( )
(6.15)

where the upper left block G»(co) can be easily identified
with the textbook Green's function:

G(co }=Go(co)+ Go(co)X(co)G(co) . (6.12}

Most importantly, the dynamic part M(co) splits into two
independent terms

G„(co)=(Y+)t(col—H +') 'Y+

+ [(Y ) (col+H ') 'Y ]'
—:G+(co)+G (co) =G(co) . (6.16a}

M(N)=M' '{co)+M' '(co) {6.13)

representing the (N + 1)- and (N —1)-particle excitation
spaces, respectively. The decoupling of the blocks CC
and DD is very important for practical purposes, since
their dimensions are very large compared to that of H„„.
The price we have to pay for this decoupling is that H„„
is twice as large as H„, which is the corresponding term
in the usual Green's function theory. This doubling of
the upper left block cannot be considered a disadvantage
if one bears in mind that we reached the maximal decou-
pling of the (¹1)-particle excitations by means of a
transformation that contains ~+o ) as the sole unknown
quantity. It would be of interest to investigate the quality
of the results (ionization potentials, for instance) obtained
by diagonalizing H„„alone.

Starting with the transformed Hamiltonian H [Eqs.
(6.7)—(6.9)] and the Dyson-like equation [Eq. (6.12)], it is
not difficult to derive the spectral representation of G(co).
It reads

The other blocks read explicitly

Gz, (co)=(X~) (col —H +') 'Y+

+ [(X )t(col+ H ') 'Y ]',
G12(~)=(Y+)t(&1—HN+1}-1X+

+ [(Y )t(col+ H ') 'X ]',
G22(~) =(X+)t(N I —HN+1)-1X+

+[(X ) (col+H '} 'X ]' .

(6.16b)

(6.16c)

(6.16d}

(~ 1 /2p 1 /2 }
P

(6.17a)

Concerning the construction of the rectangular matrix
X introduced in Eq. (6.5}, it is clear that the condition of
unitarity of T is not sufficient to determine it unequivo-
cally. We postulate here the following form for the
operators x+ and x

Y+ (Y )'
G(co) = ~ (col —H)

Y+ X+
(Y }' (X )' y & t (~

—1/2~1/2)

P
(6.17b)

where H is the Hamiltonian defined in Eq. (2.5a).

(6.14) Here p and o = 1 —p are the two complementary density
matrices defined in Eqs. (6.3). The first two blocks of
columns of the transformation matrix T now read

(Y X)=
—1/2 1/2

+ +0'

(Y )III ( Y )4p I /2o I /2

{g &+1~ t ~yN) y{@N+1~gt (qpN)(~
—1/2p&/ )

P

{qyN~gt ~@N
—1) y{qpN~gt ~@ )( ~ )

(6.18}

It is interesting to observe that the operators x + can be viewed as linear combinations of the bare creation operators
a with coefBcients determined by the density matrices p and cr. The vectors composing the matrices Y, X, C, and 0
form an orthonormalized set, i.e, T is a unitary transformation. Inserting the definitions in Eq. (6.18) into the general
expression of G(co) [Eqs. (6.16)] we have

1 1
G(co) = 1/2 —1/2 1/2 —1/2

G+(co}

0
0 ~ —1/2 1/2

G (~) 1 p
—1/2~1/2 (6.19)

From this expression it is possible to recognize that the components of G(co) are specific linear combinations of the text-
book advanced and retarded Green's functions. As already mentioned the block G»(co) is the simple sum of G+(co)
and G (co).
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B. The unperturbed Green's function Cjro(co)

Interestingly, the Green's function G(py) cannot be straightforwardly reduced to the free one Gp(py), where the Ham-
iltonian is identified with its unperturbed part Bp [Eq. (1.4)]. This becomes apparent from the definitions [Eqs. (6.14)
and (6.17}]and the obvious observation that the density matrices p and o become singular inatrices for H =Hp How-
ever, we can show that the limit of the Green s function G(co) for 8~Op exists and that it is possible to derive a corre-
sponding Gp(ro). We anticipate here that the block Gp»(py} of the unperturbed Green s function Gp(co) is identical
with the usual free Green's function [see Eq. (1.3)].

As we can easily see from the definition of the new Green s function, the elements which could possibly give rise to
divergences derive from the matrix X. In the following we first demonstrate that X ntself cannot contain divergent ma-
trix elements and then give the final form of the free Green's function Gp(pi).

In order to prove that X does not contain divergent terms it is suScient to bear in mind that the single columns com-
posing X are normalized and orthogonal to each other. Explicitly this can be written as follows:

(X'tx )
—y ( 1/2~ —1/2) ( 1IIN~ a t

~

1IIN) (
—1/2 1/2) + y( 1/2 —1/2) ( qIN~g tg

~

@AN) (
—I/2~1/2)

r~ r, E

—y( 1/2~ —1/2) ~ (
—1/2 1/2) + ~ (

1/2 —1/2) (
—1/2 1/2)ar~r~a P ~p ~ ~ P arPr~P ~ ~p

r~ r, ~

Pap+ ~ap &ap . (6.20)

The vectors themselves composing X have to be finite for
the above relation to be valid. Otherwise at least one ele-
ment of the product matrix X~X would be infinite.
Moreover Eq. (6.19) is a formal equation and holds for
any choice for the Hamiltonian, and in particular for the
unperturbed choice 8=8p. This leads to the conclusion
that the divergencies contained in the matrices p

' and
o ' cancel necessarily together with the other factors
in X.

To erform the calculation of the limit of G(co) for
+p we pro—ceed now in the following way: we con-

sider a Hamiltonian composed of two terms
8=Bp+'j1(8 Bp) and ta—ke A, to be a small parameter.
The limit B~Hp is defined by suitably switching oF the
interaction, i.e., by A, ~O The form of Gp(P1) reads

[Gp22(py)]„„= g(& '/')„
N, X pi+ sz si ej

z

[Gp22(pi)];; = g(B '/');
m, n

k

)( (g
—1/2)

and

(6.24a)

(6.24b)

(6.25a)

Gp(py) =

where

Gp, »(py) .

0

0

Gp, 22(~}
(6.21)

~Ij p y ~IIxy ~jixy
X,g

(6.25b)

(6.22)

Gp 22(py) = G,"22(pi)

0 GII 22(Ip )
(6.23}

where

As expected, the block Gp»(co) can be identified with the
usual free Green's function and is therefore the simple
inverse-diagonal matrix of the one-particle energies [see
Eq. (1.3)]. The remaining part Gp 22(co) is block-diagonal
matrix in the sense that the spaces spanned by unoccu-
pied and occupied one-particle states are decoupled from
each other. Labeling u and i unoccupied and occupied
one-particle indices, respectively, Gp 22(pi) thus reads

In the above formulas we specified with i,j,k, I, m, n occu-
pied one-particle indices and with u, U, m, x,y, z unoccu-
pied one-particle indices. The symbol 1 pr& is defined as

(6.25c)

where V~@r&~
=

V~pr&
—

V~p&r is the antisymmetrized
matrix element of the two-particle interaction.

The matrix elements of Gp22(co) are peculiar linear
combinations of the zeroth-order energies of the 2plh
and 2h 1p configuration states. In the sense of perturba-
tion theory they are effectively of zeroth order in the
two-particle interaction, but are given as fractions of
second-order terms. The physical meaning of the
Gp 22( CO) component of the free Green's function Gp( co )

as well as of the complete Green's function G(co} is not
completely clear yet and deserves further investigation.
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VII. SUMMARY

The one-particle Green's function contains information
on the states and energies of different number of particles,
namely, (N+1) and (N —I). By means of the Dyson
equation the one-particle Green's function is connected
to the self-energy function and the energies of the
(¹1)-particle states emerge as eigenvalues of a single
matrix in the union space of the (¹1)-particle
configurations.

The major task of this work was to start with the usual
configuration-interaction matrices of the (¹1}-particle
spaces and to mix them by means of a unitary transfor-
mation in such a way that the Dyson equation and the
self-energy are recovered. The transformed composite
Hamiltonian obtained is generally represented by a full
matrix in the union space. We have derived the class of
unitary transformations which give rise to the different
representations of the self-energy. The properties of the
self-energy in several specific representations have been
investigated also in connection with possible approxima-
tion schemes for the Green's function.

The static part of the self-energy is invariant to these
transformations. Concerning the dynamic part of the
self-energy, various choices for the elements of the uni-
tary transformation are possible. We first attempted to
construct a transformation matrix which contains the ex-
act ground state

~ %0 }of the system as the only unknown
quantity. This request is motivated by the fact that the
Green's function itself is defined via ~+o ) and that the
perturbation expansion of this state is straightforward.
The first natural choice takes account of the complete-
ness of the set of creation and destruction operator
strings that can be associated to the configuration states
of the (¹1)-particle spaces. This choice leads to a com-
posite Hamiltonian in the union space and to a specific
representation of the dynamic self-energy in terms of the
exact ground state. We carried out a perturbation
theoretical analysis of this composite Hamiltonian and
we could show that the approximation scheme obtained
up to and including third order of the self-energy is
equivalent to the well established ADC (3) scheme based
on Feynman diagrams. Proceeding in the same way it is
possible to obtain approximation schemes at any order of
perturbation. However, in higher orders than the third
one, the contributions from the (N+1)- and (N —1)-
particle excitations to the dynamic self-energy appear
coupled to each other. Their decoupling is possible but
somewhat tedious.

It is known that the dynamic self-energy can be split
into two independent parts, deriving from the contribu-
tions of the (N+1) and (N —1)-particle spaces, respec-
tively. Therefore it is interesting to investigate the ques-
tion whether it is possible to find a suitable unitary trans-
formation which depends only on

~ %0 ) and decouples
the (¹1)-particle spaces of the dynamic self-energy. By
means of a counterexample we are able to show that for a
generic Hamiltonian it is not possible to fulfill the two re-
quired conditions on the transformation matrix simul-
taneously. This is only possible if we neglect the correla-
tion and the interelectronic interaction, i.e., if the Hamil-

tonian of the system under investigation is a one-particle
operator.

In the general case of an interacting many-particle sys-
tem the decoupling of the (N+1)-particle contributions
to the dynamic self-energy is of fundamental importance
for practical calculations. Being interested in a transfor-
mation in closed form which depends only on ~%'0 ), we
introduced a unitary transformation which gives rise to a
representation of the self-energy where the contributions
of the (N +1)- and (N —1)-particle spaces are maximally
decoupled. Defining the resulting decoupled function as
a new self-energy function leads to a new approach to the
Green's function. The striking characteristic of this new
self-energy is that its static component is represented by a
matrix of double the dimension of the usual static self-
energy. The new self-energy suggests the introduction of
a corresponding Green's function, which contains the
usual textbook Green's function as one of its components.
Some properties of the extended Green's function are dis-
cussed.
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APPENDIX A

In this appendix we prove the equivalence of Eqs. (3.8)
and (3.9). We consider in the following a Hamiltonian of
the following general form:

(Al)

where Bo is the unperturbed diagonal part

8,= y s.a'.a. (A2)

and 8z is the interaction term, composed of a nondiago-
nal one-particle part 0 and of the two-particle interelect-
ronic interaction P'.

(A3a)

= g W pa~ap,
a,P

prsa~a~saz .
a,P, y, 5

(A3b)

(A3c)

Closing the interaction path in the upper complex plain,
this equation yields, after integration

The equations of motion of the Green's functions lead
to the following expression for the constant part X( Oo ) of
the self-energy in terms of the one-particle Green's func-
tion [5—7]:

1X(~) p= W p+ g(V res
—V rsvp) Gsr(co}de .

27Tl
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X(eo) p= W p+ g (V ps
—V bp)&%01a abltir0) .

y, 5

(A5)

Taking into account this explicit formulation of X( 0D ) we
show in the following that the block H„[Eq. (3.g)] exact-
ly reproduces the upper left block of the matrix A [Eq.
(1.7)]. Making use of the explicit form of the Hamiltoni-
an and of the anticommutation relations between creation
and destruction operators, Eq. (3.8) yields

(H,.) p= & tI), 1[[a,8],a p]1)I)0 )
r

s 5 p+W p+ g (V rps
—V rsp)

a, p, y, 5

APPENDIX B

1. Transformation into orbital form

r'r = —g g V h(ph)a apnh
a,P k

(8 la)

where n k is the occupation number of the kth orbital in
the unperturbed ground state 140 ) (Hartree-Fock deter-
minant} and

In the following we describe the procedure of trans-
forming from configuration form into orbital form. We
consider the general form of the Hamiltonian given by
Eqs. (A2) and (A3} and choose the unperturbed Hamil-
tonian A'0 to be the Hartree-Fock operator, i.e., the term
8' of the Hamiltonian takes on the following appearance:

X &tlr() a abler() )
Vak [pk] akpk Vakk p (8 lb)

so that

(H„) p=[a+X( ec )] p .

(A6)

(A7)

As an illustrative example we transform into orbital form
the second-order contribution of the coupling block
(Hb,

"
) (see Sec. IV). We begin with the first term [see Eq.

(4.11c)]. In configuration form it reads

(Hba }vu, first term 2 & @01~0v(HI E0 )au l@q(2h2p) )cq(2h2p)
q

(82)

The states appearing in this formula can be easily expressed in terms of creation and annihilation operator strings act-
ing on lsIs0 ) as follows:

gt 1C)N) t 'ta lq)N)

I @q(2h2p) &
=ar a a a

I
c'0 &

(83a)

(83b)

with n; n nn n„ny n, n = 1 . Here n = 1 —n. The RSPT expansion coefficient cq (2Q 2p) of the N-particle configuration
1 eq"(2h2p) ) reads

cq(2h2p) & @q(2h2p) l&r l +0 &

~m +n &~ &z

Taking into account that

1@q(2h2p) & =a a a a a l@p &

(84)

(85)

represents an (N + 1)-particle configuration of the class 3p2h, the first factor in Eq. (82) is simply the matrix element of
the interaction term 8r between the configurations in Eqs. (83a) and (85). One obtains

&+01&0.(&r-~, '" )a.'I+ („„))=[(V, , „,fi,.fi,„)+( zu, w z, w, u)+(u, z, w w, u, z)]
—[x~y ]—[m~n ]+[x~y, m~n ]

+[(V „,„(5)5p„) (+u, wz~z, wu) (+u, z, w~ ,wzu)] —[x~y] . (86)

The sum over q in Eq. (82) is now equivalent to a sum over the one-particle states z, w, m, n. The formulation in orbital
form finally reads

Hvu (2) 1

V . Vmn [iu] xy [mn]
ba vu, first term 2 Xmn~mnxy

V V . V V . V Vym [zu ] xz [mi] ym [z] urz [mi] mn [iz] yz [mn] —[x~y] . (87)

m

Analogously, the remaining two terms contributing to the coupling block are evaluated. The terms in Eq. (87) w»ch
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contain the factor 5„„cancel exactly with the other contributions appearing in Eq. (4.11c). The final expression in or-
bital form for Hbu reads thus

vu (2)
V Vmn [iu] xy [mn]

ba xyi u 2
m, n m n x y

~ym [zu] xz [mi]

+E;—s„—c,,
(B8)

In the formulas (B6)—(B8) the symbol (a~P) stands for a term that has the same appearance as the preceding one, but
with the indices a and P interchanged. For practical calculations it can be advantageous to consider the restriction
x (y over the external indices x and y which run over the same (unoccupied) space.

2. On the coupling between (N+1)-particle excitations

This appendix is directly related to Sec. IV B. We show here that the coupling block H~bb between the (¹1)-particle
excitations has a nonvanishing second-order contribution. As discussed in the text, the presence of this contribution
prevents the possibility of reproducing the fourth-order ADC scheme for the dynamic self-energy by starting with the
closed-form expressions of Eqs. (4.5). Starting with Eq. (4.5d) one obtains at second order for y =p and y'= v the fol-
lowing expression:

(Hbb)iz~ g&q[2b3yI &@q[2b2yII ~iz(&r EP )~ l~'P &+ g cq(3b3y) ~ @q(3b3y)l ~iz(&P &P )~ ~l@P &

q q

g&q(2b2y)( ~ q(2b2y) I
~ u(~r EP ) ~iz l@P & gcq(3b3y) ( 4'q[3b3y) I

~ „(~P EP ) ~iz l@P & ~ (B9)
q q

Here cq(3$3p) is the second-order RSPT expansion
coefficient of an N-particle configuration of the class
3h3p. By using the same procedure as discussed in Ap-
pendix B1 we transformed this expression into orbital
form. The result is lengthy and is hence not given here.
It is seen that (H~&b)I ' is not zero and thus the (¹1)-
particle excitations couple at second order of perturba-
tion theory. As discussed in the main text we can get rid
of the coupling contributions by block-diagonalizing the
block Hbb. In general, this procedure can be carried out
only order by order and does not lead to closed-form ex-
pressions for the dynamic self-energy. We should men-
tion that there exists a simple case where the block diago-
nalization of Hbb leads to closed-form expressions. This
is the case of a one-particle Hamiltonian and is discussed
in detail in Appendix C.

( SN + I
) ( CN1+ I

~

qNi+ I
& (Clb)

( IIiN~ g
~

IiiN+ I
&

S=TtS= (qN~ j„~q"+'&

( IIiN) g
(

IIiN+ I
&

(1PN I)u (IPN&

( IIiN
—I

i J i

IpN&

(IIiN I]j (IpN&

(C2)

It will be useful to split the sets [~% '&] according to

( SN —I
)

—( @N —I
~

IIiN —I
& (C 1c)

Here the set [ ~

qi +—'
& ] is the set of the exact eigenstates

of H *'. Taking into account that the transformation
matrix T, as given in Eqs. (3.2), (4.2), and (4.3) is a uni-
tary matrix it is easy to see that the eigenvector matrix of
H can be written as follows:

APPENDIX C t ~q "+'&]= [ ~eN+'
& J U j ~e

"+'
&]

[)@AN
—

I&] —[~q N-I&] U [~q
N I&j

(C3a)

(C3b)

In the following we analyze in detail the case of a sys-
tem, the Hamiltonian of which is a one-particle operator.
As discussed in the text, we show that in this case it is
possible to block diagonalize the part Hbb of the
transformed composite Hamiltonian H [Eqs. (4.5)] by
means of a unitary transformation that depends on the
N-particle ground state only.

The eigenvalues of the transformed Hamiltonian H ob-
tained in Sec. IV [Eqs. (4.5)] are the same as those of H
[Eq. (2.5a)] and represent the exact attachment and ion-
ization energies. We define the eigenvector matrix of H
as

i

qpN+ I
& iC N+ I

&

~

@N+ I
& ~

g»+ I
&

~'Pb

(CyN
—'

&

(C4a)

(C4b)

(C4c)

(C4d)

where we distinguished from which class of configuration
states the eigenstates in a perturbation theoretical
analysis derive. The following associations between exact
eigenstates and configuration states hold:

where

SN+1 0
(SN —1)u (Cla)

After interchanging the columns of blocks in S and speci-
fying with u and i the unoccupied and occupied one-
particle state of the set [~y &], respectively, we obtain
for the eigenvector matrix of H
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(e~fa fe"+')
(y"/a /q "+')
(y"[J /y~+')

(y~[g /q~+')

(q~ —'[ (y~)

(y~ —') (y")
&~„-'(J,(q,"&

(yN —') g [q")

( @Ni i qgN+I)

(q "fa fq "+')

(q~f j fy"+')

~gN)

(@~ '~,. ~gN)

(q"—'( J (y~)

(q"—'( g„(q")

(C5)

a=u, i, y=p, v (C6b)

which hold in the (N+ 1)- and (N —1)-particle spaces,
respectively.

The above-presented formulas are still quite general
and hold for any choice of the Hamiltonian. In the fol-
lowing we will consider explicitly the case of a one-
particle Hamiltonian. In this case it is not diScult to see
that the matrix H acquires a block-diagonal structure:

H„O 0

H= 0 H H"
bb bb

0 bb bb

(C7)

Indeed, considering for the Harniltonian the simple ex-

From the unitarity of the eigenvector matrix S the fol-
lowing peculiar completeness relations can be derived:

ya'. ~e,"&&+,"~a.+ y J', ~e,"&&+,"~~,=1;
a r

a=u, i, y=p, ,v, (C6a)

ga. (q "&&qg~a'. + g a (eg&(eg)a' =1;

pression

8= gH i3a ai3
a,p

(C8)

and taking explicitly into account that the columns of the
transformation matrix T are orthonormal

(e"({a., 5'
I [e"&—=O (C9)

we can see that the matrix elements of the off-diagonal
block of H vanish identically:

(A., ).„=(e~~{[a.,8],~', I ~q,"&

= QHpj(PO~{(a apas —apasa ), A j~+0)
p5

= QHps5 p(% ~{as,A, I q,")—=0. (Clo)
p5

In other words, any matrix element of the off-diagonal
block H, b is exactly zero since it can be expressed as the
product of a matrix element of the Hamiltonian A' and
the anticommutator of the operator strings.

Since H is block diagonal, its eigenvector matrix S is
block diagonal as well and Eq. (B5) reduces to

(@tv~ ~yN+1) (@AN
—

1~a ~AN)

( gN[ [qgN+1) ( @AN
—

1( )@AN)

0 0 (qpÃi g i@N+1) (qgN
—

li g iqgN)

(y&) J )y&+') (ql" '( J )ql~)

(Cl 1)

From Eq. (Bl 1) follows a very interesting characteristic
of the eigenstates of the classes r and s: they build sepa-
rately a complete set of states in their space. This can be
written as

(C13b)

(C13c)

g ~y~ —')(g~ —'~=1

y ~

yN+I) ( qgN+ l~

(C12a)

(C12b)

g A, ~% g) (%',"~ &,=1, y =p, v .
r

(C13d)

~40 )(%0 ~a =1, a=u, i, (C13a)

Moreover, since the space spanned by the index a is in-
dependent from the space of the (N+1) excitations v and

p, Eqs. (B6) reduce to the following equations:

The first two completeness relations are valid in the space
spanned by the index a while the second two are valid in
the space spanned by the indices v and p.

Our purpose is now to block diagonalize the lower
block Hbb of H. We remember that a Hermitian matrix
can be unequivocally block diagonalized [15). Accord-
ingly, we build up the following unitary matrix, which
has the same block structuer of S:
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U=

1 0
0 1

0 0
0 0

p () & qpNi g i@N+1
& &

qgN
—

li J iqgN&

p p &yN) J )g~+'&

(C14)

1 0 0
0 1 0
() p & yN) g (@%+AD &

0 0

0
0
0

&y"—'~g ~qi"&

(C15)
and its block-diagonal part: It follows:

and

UUBD=

1 0
0 1

0
0

0 0 y & q "~ g, ~g "+'&&q "+&~ g', [g N&

0 0 y&q"(J)++&&++[Jt[+ &

0
0

g &y"~gt. ~g"-'&&@"—~~g ~y"&

y &y~) jt, [y~ '&&qsN
—'( J ]@~&

UsDUaD=

'1 0
0 1

0 0

0
0

p p g & y"~ g„~y"+ '
& &

y"+ '
~
Jt, ~

g"
&

y &y [gt [y '&&//N '~g ~AN&

=&+,"~J', i, ~e,"&, y, y'=~, v. (C1gb)

To simplify the notation we introduce now the following
two matrices P and Q, the indices of which belong to the
union space of the classes v and p:

p =y & y"~ g
~

y"+ 1
& &

y"+ '
~

g t.
~

qi"
&

S

= &%0 ~ Ar A ~ ~%0 &, y, y'=p, v, (Clga}

g, = g &q "~jt ~g"-'&&@",

1 0
0 1

BD BD 0 0

0 0

1 0
0 1

0 0

0 0
I,

0 0
0 0
P„„O

0 0
0 0
P„„O
0 (1—P)„„

(C21)

Equations (B18}can be written because of the complete-
ness relation given in Eq. (B12). It is not diScult to see
that the following important relations hold

P=P (C19a)

(C19b)

(C19c)P+Q=1 .
Moerover, taking account of Eq. (B13)

P=P (C19d)

UV' =
BD

1 0 0 0
O 1 0 O

0 0 P Q„
0 0 P„Q„„
1 0 0 0
0 1 0 0
0 0 P„„—P„
0 0 P„„(1—P}„„

(C20)

Q=Q' (C19e}
Eqs. (B16}and (B17) can now be reformulated in terms of
P and Q:

The matrix UUaD(UaDUaD} ' is the unitary matrix
which unequivocally block diagonalizes the lower block
Hbb of H. We proceed now to analyze the complete uni-
tary transformation T matrix, with which we want to
transform the composite Hamiltonian H:

T=TUUaD(UaDUaD ) (C22)

y& @N+ 1
i
jt iqgN& &

qpNt j jt~ iqgX&

+(v) r
(T &„&)*

~ y&e"i2'ie"-'&&+"iJ, J'„,ie"&
. r

X (UaDUaD)~ „ (C23)

Taking into account the completeness relation in Eq.
(B13b) and the anticommutation property of the opera-

T here is the unitary matrix defined by Eqs. (3.2), (4.2},
and (4.3).

Clearly the first two blocks of columns of T (labeled
with u and i) are identical to those of T and hence to the
composite matrix of the residues Y. We analyze now the
third (v) block of columns. It reads
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(UBDUBD)v'v

tors a and A z, the last equation reduces to

(T ( ))*, 0

T 1
+(p)

(T—(p) ~' 0 p' q

(C25)

(C24)

Analogously one obtains for the fourth block of columns
The final transformation T which brings H in Eq. (B7)

into block-diagonal form T HT reads

((g N+l ~at))ItN) ((yN+1~ t~)IIN) (q N+1~ A ~)ItN)

(q/ N[at[g, N+1) (1IIN)a1'((yN+1) ()

0

()ItN~ A t j@N
—') (C26)

where the operators Az are given by

Av r A v'(UBDUBD)v'v
V

(C27a)

") = X A~ «BDUBD)„„ (C27b)
)M

Interestingly the new operators Az are, apart from the
normalization factor, identical to the original operators

The matrix T possesses a very peculiar block structure
and is unitary. As we discussed in the main text, in the

general case of a correlated system it is not possible to ob-
tain a unitary matrix with the block structure as given in
Eq. (B26). In the present case, however, where we sup-
posed the Hamiltonian to be a one-particle operator, it
becomes possible since the matrices

(Y ) =(aN+)~at~aN)

and

(Y ) (@N~ai' ~q)N
—1)

contains linear dependent column vectors.
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