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The program FCI solves the Full Configuration Interaction (Full CI) problem of quantum chemistry, in which the electronic 

Schriidinger equation is solved exactly within a given one particle basis set. The Slater determinant based algorithm leads to 

highly efficient implementation on a vector computer, and has enabled Full CI calculations of dimension more than 10’ to be 

performed. 

PROGRAM SUMMARY 

Title of program : FCI 

Catalogue number: ABHV 

Program obtainable from: CPC Program Library, Queen’s 

University of Belfast, N. Ireland (see application form in this 

issue) 

Computer for which the program is designed and others on which 

it is operable: any machine with Fortran 77 

Computer: Convex C210; Installation: Department of Theoret- 

ical Chemistry, University of Cambridge 

Operating system: Convex Unix 6.2 

Programming language used: Fortran 77 

High speed storage required: problem dependent 

No. of bits in word: preferably 64 for floating point arithmetic; 
at least 24 for integers 

Peripherals used: disc, printer 

No. of lines in combined program and test deck: 2852 

Keywords: quantum chemistry, configuration interaction 

Nature of physical problem 

Benchmark calculations for quantum chemistry. 

Method of solution 

Diagonalisation of the full CI Hamiltonian matrix. A vectorised 

determinant-based full CI algorithm [l] is used to compute the 

actions of the Hamiltonian on a trial wavefunction. 

Restrictions on the complexty of the problem 

Size of problem limited by available CPU time and the 

requirement to hold in memory two vectors the length of the 

CI expansion. 

Typical running time 

Problem dependent. 

Reference 

[l] P.J. Knowles and N.C. Handy, Chem. Phys. Lett. 111 
(1984) 315. 

OOlO-4655/89/$03.50 0 Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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LONG WRITE-UP 

1. Introduction 

1.1. The full CI problem and its application to 

quantum chemistry 

A full CI calculation represents the determina- 
tion of the best possible quantum chemical wave- 
function for a given one particle basis set. If the 
one particle basis functions are represented by ns, 
s=l,2 , . . . , M, then one can form M orthonormal 
orbitals +, 

M 

G, = c Cs,%, i=l,2 ,..., M. (1) 
s= 1 

These orbitals can then be used to form N-elec- 
tron configuration state functions (CSFs) { @,, I 
= 1, 2,. . .) NC }, which are antisymmetric and ei- 
genfunctions of the total spin operator S*. The 
number of CSFs which can be formed is given by 
the Weyl formula [l] 

(2) 

where N is the number of electrons, and S(S + 1) 
is the eigenvalue of S*. The full CI wavefunction 
is represented by 

JY 

*= c c,@,, (3) 
I=1 

with the coefficients c1 determined by the varia- 
tional secular equations 

(@,]fi-EI\E)=O, 1=1,2 ,..., Nc. (4) 

Solution of these equations is equivalent to 
finding an eigensolution of the Hamiltonian ma- 
trix H which is the representation of the Hamilto- 
nian operator fi in the complete basis of CSFs. 
The full CI energy E is invariant to the choice of 
orbitals { +, }, although convergence of the itera- 
tive scheme used to solve (4) will be most rapid if 
there is one dominant CSF in the wavefunction, as 
is frequently the case if self-consistent field orbitals 
are used. 

Since the development in 1984 of our algorithm 
[2] for the efficient solution of (4) large scale full 
CI calculations have had considerable impact in 

quantum chemistry, most notably in three areas: 

a> 

b) 

c> 

Multiconfiguration SCF calculations. A very 
special, but extremely useful, type of multicon- 
figuration SCF wavefunction is that termed 
Complete Active Space SCF (CASSCF) [4-61. 
This involves a full CI expansion within a given 
set of orbitals. Incorporation of our full CI 
algorithm into our MCSCF program has en- 
abled very large MCSCF calculations to be 
performed, and we refer to the literature for 
further details [3]. 
“Benchmark” full CI calculations. Using the 
first general full CI program [7], full CI calcu- 
lations on H,O with a double zeta basis set [8], 
and also on Be, [9] were performed, and these 
became established benchmarks for quantum 
chemistry. That program was very slow. 
Bauschlicher and coworkers have been success- 
ful in using this newer full CI algorithm with 
larger (but modest) sized basis sets on a wide 
variety of molecules [lO,ll]. They have used 
the program FCI as a calibration tool for other 
ab initio methods (which can subsequently be 
used with much larger basis sets). These 
calibration calculations have served to show 
that multireference single and double excita- 
tion CI calculations can produce rather accu- 
rate potential energy and property surfaces, 
and have been useful in estimating errors in the 
many different approximate quantum chemical 
methods. We note that these calculations be- 
came possible through a combination of al- 
gorithm development and improvements in 
hardware; many of the benchmark full CI 
calculations were of dimension greater than 10’ 
and required the availability of a large memory 
machine (a Cray-2 with 256 Mword). 
Convergence of the Moller-Plesset perturba- 
tion series. The principal routine in FCI com- 
putes the representation in Slater determinants 
of the action of the Hamiltonian operator on 
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some trial wavefunction, also represented as a 
combination of determinants. This means that 
it is possible to solve the Moller-Plesset 
Rayleigh Schriidinger perturbation equations 
order by order; for each application of the 
Hamiltonian operator, one may compute the 
wavefunction to one order higher. In this way, 
it has been possible to investigate the conver- 
gence properties of the Moller-Plesset per- 
turbation series, by computing for a number of 
different molecules the series up to, in some 
cases, 48th order. For details we refer to our 
original papers [12,13]. 

1.2. Technical considerations for large scale full CI 
calculations 

The matrix elements of the Hamiltonian are 
given by 

ij 
k”/ 

(5) 

where y,:, I;yk, are the one and two particle 

coupling coefficients, and h,,, (ij 1 kl) are the usual 
one and two electron integrals defined by 

h,,= (G;(I)(&l)o,(I)$ (6) 

where fi is the appropriate one electron operator 
and 

(ijlkl) = (~,(1)~,(2)1r,‘l~,(l)~,(2)). (7) 

In nearly all cases so far observed, the Hamilto- 
nian matrix H is strongly diagonally dominant and 
very sparse. This has allowed quantum chemists to 
obtain low lying eigensolutions straightforwardly 
in a small number of iterations using the proce- 
dure of Davidson [14]. Instead of the full matrix 
H, one requires only its diagonal elements d, = H,, 

and an efficient procedure to compute the action 
of H on some trial vector c 

g, = zH,,c,. (8) 
J 

Thus in each iteration, one must obtain once all of 
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the coupling coefficients y,:, cyk, and combine 
them with the appropriate integrals and coeffi- 
cients. The large number of two particle coupling 
coefficients are given by 

with l?,, being the usual single particle excitation 
operators. In the first implementation of a general 
full CI procedure [7], the coupling coefficients 
were obtained by straightforward consideration of 
all double excitations arising from each configura- 
tion QJ in turn. A similar procedure has been 
adopted more recently [15]. Our approach follows 
that of Siegbahn [16], who recognised the value of 
using the completeness relation 

PJ f/.k/= 2 ‘C Y,k YhI 
IK KJ_16 

2 ,kd 

K 

(8) is then evaluated as (considering only highest 
order terms) 

E,;= x(ijlkl)D,K,, 
kl 

(11) 

(12) 

(13) 

The features of this algorithm as compared with 
the conventional approach of ref. [7] are 

a> 

bj 

c> 

Only one particle coefficients y,y are required, 
and not the far more numerous two particle 
quantities q:i,. This leads to program simplifi- 
cation, and, for the case that the coupling 
coefficients are stored on a disc rather than 
being recomputed when needed, reduction in 
input/output time. 

For large cases, the cost is entirely dominated 
by (12). This can be formulated as a matrix 
multiplication, allowing optimum efficiency on 
certain classes of supercomputer. 
Again because (12) is dominant, optimum ex- 
ploitation of the index permutation symmetry 
of the two electrons integrals is possible. 

Further detail of these considerations may be 
found in ref. [15]. 
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2. The determinant full CI algorithm 

The first use of the scheme given in (l)-(13) 
was that of Siegbahn [16]. In his approach, the one 
particle coupling coefficients y,: are constructed 
in the Gelfand CSF basis, sorted into the required 
order, and held on external (disc) storage; later 
implementations compute the one particle cou- 
pling coefficients directly when required [17,18]. 
Our approach [2] involves replacing the CSF basis 
by the complete set of Slater determinants with 
S, = S, the required spin quantum number. This 
set spans exactly all CSFs with spin quantum 
numbers S, S + 1,. . . , +N and thus in general is 
larger than the CSF basis. The ratio of the number 
of such determinants, N,, to the number of CSFs 
is given by [19] 

ND _ (M-:N+S+l)(:N+S+l) 

N, (2&s+ l)(M+ 1) . (14) 

For example, for S = 0, in the limit of large M, 

this ratio tends to +N + 1, and for S = 1, :(iN + 
2); for finite M, the ratio is somewhat reduced. 
Even though we use a larger expansion set, there 
are certain advantages in using determinants; the 
coupling coefficients are simply 1, - 1 or 0, and 
furthermore it is possible to design and addressing 
scheme for the configurations which allows con- 
struction and use of the coupling coefficients to be 
vectorized. 

2.1. Addressing of the CI expansion 

A determinant is constructed from a product of 
a string of N, orbitals associated with (Y spin and a 
string of NP orbitals associated with p spin. We 
define, separately for (Y and p string, addressing 
arrays Z, given by 

Z”(k, 1) = 
,=~~,,[(N~~k)-iNlk!lj] 

(M-N,+k>l>k; k<N,), 

Za( N,, 1) = 1- N,, 

(15) 

where k refers to an electron and I to an orbital. 
Any string I is identified by a list of occupied 
orbitals {(p,,, i = 1, 2,. . . , N,} in strictly ascending 

order, i.e., I, < I, < . . . . The address of the string 

is then given by 

AT=1 + 5 Za(i, I,) (16) 
i=l 

and the addressing is lexical without gaps. We 
note that this is similar to the graphical addressing 
schemes which are common in unitary group and 
symmetric group formulations of the electron cor- 
relation problem [20,21,17,22]. (i, I,) are 
equivalent to graph vertices, and Z(i, I,) corre- 
sponds to a partial weight array. 

Once the addresses of the (Y and /3 strings 
which form a given Slater determinant have been 
obtained, the determinant can be addressed as the 
element of a rectangular array C(Af, A:), where 
I”, Jp represent the (Y, p strings. The means that 
operations on the a string alone can be performed 
for all p strings in a vector loop and vice versa. 
Non-degenerate point group symmetry can be 
easily incorporated into this address scheme by 
the use of index vectors for the string addresses; 
we omit details for clarity. 

2.2. One particle coupling coefficients 

Eqs. (ll), (13) require the evaluation together 
of all non-zero coupling coefficients y,‘;” for a 
given determinant QK, together with the associ- 
ated configuration and integral addresses I and ij. 
Because we use Slater determinants, we are able to 
take advantage of the fact that the orbital excita- 
tion operator i,, is just the sum of excitation 
operators for LY and fi spin orbitals, Z?,y + l?,:. 
This in turn means that the coupling coefficients 
separate into two classes, those where the (Y string 
is excited, but the fi string unchanged, and vice 
versa. Having determined a given (Y spin excitation 
and its associated numerical value (k l), we then 
have coupling coefficients for all possible /3 strings 

for all /? strings P. (17) 

In our program, we construct and store all possi- 
ble cu and /3 string excitations, and these are then 
used in vector loops over /? and (Y strings, respec- 
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tively, in the construction of (1) and (13), as 
shown in the next section. 

2.3. The determinant CI algorithm 

For the sake of completeness, we repeat here 
the structure of the algorithm used in our program 
and presented in our earlier publication [2]. Spa- 
tial symmetry introduces extra loops outside this 
structure, but we omit these for clarity. 

Split a: strings and p strings which will form 
the intermediate determinants QK of (12) into 
blocks, according to how much memory is availa- 
ble to hold blocks of the matrices D, E. 
Loop over blocks of LY strings I* 

Form list of single replacements p = EjjZ* 

Loop over blocks of p strings Jp 
Form list of single replacements J” = i,,.lp 
Loop over I” in block 

Loop over P 
Loop over Jp in block 

D(Jp, I”, ij) +- _t C(Jp, I”“) (18) 

Loop over Jp in block 
Loop over .P 

Loop over I” in block 

D(.P, I”, ij) + +c(P, I*) (19) 

Loops over Jp in block, I* in block, ij, kl 

E( Jp, I”, kl) + D( JO, I*, ij) 

x(ijlkl) 

Loop over I* in block 
Loop over P 

(20) 

Loop over Jp in block 

g(P, P) +- kE(J”, I”, ij) (21) 

Loop over JB in block 
Loop over .P 

Loop over 1” in block 

g(jB, Z”) + +E(JB, I”, ij) (22) 

In the above, (18, 19) correspond to eq. (11) (20) 
to eq. (12) and (21, 22) to eq. (13). 

2.4. Diagonal elements of the Hamiltonian matrix 

In each iteration of the Davidson diagonalisa- 
tion procedure [14], the next correction to the 
wavefunction is estimated using first order per- 
turbation theory. This involves division by the 
diagonal matrix elements d, of the Hamiltonian 
matrix. As discussed in ref. [2], it is essential that 
d, for all determinants with the same orbital 
occupancy are identical; in general this is not true, 
since they differ by exchange integrals, but if this 
condition is not enforced, the correction to the 
wavefunction is not an eigenfunction of i’. The 
energy of each determinant is given by 

d, = xn,h,, + 4 xn,n,(ii I j) + Eexch, (23) 
i I/ 

where the exchange energy is 

Ecxch= -tC(n:n;+nPn,P)(ijlji). (24 

In the above, nF = 0 or 1 represents the occupa- 
tion number of (Y spin orbital $, in determinant 
@,, and n,=np+nf is the total occupancy of 
spatial orbital +,. In our procedure, we replace the 
true exchange energy Eexch by 

Lh = -fCn,n,(ijlji) - fCN,(iiIii) 

-$FxN,N,(ijl ji) 
r#j 

with N, = n,(2 - n,) being 1 or 0 according to 
whether or not +, is single occupied. The averag- 
ing factor F is given by 

F= 
as2 - Nope* 

%pen ( Nopen - 1) 
(26) 

and Nopen = X, N,, the number of singly occupied 
orbitals. This formula (25) is the average exchange 
energy of all determinants with the same spatial 
orbital occupancy. This approach has been found 
to be superior to our original approximate formu- 
lation [2]. 

Given the spin averaged denominators, we have 
found it possible to obtain correct spin eigenfunc- 
tion roots of the Hamiltonian matrix, even though 
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there may be lower energy roots having an unde- 
sired higher S eigenvalue. It is only necessary to 
provide a starting estimate for the wavefunction 
which has the correct spin symmetry; the program 
ensures that the lowest energy CSF of correct S is 
used, as described in ref. [2]. 

subroutines may be substituted or called. The 
supplied version of FCMXM is not necessarily 
optimum for any machine, but contains code and 
comments which reflect some of these considera- 
tions, 

3. Description of program and data input 

3. I. Installation of the program 

The program as supplied consists of a file (fci.f) 
containing most of the Fortran code, and a num- 
ber of alternative files (standard.f, cray.f, ibm.asm, 
convex.c, vax.f) which contain machine dependent 
code. standard.f contains standard Fortran 77 ver- 
sions of the routines GMAINV, FMAIN (dy- 
namic memory allocation) and SECOND (elapsed 
cpu time), which may be used as a template for 
implementing the program on any machine. cray.f, 
ibm.asm, convex.c, vax.f contain, respectively, 
Fortran, IBM assembly, C and Fortran versions of 
these routines for Cray(COS), IBM(MVS or CMS), 
Convex(Unix) and VAX(VMS) computers. 

Apart from FCMXM, subroutines FCDIAG 
and FSIGMA contain Fortran DO loops in which 
a significant fraction of execution time is spent. 
On a vector machine, it should be verified that the 
Fortran compiler has produced vector code for 
these loops. Where necessary, the code already 
contains appropriate directives for Cray and Con- 
vex Fortran compilers. 

3.2. Organisation of the program 

As well as various initialisation tasks, the main 
program calls three important subroutines: 

4 
b) 

INPDAT reads input data. 

cl 

Each subroutine contains the declaration IM- 
PLICIT DOUBLE PRECISION (A-H, O-Z); the 
intention is to use 64 bit arithmetic, and so, for 
example, on a Cray, where DOUBLE PRECI- 
SION is not what is required, one should use the 
compiler option OFF = P. The only extension to 
Fortran 77 used (apart from the machine depen- 
dent code) is NAMELIST, which occurs in sub- 
routine INPDAT, described below. 

INITC sets up addressing arrays for the CI 
wavefunction and the integrals, and reads and 
preprocesses the integrals. 
DAVIDS is the controlling routine for David- 
son diagonalisation of the Hamiltonian matrix. 
The main program allocates two vectors whose 
length is the size of the determinant CI expan- 
sion, and passes these to DAVIDS. For a large 
case, this is the principle memory requirement, 
although some extra space for intermediate 
arrays (particularly segments of the matrices D 
and E) should be allowed in order not to 
degrade efficiency. 

Subroutine DAVIDS 
The only part of the program which may need 

adjusting for optimum efficiency on a particular 
machine is subroutine FCMXM. This performs 
the matrix multiplication of (12). Depending on 
the machine architecture, one may take either K 
or ij as the index of the innermost loop in the 
middle product form of the matrix multiplication 
[23]; the K loop is usually longer, but vectoriza- 
tion along ij allows the exploitation of the sparsity 
of the matrix D. On some machines it is advanta- 
geous to explicitly test this sparsity and then make 
the decision of loop order. Alternatively, on some 
machines it may be best to implement the inner 
product algorithm [23]. Finally, fast machine code 

routines: 

a) FCDIAG returns the 
Hamiltonian matrix. 

b) FSIGMA returns the action g = Hc of the 
Hamiltonian matrix H on a supplied vector c. 

This modular structure should allow the replace- 
ment of DAVIDS by some other procedure which 
requires these operations, if required. 

3.3. Data input 

The date for the program consists of two parts. 
The first is a specification of the dimensions of the 

calls the following sub- 

diagonal elements of the 
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problem, for example numbers of orbitals and 
electrons, and also any options for the program 
run; this data is read from Fortran stream 5 by 
subroutine INPDAT. Secondly, the one and two 
electron integrals in the molecular orbital basis are 
read by subroutine INPINT. 

3.3. I. Subroutine INPDA T 
INPDAT performs a Fortran NAMELIST read 

from stream 5, which should contain data in the 
format required by the particular implementation 
of NAMELIST. The NAMELIST name is FCI. 
The following variables, which are integers except 
where marked otherwise, may be specified: 

Variable Default 

value 

Description 

NORB 

NELEC 

MS2 

ISYM 

ORBSYM- 

(l:NORB) 

IPRTIM 

INT 

MEMORY 

CORE 

MAXIT 

THR 

THRRES 

NROOT 

_ 
_ 
0 

1 

1, 1, 

-1 

5 

1OOOCO 

0.0 

25 

10-s 

10-l 

1 

Number of orbitals 

Number of electrons 

ZS, where S is the spin 

quantum number 

Spatial symmetry of 

wavefunction 

Spatial symmetries 

of orbitals 

If 0, print additional 

CPU timing analysis 

Fortran stream from 

which integrals will 

be read 

Size of workspace array 

in floating point words 

Core energy (may also 
be given in integral file) 

(floatingpoinf) 

Maximum number of 

iterations in Davidson 

diagonalisation 

Convergence threshold 

for Davidson diago- 

nalisation (floating point) 

Threshold for printing 

final CI coefficients 

(floating point) 

Number of eigenvalues 

of Hamiltonian to be 
found 

3.3.2. Subroutine INPINT 
INPINT reads and interprets the integrals 

according to the following Fortran code: 

1. 

C . . . 

C 
. . . 

C . . . 
C... 
. . . 

C . . . 

C . . . 
. . . 

99 

Only 
equal 

READ (INP, * ,END = 99)Z,I,J,K,L 
IF (K.NE.0) THEN 
Z interpreted as two electron integral 

UJ I KL) 

ELSE IF (I.NE.0) THEN 
record contained Z I J 0 0 
Z interpreted as one electron integral H(I,J) 

ELSE 
record contained Z 0 0 0 0 
Z interpreted as core energy 

END IF 
GOT0 1 
CONTINUE 

those integrals which are unique (i.e. not 
by permutational symmetry) and non-zero 

need be specified. 

4. Test run 

The files hf.dat, hf.out contain, respectively, the 
data input and resultant output for a full CI 
calculation for HF with a double zeta basis set 
[10,24] at a bond length of 1.733 bohr. The la, 
orbital is not correlated, and therefore it appears 
only through the replacement of the one electron 
integrals by a core Fock operator. The number of 
determinants is 27252, equivalent to 8674 CSFs. 
The input consists of the following NAMELIST 
data 

$ FCI NORB = 11, NELEC = 8, 
ORBSYM = 1,1,1,1,1,1,1,2,2,3,3, 
MEMORY = 150000, 

S 

followed by the integrals as described above. The 
output contains 

a) Size of memory used for temporary arrays. 
b) Number of orbitals M = NORB, broken down 

into the number of each symmetry. 
c) Number of electrons N = NELEC, and spin 

quantum number S = iMS2. 
d) Number of orbital pairs ij for each spatial 

symmetry. 
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e) 

f> 

g) 

h) 

9 

j> 

k) 

1) 

Number of (Y strings of each symmetry, fol- 
lowed by number of j3 strings. 
Number of determinants of each symmetry. 
Core energy, CORE 
Spatial symmetry of wavefunction, ISYM. 
Diagonalization parameters MAXIT, THR, 
THRRES, NROOT. 
Description of the determinants making up the 
trial wavefunction. This is the single CSF of 
lowest energy. 
For each iteration of the diagonalisation, the 
iteration number, the current root of the Ham- 
iltonian being improved, the current CPU time, 
convergence test value and current energy. 
The final energy and wavefunction; for each 
determinant with coefficient greater than 
THRRES, a line is printed containing the coef- 
ficient, a list of occupied (Y orbitals and a list of 
occupied /3 orbitals. 
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TEST RUN OUTPUT 

PROGRAM * FCI (Determinant based Full CI) Author: P.J. Knowles, 1984 

Variable memory set to 

Active orbitals: 

Active electrons: 

Spin quantum number: 

Orbital pairs: 

Strings: 

Determinants: 

Core energy: 

Space symmetry: 

Maximum iterations: 

Convergence threshold: 

Output threshold: 

Number of roots: 

150000 words 

ll( 7 2 2 0 0 0 0 0) 

8 

0.0 

34 14 14 4 0 0 0 0 

78 84 84 84 0 0 0 0 

78 84 84 84 0 0 0 0 

27252 27216 27216 27216 

0 0 0 0 

-71.436373535000 

1 

25 

0.0000100 

0.0500000 

Initial configuration generated: 

20197 1.0000000 -100.0219723 

It Tr CPU Convergence Energy 

II 6.6 1.00000000 -100.021972267 

2 1 11.3 0.17074489 -100.136780639 

3 1 18.2 0.04621300 -100.146030569 

4 1 23.8 0.01664914 -100.147117321 

5 1 28.5 0.00471317 -100.147194228 

6 1 33.3 0.00121456 -100.147201764 

7 1 38.1 0.00044849 -100.147202456 

8 1 43.0 0.00012907 -100.147202525 

9 1 48.0 0.00003391 -100.147202530 

10 1 63.1 0.00001155 -100.147202531 

II 1 58.2 0.00000303 -100.147202531 

State 1 Energy -100.147202630670 

Correlation energy -0.125230263724 

Final CI vector 

0.981557124440 1 2 8 IO 1 2 8 IO 

/EOF 

Variable memory released 
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