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Variational energy functionals tested on atoms

Nils Erik Dahlen* and Ulf von Barth
Department of Physics, Lund University, So¨lvegatan 14 A, S-223 62 Lund, Sweden
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It was recently proposed to use variational functionals based on many-body perturbation theory for the
calculation of the total energies of many-electron systems. The accuracy of such functionals depends on the
degree of sophistication of the underlying perturbation expansions. An older such functional and a recently
constructed functional, both at the level of theGW approximation~GWA!, were tested on the electron gas with
indeed very encouraging results. In the present work we test the older of these functionals on atoms and find
correlation energies much better than those of the random-phase approximation but still definitely worse as
compared to the case of the gas. Using the recent functional of two independent variables it becomes relatively
easy to include second-order exchange effects not present in the GWA. In the atomic limit we find this to be
very important and the correlation energies improve to an accuracy of 10–20 % when obtained from calcula-
tions much less demanding than those of, e.g., configuration-interaction expansions.
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I. INTRODUCTION

Over the past 15 years, the calculation of the total en
gies of many-electron systems has become a widespread
important activity in physics and chemistry. The activi
which involves an increasing number of practitioners, co
have consequences for a large number of potential app
tions. One is, for instance, interested in the position, orien
tion, and binding energies of molecules adsorbed at surfa
in the energy required to move a particular radical from o
side of a large molecule to another, in the enthalpy of
formation of a particular alloy, in the energy involved in th
formation of a particular defect in a solid, in the ener
barrier for a certain molecular reaction, or in vibrational fr
quencies. The list can be continued indefinitely.

The overwhelming majority of all such calculations is ca
ried out within the framework of density-functional theo
~DFT!.1 This is due to the simplicity of the resulting one
electron equations and the accuracy one can achieve from
use of modern so-called generalized gradient approximat
~GGA’s!.2,3 Binding distances between constituent atoms
usually correct to within a tenth of an Ångstro¨m and the
binding energies of metallic systems are, on the avera
correct to within 0.3 eV/atom. For more open systems a
particularly for finite and small systems the errors in bindi
energies can easily exceed 1 eV/atom and reaction bar
can be several factors off the mark. There is thus a clear n
for better approximations within DFT. The impressiv
progress which has been achieved so far is, however,
result of tedious and painstaking work over a long period
time and there is no obvious route toward systematic
provements within DFT.

An additional reason for the popularity of DF methods
of course the lack of alternative methods applicable to r
systems of practical interest. For atoms and smaller m
ecules there are certainly very accurateab initio methods
like, e.g., the coupled cluster~CC! method or ordinary
configuration-interaction~CI! expansions. For larger mol
ecules and particularly in extended systems the calculati
effort required for suchab initio methods becomes prohib
0163-1829/2004/69~19!/195102~12!/$22.50 69 1951
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tively large. The CC method has been applied to exten
systems4,5 and there is also alocal version of the CI
expansion6 but neither has, so far, been able to compete w
DF methods with regard to simplicity, versatility, or applic
bility.

Total energies can also be obtained from the one-elec
or the two-electron Green functions of many-body pertur
tion theory~MBPT!.7 Except for the initial and very success
ful calculations of the total energy of the infinite electro
gas,8 this approach has had little to offer in systems of pra
tical interest. A few atoms and a number of small molecu
have been treated by MBPT~Ref. 9! but, to our knowledge,
no large molecules or solids. There have been several
sons for this dismal record. Although there are system
rules for carrying the perturbation expansion to higher or
in the Coulomb interaction, the expansion is, in princip
divergent and physical intuition must be allowed to guide
choice of Feynman diagrams to be included. The statem
‘‘more diagrams are better than fewer’’ is certainly not tru
Another reason is the fact that the diagrammatic express
quickly become prohibitively difficult to calculate with in
creasing order.

Two major developments have made us reconsider the
of MBPT as a tool for obtaining total energies of man
electron systems. In an attempt to find the limitations a
also possible improvements of the so-calledGW approxima-
tion ~GWA! ~Ref. 10! for the quasiparticle energies of solid
Holm and von Barth11 carried out self-consistentGW calcu-
lations for the interacting but homogeneous electron gas.
calculations were self-consistent in the sense that the G
function used to calculate the electronic self-energy wit
the GWA was identical to that which was obtained fro
Dyson’s equation using, as a potential, the calculated s
energy. As a byproduct of these calculations, it was disc
ered that the total energy obtained from the self-consis
Green function of the gas was as accurate as that obta
from very elaborate Monte Carlo simulations—to within th
computational accuracy. Stimulated by these results A
bladh, von Barth, and van Leeuwen~ABL !12,13reexamined a
variational expression for the total energy due to Lutting
©2004 The American Physical Society02-1
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and Ward~LW!.14 This expression was not used by the lat
authors for obtaining total energies. It was rather used
deriving certain exact properties of the expansions wit
MBPT. The same expression has later been used
Langreth15 for ‘‘deriving’’ DFT from MBPT and by Sham
and Schlu¨ter16 for obtaining an expression for the so-calle
derivative discontinuity of the effective potential for e
change and correlation within DFT. The central quantity
the LW variational expression is the functionalF@G# whose
variational derivative with respect to the Green functionG
yields the electronic self-energyS. If the functionalF is
chosen to yield the GWA forS, the LW functional is station-
ary at the Green function of the self-consistent GWA and
resulting total energy is that of the GWA. The stationa
property of the LW functional at the solution to Dyson
equation can now be used for obtaining a close approxi
tion to the self-consistent total energy by evaluating the fu
tional at, e.g., a noninteracting Green function, a task m
easier than iterating to self-consistency. In 1996, it w
shown by Hindgren17 that only a few millihartrees were los
in this procedure when it was applied to the electron ga
the level of the GWA.

The next development, also from 1996, was our~ABL !
discovery that one can easily replace the bare Coulomb
teractionv with the screened interactionW by means of a
simple Legendre-like transformation of the originalF func-
tional. In this way, the central quantity becomesC@G,W#
which is a functional of two independent variables,G andW.
As before, the functional derivative ofC with respect to the
Green functionG yields the electronic self-energy, where
the functional derivative with respect toW now yields the
irreducible polarizabilityP of the system. From the basi
functionalC it is a rather trivial matter to invent expression
for the total energy which are stationary with respect
variations of both the Green functionG and the screened
interactionW whenG is a solution to Dyson’s equation an
W a solution to thecontracted Bethe-Salpeterequation. The
latter equation is simply defined as the exact relation wh
expresses the screened interactionW in terms of the irreduc-
ible polarizabilityP and the bare Coulomb potentialv. The
expression for the total energy is, by no means, unique
the investigation of different choices would be an interest
task for future research. In 1996, Hindgren17 tested a rather
straight-forward choice by evaluating the total energy of
electron gas at a simple plasmon-pole approximation to
screened interactionW. They again found that this ver
simple and fast procedure gave energies which deviated
from those of the fully self-consistent GWA.

When attempts are made to go beyond simple o
electron or mean-field theories in realistic systems, pres
day computational facilities do rarely allow the use of inte
acting Green functions and the calculation of the scree
interaction is usually a bottleneck of such calculations~as,
e.g., inGW calculations!. If the variational principle would
allow for the use of noninteracting Green functions a
simple models of the screened interaction, it might beco
feasible to evaluate rather complicated but, hopefully, ac
rate expressions for the total energy of real systems. Th
the reason behind our newly found interest in the poss
19510
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use of MBPT as a tool for calculating the total energies
real electronic systems.

Given the success of the variational methods as applie
the total energy of the electron gas, the assessment o
quality and feasibility of these methods in inhomogeneo
systems is an obvious continuation of our research. Two
jor questions need to be answered:~1! Is the GW level of
approximation adequate also in strongly inhomogeneous
tems?~2! Does the variational property of the new functio
als alleviate the necessity for self-consistency? Anticipat
the results of the present work on atomic systems, we co
answer the first question in the negative and the second q
tion by ‘‘yes, provided certain conditions are met.’’ It is th
purpose of the present work to qualify these answers an
provide suggestions for future approximations which a
both accurate and feasible to apply to real systems.

Concerning the first question above, a lot can be s
already from the vast experience pertinent to finite syste
accumulated within the community of quantum chemis
For atoms and molecules it is well known that the seco
order exchange diagrams have to be included in orde
obtain reasonable values for the correlation energies.18 At the
GW level, however, the LW functional does not includ
these important physical effects. The LW functional does
clude an infinite number of Feynman diagrams above
normal random-phase approximation~RPA!, the latter ap-
proximation being essential for cutting down the long ran
of the Coulomb interaction. The additional diagrams are
high orders in the screened interaction and are probably
sponsible for modifying the screening effects. But they
not include the second-order exchange effects so impor
in systems with localized electrons. The latter effects
known to be important also in the electron gas especially
low densities. Thus, in retrospect, the accurate results pr
ously obtained for that system might have been fortuitou

A further indication on the importance of the effects b
yond the GWA can be found in the work by Schindlmayret
al.19 After learning about the results of our group, they p
formed self-consistentGW calculations on a model system
consisting of a finite two-dimensional lattice of model atom
with on-site Hubbard interactions. For this system the to
energy could be obtained by direct diagonalization and co
pared to that of the GWA. They found a rather large dev
tion between the two sets of energies—especially at
larger Coulomb repulsions. True enough, the model app
somewhat remote from real systems but some of the eff
illuminated by the work of Schindlmayret al. are indeed
present also in our atomic systems.

With regard to the second question about the quality
the variational procedure, there is no previous experienc
draw from. Neither have we here performed any se
consistent calculations. Our investigations of this issue r
on evaluating the functionals at different reasonable Gr
functions and screened interactions, and monitoring how
sults change. As already mentioned above, in these very
homogeneous systems results are much more sensitive t
choice of noninteracting Green function and also to
choice of screened interaction. We argue that certain cho
are to be preferred to others.
2-2
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VARIATIONAL ENERGY FUNCTIONALS TESTED ON ATOMS PHYSICAL REVIEW B69, 195102 ~2004!
With regard to the very essential question on how to p
ceed beyond the less satisfactory GWA without jeopardiz
the possibility of applying our variational methods to real
tic systems, we propose and test the inclusion of excha
effects which are second order in the screened interaction
order to make the calculation tractable also in extended
tems, we then find it essential to make use of the variatio
property of the energy functional based on ourC formula-
tion.

We will conclude this introduction by a quick re´suméof
the short history of the variational procedures based
MBPT plus an outline of the present paper. The history g
back to the construction of the LW functional in 1960. Th
functional, although discussed in several later papers,
never used for calculating total energies. It was first used
Hindgren and Almbladh at the level of the GWA to calcula
the energy of the gas. Suggestions and precursors towar
C formulation can be found in several older papers by, e
Hedin,10 Klein,20 and De Dominicis.21 Again, these authors
never found any practical use for their theories. The co
plete theory of theC functionals was first presented in 199
at the conferenceRecent Progress in Many-Body Theoriesin
Sydney. The ensuing papers12,17 presented the main idea
illustrated by an application to the electron gas with nume
cal results by Hindgren and Almbladh. A longer paper givi
details of the new theory including complete derivations
well as instructions for the application of the theory to inh
mogeneous systems was written in 1997.13 After 1996, the
new theory has been presented at many internatio
conferences.39 A simplified version of the variational theor
was recently used by a former member of our group and
collaborators22 to calculate the binding energy of the hydr
gen molecule at different separations. The latter authors
ployed a simpler functional,20,23,24also at theGW level. This
functional is, however, inferior to the LW functional in th
sense that it yields an inaccurate RPA energy, whereas
LW functional gives almost the exact answer when b
functionals are evaluated for the electron gas at a nonin
acting Green function. Finally we should mention the resu
of the self-consistent calculations by Holm and von Barth11

Schindlmayr et al.,19 Garcı́a-Gonza´lez and Godby,25 and
Gouldet al.,26 which the variational procedures are design
to reproduce and which thus serve as benchmarks for t
procedures.25

In the following section of this paper we will give som
basic formulas for the application of the theory to inhom
geneous systems plus some details on how the theory
nects to the exact DF formulation. In Sec. III we will discu
the calculations of the total energies of atoms using the
functional and in Sec. IV we will include second-order e
change effects within theC formulation. Finally, in Sec. V
we state our conclusions and discuss the way to proc
toward obtaining more accurate results without any subs
tial increase of the computational effort.

II. GREEN FUNCTIONS AND CONSERVING
APPROXIMATIONS

We will in this paper only consider ground-state energi
but will for notational simplicity use the finite temperatu
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formalism, lettingT→0 at the end of the calculations. A
quantities are given on the imaginary frequency axis, and
Green functionG(rs,r8s8; iv) satisfies the equation of mo
tion ~leaving out coordinates and indices!

@ iv2 t̂2w2VH1m#G511SG, ~1!

where t̂52¹2/2, w(r) is the external potential,VH(r)
5*d3r 8n(r8)v(r2r8) is the Hartree potential, andm is the
chemical potential. We use atomic units throughout this
per. The self-energyS(rs,r8s8; iv) includes the exchange
and correlation effects of the electron interaction, and w
have to be approximated at some level in perturbation the
We will in the following skip the coordinates, and treatG
and S as matrices with (r,s) and (r8,s8) as indices. The
ground-state total energyE is, at T50, related to the grand
potentialV according toV(T→0)5E2mN, whereN is the
total number of particles.

Since bothVH and S are functionals of the Green func
tion G, Eq. ~1! should be solved to self-consistency with
the chosen approximate scheme forS. While a knowledge of
the Green function provides us with the ground-state exp
tation values of one-particle operators, as well as the t
energy, these values will necessarily depend on the choic
approximation forS. Baym and Kadanoff24,27showed that a
conserving approximation forS, i.e., an approximation for
which the resulting Green function obeys the same con
vation laws as the underlying Hamiltonian, is obtained wh
S is derived from a functionalF@G# according to

S5
dF

dG
. ~2!

A recipe for how to construct such a functional was dev
oped in an earlier paper by Luttinger and Ward~LW!,14 who
suggested summing over all irreducible self-energy diagra
closed with an additional Green function and multiplied
specific numerical factors,

F@G#5(
n,k

1

2n
Tr@Sk

(n)G#. ~3!

The index n indicates number of interaction lines and T
indicates a summation over all indices as well as a freque
integration, Tr5(s*d3r *(dv/2p). The construction ofF
diagrams is illustrated in Fig. 1 for the lowest orders.

While this was not the main purpose of their work, Lu
tinger and Ward in the same paper derived avariational ex-
pression for the total energy. MBPT provides several po
bilities for obtaining the ground-state energy. One is, e
through the Galitskii-Migdal formula28 which, however, re-
quires an accurate Green function which, in turn, necessit
a self-consistent solution to Dyson’s equation. Since
total-energy expression presented by Luttinger and War
variational with respect toG, the result will not be very
sensitive to the quality of the input Green function.

The original formulation in Ref. 14 takes the Green fun
tion corresponding to a completely noninteracting system
a starting point for a perturbation series in terms of t
electron-electron interaction. This is inconvenient for calc
2-3
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NILS ERIK DAHLEN AND ULF von BARTH PHYSICAL REVIEW B 69, 195102 ~2004!
lations on inhomogeneous systems. The strong attrac
force of the bare atomic nucleus produces orbitals which
tightly bound, and a more reasonable starting point i
Hamiltonian where the static screening by the other electr
is taken into account. A natural choice of a noninteract
system is given by DFT, which already produces the ex
one-electron density. While the variational functionals the
selves are not based on DFT, they will be evaluated us
noninteracting Green functions which are typically obtain
from DFT calculations. To highlight this connection, we w
therefore deviate from the original work and sketch a de
vation more closely related to the formalism of DFT. W
introduce an interaction strength parameterl, such thatl
50 corresponds to a noninteracting system andl51 corre-
sponds to the fully interacting system. The Hamiltonian c
then be written as a function of the interaction strength,

Ĥl5(
i 51

N

t̂ i1(
i 51

N

wl~r i !1
l

2 (
iÞ j

N

v~r i2r j !, ~4!

wherelv is the modified electron interaction and the ext
nal potentialwl is such that the electron density remai
constant at alll. It is thus equal to the exact ground-sta
densitynl(r)5n(r). At l50, the external potentialw0 is
equal to the Kohn-Sham potentialvKS@n#(r). The Green
function then reduces to the Kohn-Sham Green funct
GKS, which is related to the Green function at a general
through Dyson’s equation

Gl5GKS1GKS~Sl1lVH1wl2vKS!Gl. ~5!

Note that bothGKS and vKS are functionals of the electro
density. The definition ofGl in Eq. ~5! does not therefore

FIG. 1. The figure shows how theF functional is constructed by
closing irreducible self-energy diagrams with a Green-function l
and multiplying with an appropriate prefactor. The figure shows
of the first- and second-order diagrams and one of the many th
order diagrams.
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imply any particular dependence onGKS, but is equivalent
to Eq. ~1!.

With this connection between the fully interacting Gre
function and the Kohn-Sham system, the derivative of
grand potential with respect to the interaction strength is

dVl

dl
5K dĤl

dl
L 5TrH Fdwl

dl
1

1

2
VH1

1

2l
SlGGlJ . ~6!

The last two terms in Eq.~6! are related to the interactio
energy, conveniently divided into its classical partU0

5 1
2 Tr@VHG# and the exchange-correlation energyUxc

l

5 1
2 Tr@SlGl#. The grand potential can then be obtained

integrating Eq.~6! from l50 to l51. In the limit T→0,
the thermodynamic potential atl50 is just the sum over the
difference between the occupied Kohn-Sham eigenva
and the chemical potential,14

V052Tr ln~2GKS
21!5(

i 51

N

e i2mN. ~7!

In order to relate the total energy to theF functional, let
us considerF defined in Eq.~3! as a functional of the inter-
action strength. The derivative with respect tol is

dFl

dl
5(

n,k

1

2n

n

l
Tr@Sk

l(n)Gl#1TrFdFl

dGl

dGl

dl G
5

1

2l
Tr@SlGl#1TrFSl

dGl

dl G . ~8!

Combining this equation and Eq.~6!, we can express the
derivative ofF in terms of the derivative of the grand po
tential. Using also Dyson’s equation~5!, we can rewrite this
as follows:

dV

dl
5

dFl

dl
2U02

d

dl
Tr@SlGl#2

d

dl
Tr ln~Sl1lVH1wl

2vKS2GKS
21!. ~9!

Integrating over the interaction strength, we finally obtain t
LW functional,

V5F2U02Tr@SG#2Tr ln~S2vxc2GKS
21!, ~10!

wherevxc is the exchange-correlation potential of DFT. Th
functional is stationary with respect toG, since

dV

dG
50, ~11!

when G satisfies Dyson’s equationG5GKS1GKS(S
2vxc)G. This variational property suggests that evaluati
Eq. ~10! at some approximate Green function should resul
a total energy close to the self-consistent result. Note t
while Eq. ~11! shows thatV is stationary at the self-
consistentG, it does not say that it is a minimum. The ener
will of course depend not only on the quality of the appro
mate G, but more fundamentally on the approximatio
scheme forF. The accuracy of the total energy obtaine

e
ll
d-
2-4
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VARIATIONAL ENERGY FUNCTIONALS TESTED ON ATOMS PHYSICAL REVIEW B69, 195102 ~2004!
from the LW functional can therefore never exceed the qu
ity of the chosenF functional.

Note that the inclusion of2vxc2GKS
21 in the logarithm in

Eq. ~10! is somewhat formal. The LW functional can equa
well be written without any reference at all to DFT:

V5F2U02Tr@SG#2Tr ln~S1VH1w1 t̂2m2 iv!.
~12!

Thus, whereasGKS
21 and vxc taken separately are both ve

complicated functionals of the one-electron Green funct
G—through the density—their sum is a rather trivial fun
tional of G.

Note also that it is essential that the chemical poten
mKS of GKS is equal to the true chemical potential corr
sponding to the approximateS. For a finite system, as w
discuss in the present paper, this is not a serious concern
long as the total particle number given byN52dV/dm is
correct, the energy is independent of the location of
chemical potential.

It is actually possible to write the energy functional in
infinite number of other ways, but the LW functional has t
advantage of being quite stable. For instance, a slightly
ferent functional due to Klein,20

Ṽ5F2U02Tr@G~GKS
211vxc!21#2Tr ln@2G21#,

~13!

which has been used by several authors,15,20,22,23,29is also a
variational grand potential with exactly the same value as
LW functional when evaluated at the self-consistentG. This
functional is, however, much more sensitive to the quality
the Green function, as we will demonstrate in Sec. III~see
also Sec. I!. Note that when the input to this functional is
Kohn-Sham Green function, the third term on the rhs sim
fies to 2Tr@GKS(GKS

211vxc)21#52*nvxc . The reference
to DFT in the Klein functional~13! can, however, be re
moved in a manner similar to going from Eq.~10! to Eq.
~12!.

Any choice of F diagrams results in a conserving a
proximation forS. For instance, including only the diagra
shown in Fig. 1~a! yields the Hartree-Fock~HF! approxima-
tion, while other examples of conservingF-derivable
schemes mentioned in Ref. 27 are theGW approximation10

and theT-matrix approximation.30 The primary reason why
we are interested in calculating the total energy from va
tional expressions such as the LW functional is that we w
to avoid solving Dyson’s equation. If the self-consistent s
lution gives accurate total energies, the LW functional w
produce approximations to these energies with much
computational effort. There are, however, no obvious ru
for choosingF diagrams that will produce good total ene
gies.

Whereas the LW functional is based on a perturbat
series in terms of the Green function and the bare Coulo
interactionv, the Hedin equations10 describe a perturbation
expansion in terms ofG and the screened interactionW.
Almbladh, von Barth and van Leeuwen12,13 constructed a
variational energy functional similar to the LW functiona
but where the perturbation expansion is in terms ofW rather
19510
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thanv. Writing the screened interaction in terms of the ba
interaction and the irreducible polarizabilityP according to
the contracted Bethe-Salpeter equation

W5v1vPW, ~14!

ABL constructed a functionalC of G and W, defined by a
Legendre-like transformation of theF functional

C@G,W#5F@G,v@G,W##2 1
2 Tr@PW2 ln~11PW!#.

~15!

This functional has the properties

dC

dG
5S and

dC

dW
52 1

2 P, ~16!

which we will here present without any further proof. I
analogy with the diagrammatic construction of theF func-
tional in Eq. ~3!, the C functional can be constructed by
similar summation over self-energy diagrams,13 keeping only
the diagrams without any polarization insertions. Labeli
these diagramssk

(n) , wheren denotes the order inW, the
functional is constructed according to

C@G,W#5(
n,k

1

2n
Tr@sk

(n)G#. ~17!

A few of these diagrams are shown in Fig. 2. Even thou
the expansion~17! involves self-energy diagrams differen
from those involved in the construction of theF functional,
any C-derivable scheme~meaning that the self-energy ca
be obtained asS5dC/dG) is alsoF derivable.13

Employing theC functional, ABL suggested the follow
ing form for the grand potential:

V5C2U02Tr@SG#1 1
2 Tr@PW1 ln~12Pv !#

2Tr ln~S2vxc2GKS
21!, ~18!

where they used Eq.~14! in order to keep a coupling be
tweenW and v. As we did also for the LW functional pre

FIG. 2. Some of the low-orderC diagrams. These diagram
differ from the diagrams contributing to theF functional in that the
interaction lines represent the screened interactionW, and the dia-
grams therefore have no polarization insertions. There is only
first-order and one second-order diagram, shown on the upper
2-5
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NILS ERIK DAHLEN AND ULF von BARTH PHYSICAL REVIEW B 69, 195102 ~2004!
viously, we can rewriteGKS
211vxc in a way which reveals the

rather trivial dependence on the density of the sum of th
terms and obtain

V5C2U02Tr@SG#1 1
2 Tr@PW1 ln~12Pv !#

2Tr ln~S1VH1w1 t̂2m2 iv!. ~19!

This functional is stationary with respect to bothG and W,
meaning thatdV/dG50 and dV/dW50 if G215GKS

21

2S1vxc andW215v212P. The form of this functional is
not at all unique. It is possible to add any functionalsF@S
2vxc1G212GKS

21# and H@P1W212v21# as long asF
5dF50 andH5dH50 at the self-consistentG andW. In
this way, we can improve the stationarity of the energy fu
tional, but the quality of the energies is ultimately det
mined by the choice of approximation toC.

III. ATOMIC CORRELATION ENERGIES FROM THE LW-
GW FUNCTIONAL

We will in this section present atomic correlation energ
calculated by using the LW functional, Eq.~10!. As men-
tioned in the preceding section, the energies we obtain
be approximations to the self-consistent energies corresp
ing to the chosenF functional. The calculations allow us t
test the variational properties of the LW functional, as well
indicating whether the self-consistentGW approximation
produces good total energies even for atoms. There are
merous highly accurate results for the total energies of
oms, and our goal is not to produce more accurate res
than obtained with quantum chemical methods. Our m
interest is rather in finding a simple and accurate method
can be extended to infinite systems, where quantum chem
methods are impractical.

In some simple cases, the variational properties can
tested directly. For instance, keeping only the uppermost
gram in Fig. 1, the self-consistent total energy is equal to
HF energy. In this case, the Klein functional defined by E
~13! reduces to the energy functional of the HF approxim
tion, but with the orbitals of the input Green function. If w
use the HF Green functionGHF, the result will be the HF
energy, but at a different noninteractingG, the energy will be
higher and not necessarily close to the HF energy. The
functional has additional terms that reduce this error a
make the functional less sensitive to the choice ofG. Calcu-
lations on some spherical atoms show the difference in
bility between the two functionals: Whereas the LW fun
tional evaluated at an LDA Green function deviated from
HF energy by only 1 millihartree for Ne and 2 millihartre
for Ca, the HF energies calculated from the functional giv
in Eq. ~13! differed by 17 and 23 millihartree for the sam
atoms. Due to the poor variational properties of this fun
tional, we might, of course, obtain an accurate total ene
using an unphysical choice of functionalF and a Green
function far from self-consistency. But we consider such
sults to be irrelevant.

To go beyond HF and calculate correlation energies
significantly more complicated task, and there are not m
19510
e

-
-

s

ill
d-

s

u-
t-
lts
in
at
al

e
a-
e
.
-

d

a-

e

n

-
y

-

a
y

known self-consistent results. TheGW approximation to the
F functional is obtained by summing the ring diagrams,
shown in Fig. 3. These are the infinite set of diagrams w
their corresponding numerical factors such that the electro
self-energy generated by Eq.~2! is that of the GWA. This
implies thatS52GWRPA where the screened interaction
given by the RPA expressionWRPA5v/(12vP0) in terms of
the noninteracting irreducible polarizabilityP05GG. The
first of the FGW diagrams in Fig. 3 is just the exchang
energyEx@G#5 1

2 Tr@GSx#, whereSx is the exchange part o
the self-energy. The remaining diagrams can be summe
follows:

FGW5Ex2Tr@ 1
4 ~vP0!21 1

6 ~vP0!31•••#

5Ex1 1
2 Tr@vP01 ln~12vP0!#

5Ex1Fc
RPA. ~20!

Without the numerical prefactors in front of theFGW dia-
grams, their sum would just have generated the usual exp
sion for the exchange-correlation part of the electro
electron interaction energy within the RPA. The numeric
prefactors actually correspond to integrating each diag
over the strength of the Coulomb interaction. Therefore,
sum of this particular infinite series ofF diagrams~including
the numerical prefactors! is what in DFT is referred to as th
exchange-correlation energy within the RPA, i.e., t
exchange-correlation part of the interaction energy plus
correlation part of the kinetic energy. Consequently, the te
Fc

RPA is the common formula for the correlation energy
the RPA. BothEx and Fc

RPA are functionals ofG, and will
depend strongly on the input Green function.

The only previous total-energy calculation using the L
functional was one for the electron gas,12,17where the results
agreed with the accurate results from self-consistentGW
calculations.11 Schindlmayret al.19 did not study the LW
functional, but they obtained self-consistentGW energies for
a Hubbard model, in poor agreement with the exact energ
Aryasetiawanet al.22 recently observed similar results in
two-site Hubbard model. Given these quite different conc
sions from two sets of extreme model systems, a calcula
of atomic total energies is highly interesting. If the se
consistentGW approximation gives accurate total energi
also for a real system, the LW functional at theGW level
~LW-GW) constitutes a simple method for obtaining high
accurate total energies with only a simple noninteractingG
as input.

FIG. 3. The figure shows howFGW is constructed by summing
the exchange diagram and the ring diagrams. The upper diag
show S52GW where W is the screened interactionWRPA. The
diagrams on the lower row show the correspondingF diagrams.
2-6
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TABLE I. Correlation energies for some spherically symmetric atoms. The RPA correlation energies
calculated usingGOEP. The columns indicated byEc,LW

GW are results from the LW functional at theGW level,
calculated usingGOEP, GLDA andGHF . All energies are in hartrees.

Atom Ec
RPA@GOEP# Ec,LW

GW @GOEP# Ec,LW
GW @GLDA# Ec,LW

GW @GHF# CIa

He 20.083 20.064 20.062 20.066 20.042
Be 20.174 20.110 20.104 20.128 20.094
Ne 20.579 20.494 20.481 20.498 20.390
Mg21 20.574 20.510 20.501 20.511 20.390
Mg 20.651 20.550 20.535 20.560 20.438
Ar 21.070 20.906 20.891 20.928 20.722
Ca21 21.104 20.946 20.939 20.967 20.754
Ca 21.175 20.977 20.972 21.013

aFrom Ref. 32.
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We have calculated the total energy for a few spherica
symmetric atoms and ions, approximatingG with noninter-
acting HF and DFT Green functions. The DFT Green fun
tions were calculated using both the LDA and the exchan
only optimized effective potential~OEP! method.31 The HF
and DFT atomic orbitals were calculated using a set of Sl
basis functions. The polarizability is represented in a basi
excitation functionsf q , where the indexq represents a pai
q5( i , j ) of an occupied and an unoccupied atomic orbita

f q~r!5f i~r!f j~r!, i<N, j . ~21!

We do not want the conclusions of the present paper to
obscured with irrelevant difficulties associated with the u
of too limited basis sets. Consequently, care has been t
to use a large enough basis set to, e.g., ensure the co
gence of the termFc

RPA which is known to be difficult to
converge. The accuracy of the results ranges from less th
millihartree for the lighter atoms to a few millihartree for th
heavier. Since our theory is variational, the results should
principle, not be very sensitive either to the choice of Gre
function or to the choice of basis for the orbitals. In futu
applications we will exploit this fact in order to make com
putational shortcuts and to save computational time. But
is not the purpose of the present work.

It is not possible to calculate the frequency integral in E
~10! without manipulating the expression somewhat. T
logarithm contains terms which are static and will cause
frequency integral to diverge. This problem can be overco
by extracting the static exchange partSx of the self-energy,
and introducing a new Green functionG̃ defined by2G̃21

5Sx1VH1w1 t̂2m2 iv. The logarithmic term can then
be rewritten according to

2Tr ln~S1VH1w1 t̂2m2 iv!

52Tr ln~2G̃21!2Tr ln~12G̃Sp!, ~22!

whereSp is defined asSp5S2Sx . The first term on the
right-hand side of Eq.~22! is just a sum over the differenc
between the eigenvalues and the chemical potential of
occupied orbitals ofG̃ @as in Eq.~7!#. Note thatG̃ is the first
iteration towards the HF Green function, and that the s
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over the eigenvalues is close to the sum over the HF eig
values. This is of course not the only way of performing th
integral, but it is a simple procedure for atomic systems
the HF Green function is given as an input to the LW fun
tional, thenG̃5GHF. As a consequence, for atoms, the L
functional reduces to

ELW@GHF#'EHF1Fc@GHF#, ~23!

if we approximate2Tr ln(12G̃Sp) by Tr@G̃Sp#. This is cer-
tainly not valid in solids, but is quite reasonable in atoms.
Fc we mean the correlation part of theF functional@see Eq.
~20!#.40

Calculated correlation energiesEc[E2EHF are shown in
Table I. In addition to the correlation energies obtained fro
the LW functional, we have included the RPA correlatio
energiesEc

RPA evaluated atGOEP. With the exception of Be,
the results clearly show that the LW functional is not ve
sensitive to the input Green function. This is in contrast
the RPA correlation energies which are much more unsta
While the RPA values in Table I are distinctly lower than t
LW energies, they will, according to Eq.~23!, be approxi-
mately equal to the LW results if they are evaluated at the
Green functionGHF rather than atGOEP.41

The obtained LW-GW values were, however, not particu
larly close to the exact results. Beryllium was the only ato
for which the LW-GW calculations produced accurate r
sults, but the values for Be were, on the other hand, m
more sensitive to the choice of Green function. For the ot
atoms, the results differ only little when changingG. This
confirms the good variational property of the LW function
and indicates that the results are close to the self-consis
GW total energies. Consequently, self-consistentGW calcu-
lations do not produce accurate total energies for atoms
the absence of self-consistent calculations, this conclus
cannot be drawn with absolute certainty. But we know wh
physical processes are left out at theGW level ~second-order
exchange effects! and are not surprised by the deviation fro
the exact results. These conclusions are in agreement
the total-energy results for atoms obtained from a seco
order approximation toF. The LW functional here showed
similar insensitivity to the inputG, but the resulting energie
were much closer to the exact values.33
2-7
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NILS ERIK DAHLEN AND ULF von BARTH PHYSICAL REVIEW B 69, 195102 ~2004!
It is important to remember that the total energies
the larger atoms such as Ar (E'2527 hartree) and Ca
(E'2678 hartree) are very large. Most of it comes from t
physically less interesting core region and is not very int
estingper se. It is more relevant to study changes in the to
energy as the structure of the system is modified,
changes mainly due to the valence electrons. The simp
way of testing this for the spherically symmetric atoms is
remove two electrons and calculate the removal energy.
correlation part of the removal energies, defined for an a
A as

Dc~A!5Ec~A21!2Ec~A! ~24!

were calculated for Be, Mg, and Ca using the LW-GW func-
tional and the same Green functions as above. The calcu
removal energies are shown in Table II together with exp
mental values. The removal energies obtained when u
GOEP andGLDA are not particularly good, yielding 50–80 %
of the experimental results. The removal energies calcula
from GHF are in excellent agreement for Be and Mg. T
removal energy for Ca is less accurate but the relativi
effects are expected to be significant for Ca. This could ca
the discrepancy. We should also keep in mind that, while
LW functional is a variational expression for the total ener
we do not have a variational expression for the removal
ergies. This is evident from Table II, where the removal e
ergies differ significantly depending on theG used in the
evaluation. The calculations on the electron gas17 indicated
that the stationary value of the LW functional is indeed
minimum, although we have not yet tried to formally pro
this conjecture. Should this be the case, the results of Ta
indicate thatGHF is closest to the self-consistent Green fun
tion in our atomic systems. The results for the removal
ergies in Table II then suggest that the self-consistent G
gives a very accurate description of valence electron e
gies. It should be noted that we have also calculated
removal energies corresponding to the RPA, and have fo
them to be very different from the experimental numbers

A more interesting test of the GWA would be to consid
a redistribution rather than a removal of valence electro
e.g., by calculating the total energy of a molecule as a fu
tion of the position of the nuclei. Such a calculation h
recently been carried out by Aryasetiawanet al.22 for a H2
molecule. As mentioned above, the latter authors emplo
the Klein functional, Eq.~13!, which is quite sensitive to the

TABLE II. Removal correlation energiesDc @as defined in Eq.
~24!# for Be, Mg, and Ca. The energies are calculated using the
GW functional evaluated at various approximate Green functio
The experimental result is obtained by subtracting the HF remo
energy from the experimental removal energies.

Atoms F@GOEP# F@GLDA# F@GHF# Expt.

Be→Be21 0.032 0.028 0.051 0.050
Mg→Mg21 0.040 0.034 0.049 0.049
Ca→Ca21 0.031 0.033 0.046 0.056

aFrom Ref. 34.
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input G. As discussed above, their calculations amount
finding the RPA energy of H2. It would be interesting to
perform similar calculations for that case, using the L
functional and various noninteracting Green functions in
der to check the stationarity as well as the quality of the L
GW energies.

IV. CORRELATION ENERGIES FROM THE ABL
FUNCTIONAL

The results of the LW-GW calculations clearly indicate
thatGW is not sufficient for obtaining accurate total energi
for atoms. It is, however, well known that the second-ord
Mo” ller-Plesset perturbation theory~MP2! gives very accurate
atomic total energies.35 The name MP2 designates ordina
second-order perturbation theory, starting from the
single-particle Hamiltonian. In essence this amounts to a
ing to the HF energy the contributions from the diagrams
Figs. 1~b! and 1~c!. The MP2 scheme is, however, not vari
tional and the total energy is very sensitive to the choice
one-electron Green function used to evaluate the diagram
would, however, not be very difficult to incorporate th
second-order exchange effects present in MP2 theory int
LW functional. One could construct theF functional from
just the diagrams in Figs. 1~a–c! in order to obtain a varia-
tional energy expression of similar accuracy to MP2 the
but much less sensitive to the choice of Green function
basis set. Such calculations have been carried out by us
rather promising results for the atoms.33,36 Unfortunately,
MP2 is an expansion in the bare Coulomb interaction wh
will lose its relevance in larger molecules and solids.

The knowledge of the importance of second-order
change in systems with localized electrons, and the nece
of screening the electron interaction in extended syste
leads in an obvious way to the ABL functional. As discuss
in Ref. 13, anyC-derivable scheme is alsoF derivable. And
the GW approximation described in Fig. 3 in terms ofF
diagrams is, in theC formalism, represented by only a sing
C diagram, shown in Fig. 2~a!. A further advantage of theC
formalism is that the inclusion of second-order exchange
fects amounts to adding only one extra diagram, shown
Fig. 2~b!. The self-energy diagrams are shown in Fig.
together with the corresponding irreducible polarizabilityP
522dC/dW. Here, the interaction lines represent t
screened interactionW. Another very essential property o
theC formulation is the fact that it is stationary with respe
also to variations in the screened interaction. This will allo
for the use of approximate such interactions, thus reduc
the computational labor.

-
s.
al

FIG. 4. The figure shows the approximateS and P diagrams
corresponding to including the first- and second-order diagram
the C2X functional.
2-8
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VARIATIONAL ENERGY FUNCTIONALS TESTED ON ATOMS PHYSICAL REVIEW B69, 195102 ~2004!
The stationarity properties of the ABL functional is, how
ever, somewhat more complicated because it is a functio
of two variables. The functional is stationary only ifG sat-
isfies Dyson’s equation andW satisfies the contracted Beth
Salpeter equation. This implies that we cannot really exp
the error inV to be small if we evaluate at an approxima
W, unless Gsatisfies Dyson’s equation. And we cannot e
pect the error inV to be small if we employ an approximat
G when W does not satisfy Eq.~14!. The problem is illus-
trated by considering the ABL functional at theGW level,
denoted ABL-GW. Setting W5v, a choice which clearly
does not satisfy the contracted Bethe-Salpeter equation
energy functional reduces to a sum of two terms,E@G#
5EHF

LW@G#1Fc
RPA@G#. The termEHF

LW is the LW functional
for the HF energy and is, as mentioned above, quite accu
and insensitive to the inputG. The termFc

RPA is on the
contrary quite sensitive toG. As a numerical example, th
correlation energy of Ne will be 81 millihartree lower~more
negative! if it is calculated withGOEP instead ofGHF. If we
instead evaluate the ABL-GW functional at W5WRPA,
which is a solution to the contracted Bethe-Salpeter equat
the ABL-GW functional is equal to the LW-GW functional,
and the results are indeed insensitive toG as demonstrated in
Sec. III. The difference in the correlation energies for
calculated withGOEP andGHF is then only 4 millihartree.

In the present work, we have chosen to calculate ato
total energies using a functionalC2X that, in addition to the
GW diagram, includes also the second-orderC diagram.
Keeping in mind our ultimate goal of applying the theory
extended systems, we want to avoid evaluating the energ
some complicated screened interaction which might lead
undue computational labor. The simplest possible modeW
which does not lead to divergent results in extended syst
is a simple Yukawa interaction,

Wk~r !5
e2kr

r
. ~25!

By varying k, we can actually allowWk to span the whole
range of possible screened interactions, i.e., from a none
ent interaction atk→` to an unscreened Coulomb intera
tion atk50. Our choice of screened interaction clearly lac
the proper analytic properties in frequency space an
would certainly have been interesting to use a plasmon-p
like model as we did for the electron gas. It should be
membered though that our present simple choice is far f
unphysical. In fact, nearly all the very successful calculatio
of excitonic effects in the optical spectra of semiconduct
and insulators are based on this simple choice of parti
hole interaction.37 With this choice we hope to be able to fin
an intermediate value for the parameterk that could simulate
the effects of a dynamically screened interaction. The ra
nale for this hope is, of course, the variational property of
ABL functional with respect to the screened interaction.
turns out that in all our calculations we do find a particu
value for k which renders the total energy stationary. Th
value ofk is different for different atoms.

The self-energy and irreducible polarizability correspon
ing to our approximationC2X are shown in Fig. 4. The firs
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self-energy diagram is just the statically screened excha
diagramS1

k52GWk. Considering the last term of Eq.~19!,
we see that the argument in the logarithm defines a Gr
function

Ḡk5@ iv2 t̂2w2VH2Sk1m#21. ~26!

If the screened interaction entering the self-energySk is
changed according to Eq.~25!, we can obviously expectḠk

to change significantly. In the extreme limit ofW→0, this
Green function will describe the solution to the Hartree eq
tions with the self-interaction included, a system which
physically quite unrealistic since the electrons will be push
away from the nucleus by the dominating Hartree potent
It is important that the chemical potential in Eq.~26! is lo-
cated such thatḠk has the correct number of particles. As th
eigenvalues of the Hartree equations are much higher
for instance the HF eigenvalues, this implies thatm should
be modified as the screening is switched on, in order to p
serve the number of particles.

As mentioned above, the grand potential will be mo
sensitive to the quality ofW if G does not satisfy Dyson’s
equation, but solving Dyson’s equation is exactly what
wanted to avoid by employing the variational energy fun
tionals. In order to make the functional more stable, we h
therefore chosen to evaluate the ABL functional at the Gr
function

GHF
k 5@ iv2 t̂2w2VH2S1

k1m#21, ~27!

which is the HF Green function with a statically screen
exchange. This Green function is a solution to an appro
mate Dyson equation in which we have neglected
second-order exchange part of the self-energy. AtW5v,
GHF

k reduces to the ordinary HF Green function, and wh
k→`, it approaches the Hartree Green function. As m
tioned above, the Green function is, in this limit, not ve
realistic but, more importantly, it does reduce the magnitu
of dV/dW.

At GHF
k , C2X becomes

C2X5 1
2 Tr@S1

kGHF
k #1 1

4 Tr@S2
kGHF

k #, ~28!

where the first term on the right-hand side is just the st
cally screened exchange energy. In addition to calcula
the total energy using the ABL functional withC2X , we also
calculated the total energy using only the first-order appro
mation (CGW), for whichGHF

k is a self-consistent solution to
Dyson’s equation. Unlike the LW-GW calculations presented
in the previous section,W here has static screening instead
RPA screening. Furthermore, the ABL-GW functional is
evaluated at a Green function which satisfies Dyson’s eq
tion, whereas the LW functional was previously evaluated
HF and DFT Green functions.

The calculated total energies turned out to be quite sta
when changing the statically screenedW. Plotting the total
energy as a function of the screening parameterk, the ABL
functional yields a minimum in the energy curves for bo
C2X andCGW . This can be seen in Fig. 5 where the corr
lation energy curves for Ne and Mg are shown. We will re
2-9
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NILS ERIK DAHLEN AND ULF von BARTH PHYSICAL REVIEW B 69, 195102 ~2004!
to these minimum values as the ‘‘true’’ total energies. Ta
III contains the minimum values for spherical atoms a
ions, together with the results from the LW-GW calculations,
results from GGA calculations, and the ‘‘exact’’ correlatio
energies from CI calculations. The results are now much
proved compared to those of the LW-GW functional, al-
though the trend is less dramatic for the smaller atoms.

The insensitivity of the results to the screening at an
proximately self-consistent Green function is evident fro
Fig. 5. It can also be appreciated from the following arg
ments applied, for simplicity, to the ABL functional taken
the GW level ~ABL-GW). If this functional is evaluated a
the Green function of the HFA, the difference in the to
energies between using a bare Coulomb interaction and
which is dynamically screened within the RPA is, to leadi
order, an expression of the form

E@GHF,WRPA#2E@GHF,v#' 1
2 Tr@GHFS

pGHFS
p#,

~29!

whereSp is the dynamical part of the self-energy, i.e., th
part which vanishes at large frequencies. The numer
value of this term is indeed very small in the atoms we ha
studied—usually less than 1 millihartree. And it is a ma
festly positive quantity meaning that the total energy mo
upwards~becomes less negative! when a bare Coulomb in
teraction is replaced by a dynamically screened one. If

FIG. 5. The sensitivity of the correlation energies for Ne a
Mg, to the screening parameterk, calculated using the ABL func-
tional, Eq.~18!. The full lines show the energies calculated from t
C2X functional, while the dashed lines show the energies from
CGW functional. For comparison, the results from CI calculatio
~taken from Ref. 32! are also plotted~dotted lines!.
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stead, the bare Coulomb interaction is replaced by a s
cally screened one, the energy decreases although
variation with the screening parameter is rather weak as
be seen in Fig. 5.~Note thatk50 in Fig. 5 represents a bare
unscreened Coulomb interaction.! Thus, in this respect a
statically screened interaction cannot be said to simula
dynamically screened one.

Note that the expression above@Eq. ~29!# is not valid
when the energy functional~ABL-GW) is evaluated at, e.g.
the Green function of the OEP. The difference in ene
between a screened and an unscreened interaction then
tains a term which is linear in this difference with a coef
cient which is proportional to the difference betweenGOEP

and the self-consistentḠk @defined in Eq.~26!#. This differ-
ence is large already atk50 and becomes much more pro
nounced at large screening parametersk corresponding to a

negligible exchange interaction. ThenḠk approaches the
Hartree Green function with charge moving away from t
nucleus, a situation very different as compared to that
scribed byGOEP. These circumstances will cause a dras
screening dependence whenGOEP is used in the evaluation
and there is really no natural way of defining a particu
value as the proper total energy. The correlation energy
bare interaction is also rather poor.

Similarly, usingGOEP in C2X again results in poor corre
lation energies and there is then no improvement on the
sults of the LW-GW functional.

V. SUMMARY AND CONCLUSIONS

Recently proposed variational methods for the total
ergy of electronic systems were tested a few years ago on
electron gas. The results suggested that very accurate
energies can be obtained at a computational cost so lim

e

TABLE III. Correlation energies for some spherically symmetr
atoms and ions. The LW-GW values in the first column are th
same as in Table I. The second and third column contains the va
from ABL, using CGW andC2X , respectively. The fourth column
contains the results from CI calculations. The columns labeled
kGW and k2X are the screening parameters corresponding to
tabulated ABL results. The values of these parameters are thos
which the ABL functional is stationary~compare Fig. 5!.

Atom Ec,LW
GW @GHF# Ec,ABL

GW kGW Ec,ABL
2X k2X GGAa CIb

He 20.066 20.072 0.50 20.056 0.10 20.045 20.042
Be21 20.078 20.081 1.00 20.053 0.00 20.039 20.044
Be 20.128 20.144 0.40 20.120 0.17 20.088 20.094
Ne 20.498 20.532 0.80 20.430 0.30 20.426 20.390
Mg21 20.510 20.536 1.20 20.414 0.00 20.414 20.390
Mg 20.560 20.584 0.60 20.475 0.11 20.478 20.438
Ar 20.928 20.963 0.70 20.779 0.20 20.734 20.722
Ca21 20.966 21.020 1.20 20.807 0.20 20.766 20.754

aUsing the BLYP functional~see Ref. 3!.
bFrom Ref. 32.
2-10
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that the application of the methods to systems of pract
importance is clearly within reach. Of course, tests on
homogeneous gas say little about the performance of
variational methods in systems with strongly localized el
trons. We have, therefore, in the present work, tested th
methods in the opposite but realistic case of atoms.

There are two major issues to be discussed in connec
with the methods. They are based on MBPT and their ac
racy will therefore depend on the set of diagrams o
chooses to include in the variational functionals. The d
grams describe different physical processes which migh
might not be of importance to the physical system at ha
The second issue is the sensitivity of the variational ene
functionals to the use of simple, approximate quantities
their evaluation.

In the homogeneous gas the tests only included term
the total energy corresponding to a self-consistentGW cal-
culation. Thus, second-order exchange effects were left
of the calculation. Still, the results were very close to tho
of sophisticated Monte Carlo simulations. This is somew
surprising in view of the fact that the second-order excha
diagram gives a density independent contribution which
large and quite important at the lower densities. Here,
atoms, we find that the correlation energy of the se
consistent GWA lies about half way between the correct
sult and the rather poor correlation energies of the RPA
accordance with the previous work on the gas, we here u
what we in the text refer to as the Luttinger-Ward function
as our variational expression. In the gas there was almos
loss of accuracy in evaluating this expression at the v
simple noninteracting Green function. We here find, a som
what larger but still small—less than 10%—variation in t
total correlation energies when using a variety of nonint
acting Green functions. Based on the vast previous exp
ence of the calculation of atomic and molecular correlat
energies we attribute the remaining errors in the atomic c
relation energies to the absence of second- and higher-o
exchange effects within the GWA.

Total correlation energies of atoms increase rapidly w
their size, whereas our main interest lies in an accurate
scription of correlation effects in binding and reaction
More appropriate tests would thus be the application of
variational methods to, e.g., molecular binding energies.
are presently involved in such investigations which will
reported in due course. In the meanwhile we have here si
lated structural changes in calculations of electronic remo
energies. These are differences between variational quan
and are thus not themselves variational. Consequently, as
results show, they differ markedly depending on the non
teracting Green function used in their evaluation. The res
closest to the experiments—and they are indeed very clos
are those obtained from using a HF Green function. It
however, hard to draw any definite conclusions from th
Are the results good because the LW-GW functional is ac-
curate for the outer valence electrons and the HF Green f
tion is the one which is, in some sense, closest to the s
consistent Green function? Or are they good because
LW-GW functional is inaccurate but the HF Green functi
is far from the optimal Green function in a way that com
19510
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pensates for the errors in the functional?
In small systems, it would be quite straightforward to i

clude second-order exchange processes based on the
Coulomb interaction within the framework of the LW func
tional. We are, however, ultimately interested in extend
systems for which an unscreened Coulomb interaction
little relevance. In terms of a dynamically screened inter
tion within the LW functional, the second-order exchan
terms become exceedingly difficult to evaluate in any rea
tic system. Fortunately, switching to theC formulation of
our group, the inclusion of second-order exchange effe
comprises adding only one extra diagram. Moreover, alre
one screened interaction constitutes a difficult problem
e.g., a solid—let alone the two such factors needed for th
effects. Therefore, the variational property of ourC formu-
lation with respect also to the screened interaction will
very important because it will allow for the use of mod
screened interactions such as a plasmon-pole approxima
previously and successfully used for the gas. Or even a s
cally screened interaction which is what we have chosen
test here.

From a simple Taylor expansion of a stationary functi
of two variables, it is not hard to realize that there will b
first-order corrections to the stationary value unless one
the variables lies at or close to the stationary point. In or
to be able to use a crude approximation to the dynamic
screened Coulomb interaction such as a static Yukawa po
tial, we have found it essential to use a Green function re
tively close to self-consistency. It is, however, adequate
use the HF Green function corresponding to a statica
screened nonlocal exchange potential as evidenced by
insensitivity of the resulting correlation energies to the ch
sen screening parameter of the model interaction. In ac
dance with our expectations concerning the importance
second-order exchange effects, we obtain substantially b
correlation energies when these effects are included.

Seen asab initio calculations of atomic correlation ene
gies, our results are certainly not that impressive. The res
are particularly bad for the smaller atoms with errors of t
order 10–20 millihartrees amounting to 33% in helium.
particular, they are worse than the atomic correlation en
gies recently obtained by our group from the exchange-o
approximation within time-dependent DFT.38 The latter
theory is, however, computationally more demanding in s
ids and we are, after all, looking for binding energies rath
than total energies.

The main results of the present paper can be summar
as follows.

~1! We have demonstrated the feasibilty of applying o
variational many-body approach to strongly inhomogene
systems at different levels of approximation with regard
the electron-electron interactions. The computational ef
involved is such that the application to real solids is with
reach.

~2! We have shown that absolute values for total energ
of strongly inhomogeneous systems definitely require the
clusion of second-order exchange effects in the variatio
functionals.
2-11
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~3! The results are much more encouraging for vale
energies as compared to energies involving also the ato
cores.

~4! The stationary property of theC formalism is not
impaired by the use of a simple statically screened elect
electron interaction.

We finally stress once again that our final aim is ene
differences, e.g., molecular binding energies, involvi
mainly valence electrons. This theory is beyond the leve
the RPA already at theGW level and can thus clearly de
scribe, e.g., the van der Waals interaction at large interato
separations. Such results will be reported in a future pape
our variational functionals. We also contemplate using
variational freedom to incorporate hybrid methods in wh
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Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groninge
The Netherlands.
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