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Hedin’s Coulomb-hole and screened-exchange (COHSEX) approximation for the one-electron
Green-function self-energy is examined for small molecules through second order in the bare in-
teraction (COHSEX?2). Numerical examples suggest that the COHSEX2 approximation works
better for ionization potentials and generalized overlaps (Dyson amplitudes) than does either
Koopman’s theorem or the usual second-order Green-function (GF2) approximation. This result
has been traced to the superior quality of Hedin’s GW approximation evaluated to second order in
the bare interaction (GW?2). (The GW self-energy is the simple product of the Green function G and
the screened interaction W in the time-and-position space representation.) The COHSEX2 approxi-
mation is found to be a rather crude approximation for the GW?2 self-energy at the center of the
highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap, but is still su-
perior to the GF2 approximation in most of our calculated results and is amenable to limited
dynamical corrections. The primary potential advantage of the COHSEX approximation over the
GW approximation is that no sums over virtual orbitals need be performed once the static screened
interaction or polarization is known. Our results suggest that accurate density-functional approxi-
mations for the static screened interaction or polarization can lead to self-energies of accuracies
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beyond both Koopmans’s theorem and the GF2 level.

I. INTRODUCTION

The Green-function (GF) method is a well-known way
to reduce an n-electron problem to a pseudo-one-electron
problem, namely Dyson’s quasiparticle equation. The
important many-body effects are contained in a pseudo-
potential known as the self-energy. Once this potential is
calculated, the one-electron quasiparticle equation may
then be solved to give ionization spectra,! scattering cross
sections,? and ground-state properties.>* Although ela-
borate and accurate approximations for the self-energy
are known, %>~ 7 it is clear that less elaborate, less com-
putationally intensive approximations are also useful. A
relatively simple self-energy approximation which has
been found to be useful for the electronic structure of
solids, but which has not been applied to atomic and
molecular problems, is Hedin’s Coulomb-hole and
screened-exchange (COHSEX) approximation. This pa-
per contains our assessment of the COHSEX approxima-
tion as evaluated to second order in the bare interaction
and applied to the calculation of ionization potentials and
generalized overlaps of small molecules.

The COHSEX approximation is a linear response ap-
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proximation for the self-energy. Its principal advantage
is that the self-energy can be calculated directly from a
knowledge of the static polarization without the compli-
cation of summations or integrations over virtual orbit-
als. The original purpose of the COHSEX approxima-
tion®® was to provide a physically interpretable approxi-
mation to a more sophisticated approximation (the GW
approximation in which the self-energy is a product of
the Green function G and the screened interaction W),
and this physical insight should not be overlooked. Nev-
ertheless, it was immediately recognized that the
COHSEX approximation had the aforementioned com-
putational advantage. This is particularly true when the
diagonal (in momentum space) approximation is used,
since the only additional information needed is the (stat-
ic) dielectric constant for the solid. Thus, it is not
surprising that the COHSEX approximation was soon
implemented by several workers,'°”!® and is now reason-
ably well characterized for solids. Thus, it is known that
the COHSEX approximation works best near the Fermi
surface and appears capable of producing quite good
direct band gaps, although absolute energies and indirect
band gaps are of lower quality. This is fortunate because
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the primary motivation in recent years for studying the
COHSEX approximation has been the failure of the
Kohn-Sham (ground-state) density-functional theory to
obtain satisfactory band gaps'®—a problem for which the
COHSEX approximation appears to be ideally suited.'®

Calculation of the static polarization is the obvious pri-
mary obstacle in the way of useful molecular applications
of the COHSEX approximation. If the static polariza-
tion is calculated via the many-body perturbation theory,
then the COHSEX approximation has the advantage of
eliminating one of the sums over virtual orbitals. Howev-
er, it should be kept in mind that several such sums may
have already been used in the perturbation theory evalua-
tion of the static polarization. An alternative procedure
is to evaluate the static polarization via density-
functional techniques. A naive approach likely to be val-
id for slowly varying densities, is to simply borrow the
well-known static polarization for the homogeneous elec-
tron gas (Ref. 20, pp. 151-167) with the same density as
the local density. This approach is entirely consistent
with recent work on semiconductors which emphasizes
the similarity between the electron-gas self-energy and
semiconductor self-energies in the center of the band
gap,?! but seems less likely to be useful for molecules. A
better approach is to use Kohn-Sham density-functional
theory?? to calculate the static linear response. This has
been performed by Zangwill and Soven for atoms® and
by Levine and Soven for molecules’* with gratifying re-
sults both in terms of quantitativeness and efficiency of
the calculations. The COHSEX approximation would al-
low these results to be extended directly to provide a
density-functional approximation for the self-energy.
However, the limits of such an approximation are the
limits of the COHSEX approximation itself. The pur-
pose of the present paper is to define the limits of the
COHSEX approximation for molecules. In particular,
the density-functional theory is not used in any of the for-
malisms or computations presented in this paper.

For completeness, we also list other prominent
methods which could be construed to be density function-
als for the self-energy. The Kohn-Sham exchange-
correlation potential has been confused with the self-
energy® essentially from the inception of Kohn-Sham
theory.?? This confusion continues despite equally early
work of Sham and Kohn?® who pointed out that the two
concepts were not identical and who proposed an alto-
gether different local density functional for the self-
energy, valid only for the case of slowly varying density.
A modified version of the Sham-Kohn strategy has been
applied to solids with encouraging results.?’?® Slater’s
transition orbital approximation®® applied within the
density-functional theory method provides a modified
exchange-correlation potential which serves a similar role
as the self-energy, but the approximation is known to fail
for extended systems.?’ Finally, self-interaction correct-
ed!®3% Kohn-Sham theory provides what may be con-
strued to be an orbital-dependent local self-energy. All of
these have proven useful in the calculation of ionization
potentials and/or band spectra, but are less well charac-
terized as self-energies for other applications (e.g.,
scattering cross sections). In contrast to these approxi-
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mations, the COHSEX approximation is a nonlocal ap-
proximation. It has the important role as a rigorous
Green-function approximation lying intermediate be-
tween more elaborate Green-function approximations
and less understood density-functional approximations.
As such, it provides a relatively simple useful tool when
the conventional density-functional theory fails. !

The remainder of the paper is divided as follows. The
Green-function method and COHSEX approximation are
reviewed in Sec. II. Special emphasis is placed on a clear
picture of the physics and mathematical structure of the
self-energy (although much of this is review) because of
the central importance of such a picture in defining the
limitations of the approximation. Modifications for
molecular applications are discussed in detail. Section III
contains the results of our numerical study. The main
emphasis is on ionization potentials since these are readi-
ly compared with better calculations and experimental
data. However, we also report some generalized overlap
calculations using the COHSEX and related methods.
Our conclusions are summarized in Sec. IV.

II. FORMALISM

We review the physics and formalism associated with
the self-energy. Ideas are gathered from the solid state,
atomic and molecular scattering, and the bound-state
theory with the aim of clarifying the underlying physics.
Note that our ultimate emphasis is the ionization spectra
of small molecules and that we will tend to ignore com-
plications arising from nonsquare integrable continuum
functions (needed in scattering theory).

A. Dyson’s quasiparticle equation

Dyson’s quasiparticle equation®' (QPE) for a molecule
M simultaneously describes vertical ionization

M->MT4+e |

\[J(n)_)\l,{n—l) (21)
and vertical electron attachment
M+e M |
(2.2)

\l,(n)_)\l,f'n +1) ,

via the many-body theory using the second-quantized
form of the electronic Hamiltonian (which is, of course,
independent of electron number). When Mgller-Plesset
partitioning3? is employed, the QPE is

[F+S(w))d=ws , (2.3)

where F is the Fock operator for the neutral molecule M
and 2(w) is the self-energy. Mgller-Plesset partitioning is
the prevalent choice in the molecular physics literature
(although Epstein-Nesbet partitioning>® is also used) and
is the only choice considered in this paper. The QPE is a
generalized eigenvalue problem whose solutions fall into
two classes. If the ith ionization potential and ith elec-
tron affinity are denoted by I, and A;, respectively, then
the “ionization solutions” satisfy
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o=—I;
— ~ (2.4)
V'S ¢(1)=(Wi" D) |w")
while the “electron affinity solutions” satisfy
w=—A;,
— ~ (2.5)
V'S ()= W |h(1)|wintD) |
where in both cases,
S= 1—<¢ d2(w) ¢> , (¢le)r=1 (2.6)
dw

defines the spectroscopic factor S [and 9(1) is the field an-
nihilation operator]. Note that here and throughout, nu-
merical variables (e.g., 1,1',2, . . .) refer to space and spin
coordinates but not time. The spectroscopic factors play
a prominent role in the interpretation of photoelectron
spectra' while the generalized overlaps ¢ are important
for electron momentum spectroscopy (Ref. 34 and refer-
ences contained therein).

The self-energy includes all the important many-body
effects. When it is set equal to zero in the QPE, the sim-
ple Koopmans’s theorem?® picture is recovered in Egs.
(2.4)-(2.6).

The physical nature of these many-body effects may be
understood by reference to the scattering theory.?® Most
of the electron affinity solutions are, in fact, continuum
states. Thus, the QPE Hamiltonian describes the dynam-
ics of a scattering electron. Since scattering can involve
polarization of the scatterer and induced excitations (i.e.,
multichannel effects), these must also be described by the
self-energy. Only the polarization physics is retained in
the COHSEX approximation. The multichannel effects
are manifested in the rather complicated dynamical be-
havior of the self-energy at higher energies, as will be fur-
ther elaborated upon in Sec. II C.

For completeness, we mention that a complication in
the physics of the self-energy comes from the requirement
that the energy have an imaginary component which
gives the lifetime of the continuum state. This requires
the self-energy to be non-Hermitian [and complicates the
simple interpretation given in Egs. (2.4) and (2.5)]. How-
ever, when a finite L? basis is used, the self-energy should
be Hermitian since only infinite lifetime (i.e., bound)
states are described. Since we are concerned exclusively
with parent and ion bound states, we can confine our-
selves to the L? case. (Note, however, that some scatter-
ing applications are still viable within the L? approxima-
tion provided proper precautions are taken.>”3%)

B. COHSEX approximation

Successful methods for generating self-energy approxi-
mations include the superoperator or equations-of-
motion method,>® the diagrammatic method,”” and the
functional derivative method.>®° These three methods
are all complementary, but the functional derivative
method has a special physical appeal resulting from con-
siderations of arbitrary small external perturbations.
This was Hedin’s starting point for the “Coulomb-hole
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and screened-exchange” approximation which we will
now describe.

Following Martin and Schwinger,* Hedin examined
the response to the introduction of a finite local one-
electron perturbation which is later set equal to zero.
This leads to four coupled equations involving the exact
Green function, the self-energy, the screened interaction,
the polarization propagator, and the vertex function. El-
imination of the polarization propagator and the vertex
function then leads to an infinite exact (if convergent)
series for the self-energy in terms of the Green function
and the screened interaction. This is significant because
the screened interaction W plus the bare potential

Wp(l,Z;co)=W(1,2;co)——rl—=pr(%ziw—)dS @.7
12

13

has a ready physical interpretation in terms of linear
response theory [provided the signs of certain infin-
itesimals can be ignored (Ref. 20, p. 77)]. (Atomic units
are used throughout, unless otherwise specified.)
Specifically, in the static case when ©w=0, W, is the po-
tential acting on r; due to the linear response of the
charge density Ap(3,2;0) created by the introduction of a
unit charge at r,. In the dynamic case, W, is interpret-
able in terms of the Fourier components of the linear
response of the charge density due to the introduction of
a unit charge impulse 8(¢ —t,)/r 3 at r,.

For solids and the electron gas, it is usual to ignore all
but the linear term in the screened interaction in the ex-
act expansion of the self-energy. This is the GW approxi-
mation®® and is particularly appealing in the position
representation where only a simple convolution of the fre-
quency variable is necessary

3 1,2;w)=ife+”""°a( 1,20+ 00)W,(1,2;00)dwy ,
(2.8)

where the infinitessimal 77 may only be set equal to zero
after the integration. In writing Eq. (2.8), we note that
full self-consistency requires that the Fock operator be
constructed from the GW density and density matrix—
not from the Hartree-Fock quantities. (We will ignore
this last point in making the G°W approximation in Sec.
IIC)

The COHSEX approximation consists of the “simple
but rough argument” (Ref. 9, p. 40) that the screened in-
teraction is roughly independent of frequency. Hence,

Finey | ~inag
2
XG(1,2;0+wy)dwg
8(1—-2)W,(1,2;0)—y(1,2)W,(1,2;0) ,

_ k e
2(1,2,0)=5-W,(1,2,0) [

=1
2

(2.9)
where y(1,2) is the density matrix normalized to n (the
number of electrons in the initial state). We will assess
the quality of this approximation in Sec. III. The physi-
cal consequences of this approximation become apparent
when Egs. (2.3), (2.7), and (2.9) are combined:
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[P+S(0)lp(1)= ho(1)+ [ LT8R 1:01/2] 4y )

Ty
—fy(l,Z) _1_+f Ae(3,2;0)d3
T2 T3

X¢(2)d2 . (2.10)

The result is not very different from the Fock operator
acting on ¢. The first term comprises the kinetic energy
plus nuclear attraction. The second term is simply the
Coulomb repulsion corrected for the polarization of the
charge density p by the scattered electron. The third
term is the exchange operator with polarization correc-
tion. Put another way, the first integral includes the
effects of the “Coulomb hole” (COH), while the second
integral is the ‘“‘screened exchange” (SEX).

To summarize, two approximations have been made.
First, all but the linear term in the screened interaction in
the self-energy expansion has been dropped (i.e., the GW
approximation is made). Secondly, the static approxima-
tion was made, albeit on somewhat shaky grounds. The
result is a formula which incorporates at least some of the
polarization physics expected on the basis of our previous
discussion.

C. Second-order approximations

Before advancing any further, the screened interaction
must be known. We will use an approximate second-
order treatment and denote the resulting formulas GW2,
COHSEX2, etc.

The exact screened interaction may be expressed in
terms of the polarization propagator (Ref. 33, p. 110).
We will use the lowest-order approximation, which is the
polarization propagator for the unperturbed system.
Furthermore, we will restrict ourselves to real valued or-
bitals:

Wp(r,r';m)=X+(r,r’;w+in)—X_(r,r’;w~i77), (2.11)
where
2, (1) ¥, (r')
Xi(nr'o)= = .
+(r,1';0) ig'o 0T (ep—c) (2.12)
bEV
and
4 ()
Y= [ e 4T (2.13)

where O and V stand for the sets of occupied and virtual
orbitals, respectively.

In principle, the self-energy in the GW approximation
should be evaluated using the exact Green function G (or
at least self-consistently). We follow the common prac-
tice of approximating G by the zero-order Green function
GP (i.e., the “G°W approximation”). This results in

26, (1), (F') Y, ()Y, (r')

Hrrie)= i€o [w—€,]—€, tg,
abeV
2¢,(r)d;(r') Y, (r) Y (1)
+3 9;(1)9; b b (2.14)
ijeo [w—¢g;]+e,—¢;
bev
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in the GW2 approximation where the infinitessimals have
all been set equal to zero.

The COHSEX?2 approximation results from setting the
square-bracketed terms in the denominators equal to zero
in Eq. (2.14). By using the two relations

> ¢,(r)p,(r')=8(r—r'), (2.15)
P
S ¢;(r)g;(r")=y(r,r'), (2.16)
jeo

we obtain
Z(r,r’;w)=%8(r—r')Wp(r,r';O)—y(r,r’)WF(r,r’;O)

2.17)

which is precisely the COHSEX approximation [Eq.
(2.9)] using the second-order screened interaction. Thus,
the static approximation consists of replacing the fre-
quency dependence of the self-energy with the assump-
tion that ¢, ~w=¢; for all significant terms in the self-
energy expression.

When a finite basis set is used, the completeness rela-
tion (2.15) does not hold, and Eq. (2.14) with the brackets
set to zero is not equivalent to Eq. (2.17). The COHSEX2
calculations reported in Sec. III use Eq. (2.14) with the
square-bracket terms set to zero. This is certainly one of
the more severe approximations made in this paper, but
is not expected to be too severe for our purposes.

The COHSEX approximation clearly ignores several
important features of the true self-energy. In particular,
multichannel scattering effects are manifested in the poles
of the self-energy. A cursory examination of Eq. (2.14)
shows that these poles correspond to approximate cation
(i 7'j~'p) and anion (i ~'ab) excitation energies. In the
bound-state theory, these poles are essential for calculat-
ing correct inner valence ionization potentials (IP’s).>*
Since the static approximation removes all poles, it can-
not be used for either multichannel scattering or inner
valence IP calculations. However, the self-energy is
known to be both pole free and slowly varying in the
outer valence and low-lying electron affinity region of the
molecular binding-energy spectrum. So the static ap-
proximation may be useful for low-energy scattering,
outer valence ionization, and the first few electron
affinities. In fact, the static approximation would appear
to be best justified at the center of the highest occupied
molecular orbital-lowest unoccupied molecular orbital
(HOMO-LUMO) energy gap

w:”E%(EHOMO_i-ELUMO) (2.18)

if anywhere, because the energy » must cancel both the
energies of high-lying occupied orbitals and low-lying vir-
tuals.

The COHSEX approximation is also closely linked to
the GW approximation. However, the justification for
using the GW approximation for molecules is unclear.
This becomes most evident when the GW?2 approximation
[Eq. (2.14)] is compared with the usual second-order self-
energy formula (which we shall denote as GF2),
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2(as;ib)(ib ;ra)—(bs;ai)(ib ;ra)

2 =
sr(@) igo [o—e,1+e —¢,
a,beV
L 2(sj;ib)(ib; jr)—(is; bj)ib; jr) . (2.19)
i,j€O [o—e;]—eite,
bev
where

(rp;sq)=f¢,(r1)¢S(r2)%¢p(r1)¢q(r2)dr1dr2 . (220
12

The GW2 approximation is obtained from the GF2 ap-
proximation by dropping the second term in each
numerator in Eq. (2.19) (i.e., neglecting the “exchange di-
agram’). This neglect could certainly be justified for a
high-density electron gas (Ref. 40, pp. 158-164), but it
may well be objected that this term is too large to be
neglected for small molecules. Indeed, it is standard
practice to include the exchange diagram in atomic and
molecular physics calculations, even though calculations
could be made significantly easier by neglecting it.

However, this objection is somewhat misleading since
the point of introducing the screened interaction is to
reduce the size of the two-electron interaction. The first
two terms in Hedin’s exact series are expanded in Feyn-
man diagrams?>* in Fig. 1 to consistent order in the
screened interaction. The GF2 approximation consists of
the GW2 approximation (diagrams 4 and B) plus only a
portion (i.e., diagram C) of the term which is second-
order in the screened interaction (somewhat arbitrarily
denoted the GWGW term). Thus, the GF2 approxima-
tion would appear to overestimate the GWGW term by
evaluating it with the bare interaction. The real issue, of
course, is the convergence properties of the self-energy
expansion in the bare versus screened interaction and this
is best addressed computationally.

Interestingly, the GF2 approximation is also ammen-
able to the static approximation {set the brackets equal to

cw=4% = L o+ + -
A B
GWGW = = Lo+ {G
c D
fo -of0 -
E F

FIG. 1. The first two terms in Hedin’s exact series expanded
to consistent order in the screened interaction (wiggly line.)
The GF2 approximation includes only bare interactions (dashed
lines) in the GWGW term.

4841

zero in Eq. (2.19)] as are higher-level approximations
such as the diagonal two-particle-hole Tamm-Dancoff ap-
proximation.*! Unfortunately, there appears to be no
particular advantage to this, because no simple linear
response interpretation emerges.

This completes a rather detailed formal description of
the COHSEX approximation. The approximation con-
sists of two assumptions. The GW approximation is com-
mon in solid-state theory where “‘exchange diagrams” are
known to be negligible in the high-density limit, but is
likely to be regarded as suspicious by atomic and molecu-
lar physicists until proven otherwise. The static approxi-
mation is even more severe, but may be useful for outer
valence ionization, among other things. These approxi-
mations have been more fully explored numerically and
the results are given in Sec. III.

III. RESULTS AND DISCUSSION

In this section, we report the results of numerical cal-
culations of outer valence ionization potentials and gen-
eralized overlaps for small molecules using the
COHSEX2 and related approximations.

A. Computational details

A second-order Green-function program was written
to use the eigenvectors, eigenvalues, and integrals pro-
duced by performing restricted Roothaan-Hartree-Fock
(which we shall denote SCF) with the GAUSSIAN76 pack-
age.*? The required atomic orbital to molecular orbital
two-electron integral transformation was built directly
into the Green-function program so that only those in-
tegrals actually needed were transformed. All terms in
the COHSEX2, GW2, GF2, etc., expansions were re-
tained, in contrast to the not uncommon practice of
freezing out core orbitals or high-lying virtuals or using a
truncation limit on the size of the terms retained. Debug-
ging was facilitated by comparison with a “perturbation
corrections to Koopmans’s theorem program.”*3~48

Dyson’s quasiparticle equation can become somewhat
expensive to solve unless a few additional approximations
are used. The self-energy is truely small for outer valence
ionization and the first-order perturbation theory

w=€k+2kk(w) > (31)
5 (@)

(rlg) =8, + 22 (3.2)
Ek_E

r

gives results which differ only slightly from full diagonali-
zation of the QPE Hamiltonian while at the same time
avoiding the need to ever construct the whole QPE Ham-
iltonian matrix. (Minor modifications are required to al-
low for the case of degeneracies due to symmetry.) In
particular, the “diagonal approximation” [Eq. (3.1)] leads
to errors of less than 0.1 eV in the calculation of outer
valence IP’s. (See also Refs. 49 and 50.) A somewhat
more severe, but still good approximation, is the “‘quasi-
particle approximation” in which the self-energy is evalu-
ated at o=¢, in Egs. (3.1) and (3.2). The diagonal quasi-
particle GF2 calculation is, in fact, identical to a second-
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order perturbation corrections to Koopmans’s theorem

calculation.’’ ~33 Spectroscopic factors were evaluated in
the diagonal approximation
93 ()
S No)=1——% 2 (3.3)
ow

and these can be used to correct the quasiparticle approx-
imation by the Newton-Raphson formulas

W= €, +2kk(ﬂ)0) )
(3.4)
Wy, = 0o+ S (we)w;—wp) ,

with shifts of a few tenths of an eV being typical. How-
ever, Newton-Raphson corrections have not been made
in any of the tabulated numbers except where otherwise
specified.

Calculations were performed for nine small molecules
for vertical ionization at geometries (listed in Table I)
close to the experimental geometries. All but one of
these calculations used the 4-31G basis set> internal to
GAUSSIAN76. Based on previous work,* a double-¢ quali-
ty basis set is expected to be able to yield IP’s within
about 0.5 eV of experiment when a third-order or
higher-level approximation is used. The 4-31G basis set
gives results somewhat similar to a double-{ basis set
when calculating IP’s, though the IP’s seem to be lower.*®
To obtain an indication of basis-set effects and to calcu-
late meaningful generalized overlaps, a more elaborate
basis set was used for water. This was the
[7s4p 1d /3s1p] basis constructed using contraction 10 in
Table 3, contraction 5 in Table 8, and contraction 5 in
Table 9 of Ref. 55 and then adding a set of five d func-
tions with exponent 0.80 on the oxygen and a set of p
functions with exponent 1.00 on the hydrogen atoms. We
will also refer to the very high-quality calculation of
Bawagan, Brion, Davidson, and Feller*®® for H,O using
what we shall term the 109GTO (for Gaussian-type orbit-
al) basis set. Self-consistent field-restricted Roothaan-
Hartree-Fock total energies and dipole moments are list-
ed in Table II.

B. Ionization potentials

Outer valence vertical ionization potentials were calcu-
lated for the nine molecules and are compared with ex-
periment in Tables III and IV. Deviations from experi-
ment are shown in parentheses. Asterisks denote cases
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TABLE II. SCF total energies and dipole moments.

Total energy (a.u.) Dipole moment (D)

H,0 —175.9074 2.6082
H,0" —176.0569 2.2542
H,0" —176.0675 1.980
F, —198.4584 0.0
co —112.5524 0.6017
HOF —174.5156 2.5586
HNO —129.5778 2.3787
C,H, —176.7109 0.0
trans-N,H, —109.8104 0.0
H,0, —150.5549 2.0460
CH,O —113.6911 3.0050

#[7s4p1d /3s1p] basis set.
*109GTO.

where the calculated order of ionization potentials (or
their quasidegeneracy in the case of hydrogen peroxide)
differs from experiment. The water results in Table III
give some idea of the basis-set effects. Table V gives the
water results with the Newton-Raphson correction.
Koopmans’s theorem typically gives IP’s which are 1-2
eV too high and, not infrequently, orders them incorrect-
ly. The “old standard” GF2 calculation does much
better in ordering the IP’s but typically gives IP’s which
are 1-2 eV too low. This is a symptom of the incon-
venient oscillatory convergence of IP’s when the self-
energy is expanded order by order in the bare interac-
tion.® The COHSEX2 approximation does much better,
typically giving the first IP to within 0.5 eV of experi-
ment and giving the correct order of ionization poten-
tials. This seems a remarkable result given the apparent
crudeness of the approximations described in Sec. 2, and
so it is of special interest to examine the origin of this
success. Specifically, is the success of the COHSEX?2 ap-
proximation due to the GW2 approximation, the static
approximation, or perhaps due to fortuitous cancellation
of errors between the two?

As Tables III-V show, the GW2 approximation is
significantly better than either Koopmans’s theorem or
the GF2 approximation. This is surprising when one
considers the frequent reference to the GF2 approxima-
tion and the relative obscurity of the GW2 approximation
in the atomic and molecular physics literature.

Since the COHSEX2 approximation is still signif-

TABLE I. Geometry, bond lengths and bond angles.

Geometries

H,O R(OH)=0.9572 A
F, R(FF)=1418 A
Cco R(CO)=1.128 A
HOF R(OF)=1.4422 A
HNO RNO)=1.212 A
C,H, R(CO)=1.203 A
trans-N,H, RINN)=12522 A
H,0, R(00)=1475 A

CH,O R(CO)=1.2078 A

R(OH)=0.9641 A
RHN)=1.063 A
R(CH)=1.061 A
R(NH)=1.0285 A
R(OH)=0.95 A
R(CH)=1.1161 A

Z(HOH)=104.52°

(HOF)=97.26

Z(HNO)=108.6°

Linear

Z(NNH)=106.85° planar
Z(OOH)=9%4.8° Z/(HOOH)=111.5°
£(HCO)=121.74° planar

o

o
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icantly better than the GW2 approximation for at least
the first IP, the static approximation is also significant.
The static approximation is expected to work best near
the center of the HOMO-LUMO gap, so it is of particu-
lar interest to test it in this energy region. Table VI com-
pares the static and ‘“‘gap” approximations for water, two
different basis sets, and both the GW?2 and GF2 methods.
Although hardly obvious from the formulas, the static
and “gap” approximations give IP’s for water which
differ by only about 0.5 eV, and tests on the other eight
molecules give similar results. The two approximations
might be called ““close.” This suggests that the static ap-
proximation should work best for the first IP and become
successively worse as the IP’s increase within a molecule,
in agreement with the observed general trend (Tables III
and IV). However, the magnitude of the self-energy (cal-
culated IP less SCF orbital energy) is signif-
icantly different for the static and ‘“‘gap” approximations.

Since the ‘“‘gap” approximation invariably overesti-
mates ionization potentials, the COHSEX approximation
will generally overestimate the GW?2 result (Tables III
and 1V). [This property of the “gap” approximation fol-
lows directly from Eq. (3.4) since S, <l1=w,—u
<w;—p.] The high quality of the first IP calculated via
the COHSEX2 approximation appears to be due to a
combination of the quality of the GW2 result and the
artificial overestimate from the static approximation. It

is thus an artifact and one which is not helpful in calcu-
lating the other IP’s. We consider this a problem, and so
it is interesting to know if it can be corrected with-
in the spirit of the COHSEX approximation.
To this end, consider expanding the GW?2 self-energy
[Eq. (2.19)] in a Taylor’s series about the center of the
HOMO-LUMO gap and then making the static approxi-
mation in the analytic expression for each coefficient. The
final answer may be expressed as

3(r,r0)=8r—r')X, (r,r;0—p)
—y(n, i)W, (r,r0—p), (3.5)

which reduces to the COHSEX approximation in the lim-
it o=pu. Equation (3.5) is equivalent to Eq. (2.19) with
the second term in each numerator discarded and the
bracketed terms replaced with @ —u. We have evaluated
this up through the linear term in w—p in Taylor’s ex-
pansion and call this the “modified COHSEX” approxi-
mation. It is denoted M-COHSEX in Tables III and IV
which show that the new approximation agrees rather
more satisfactorily with the GW?2 results, lending general
support for the approximate identification of the static
and “‘gap” approximations. This again involves some for-
tuitous cancellation of error due to the previously men-
tioned overestimate of the IP in the unmodified COHSEX
approximation coupled with an wunderestimate of the

TABLE III. Outer valence vertical ionization potentials labeled by the hole formed in the zero-order picture. The GW2, M-
COHSEX2, COHSEX2, and GF2 methods are described in the text. Deviations from the experimental values are given in

parentheses. Asterisks denote an order reversal.

Ionization potentials (eV)

Expt. GW2 M-COHSEX?2 COHSEX2 GF2 Koopmans’s
H,0 Ref. 61
1b, 12.61 11.72(—0.89) 11.58(—1.03) 12.28(—0.33) 10.55(—2.06) 13.59(+0.98)
3a, 14.73 13.70(—1.03) 13.49(—1.24) 14.34(—0.39) 12.71(—2.02) 15.19(+0.46)
16, 18.55 18.62(+0.07) 18.26(—0.29) 19.42(+0.87) 17.99(—0.56) 19.25(+0.70)
H,0* Ref. 61
1b, 12.61 11.86(—0.75) 12.04(—0.57) 13.00(+0.39) 10.79(—1.82) 13.84(+1.23)
3a, 14.73 14.18(—0.55) 14.14(—0.59) 15.37(+0.64) 13.17(—1.56) 15.86(+1.13)
1b, 18.55 18.60( +0.05) 18.25(—0.30) 19.86(+1.31) 17.79(—0.76) 19.55(+1.00)
F, Ref. 62
lm, 15.83 15.27(—0.56) 14.74(—1.09) 15.75(—0.08) 13.33(—2.50) 18.16(+2.33)
1m, 18.80 18.41(—0.39) 18.05(—0.75) 19.39(+0.59) 15.93(—2.87) 21.99(+3.19)*
30, 21.0 20.41(—0.6) 19.81(—1.2) 21.87(+0.9) 19.92(—1.1) 19.93(—1.1)*
CO Ref. 63, p. 34
S0 14.01 13.82(—0.19) 13.47(—0.54) 14.35(+0.34) 13.28(—0.73) 14.93(+0.92)
17 16.91 16.63(—0.28) 16.16(—0.75) 17.67(+0.76) 16.18(—0.73) 17.67(+0.76)
4o 19.72 18.63(—1.09) 17.49(—2.23) 19.54(—0.18) 16.87(—2.85) 21.61(+1.89)
HOF Ref. 64
2a"” 13.0 12.49(—0.5) 12.07(—0.9) 12.95(—0.05) 10.90(—2.1) 14.95(+2.0)
7a’ 14.8 14.55(—0.2) 14.00( —0.8) 15.21(+0.4) 13.14(—1.7) 16.41(+1.6)
la” 16.0 16.30(+0.3) 15.87(—0.1) 17.19(+1.2) 14.06(—1.9) 19.56(+3.6)*
6a’ 17.32 16.71 18.40 16.28 18.24*
5a’ 18.72 18.19 19.71 17.15 20.92

2[7s4p1d /3s1p] basis set.
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TABLE IV. Outer valence vertical ionization potentials labeled by the hole formed in the zero-order picture. The GW2, M-
COHSEX2, COHSEX2, and GF2 methods are described in the text. Deviations from the experimental values are given in
parentheses. Asterisks denote an order reversal.

Ionization potentials (eV)

Expt. GW2 M-COHSEX2 COHSEX2 GF2 Koopmans’s
HNO Ref. 65
7a’ 10.29 10.07(—0.22) 9.66(—0.63) 10.35(+0.06) 8.87(—1.42) 11.81(+1.52)
6a’ 15.63 14.98 16.59 14.15 17.85*
la” 16.42 15.95 17.71 16.24* 16.15*
S5a’ 17.74 17.20 19.02 16.04* 20.23
C,H, Ref. 63, pp. 190-193
lmy 11.40 11.20(—0.20) 11.13(—0.27) 12.16(+0.76) 11.06(—0.34) 10.95(—0.45)
3o, 16.72 17.04(+0.32) 15.92(—0.80) 17.70(+0.98) 16.07(—0.65) 18.30(+1.58)
20, 18.75 18.72(—0.03) 17.30(—1.45) 19.42(+0.65) 17.61(—1.14) 20.54(+1.79)
trans-N,H, Ref. 66
4a, 10.02 9.61(—0.41) 9.25(—=0.77) 9.98(—0.04) 8.57(—1.45) 11.04(+1.02)
la, 14.39 14.25(—0.14) 13.94(—0.45) 15.37(+0.98) 14.03(—0.39)* 13.99(—0.40)
3b, 15.03 14.92(—0.11) 14.39(—0.64) 15.82(+0.79) 13.12(—1.91)* 17.44(+2.41)
3a, 16.9 17.32(+0.4) 16.46(—0.4) 18.14(+0.8) 16.49(—0.8) 17.18(+1.3)
H,0, Ref. 67
4b 11.69 10.96(—0.73) 10.55(—1.14) 11.43(—0.26) 9.47(—2.22) 13.24(+1.55)
Sa 12.69 12.87(+0.18) 12.38(—0.31) 13.55(+0.86) 11.62(—1.07) 14.43(+1.74)
4a 15.33 14.97(—0.36) 14.51(—0.82) 15.92(+0.59) 13.75(—1.58) 16.40(+1.07)
3b 17.40 17.40(0.00) 16.85(—0.55) 18.37(+0.97) 16.19(—1.21) 18.88(+1.48)*
3a 17.40 17.34(—0.06) 16.73(—0.67) 18.24(+0.84) 15.84(—1.56) 19.56(+2.16)*
H,CO Ref. 68
2b, 10.88 10.22(—0.66) 9.86(—1.02) 10.65(—0.23) 9.02(—1.86) 11.93(+1.05)
1b, 14.38 14.20(—0.18) 13.82(—0.56) 15.30(+0.92) 13.80(—0.58) 14.49(+0.11)
S5a, 16.00 15.41(—0.59) 14.47(—1.53) 16.21(+0.21) 13.94(—2.06) 17.47(+1.47)
1b, 16.78 17.11(+0.33) 16.83(+0.05) 18.19(+1.41) 15.88(—0.90) 19.03(+2.25)
3a, 21.8 21.58(—0.2) 20.50(—1.3) 22.47(+0.7) 20.64(—1.2) 23.57(+1.8)

spectroscopic factor in the M-COHSEX approximation
as shown in Table VII [see also Eq. (3.4)]. It should be
noted that the quantity X, (r,7’,) is part of most polar-
ization propagator or linear response calculations and
hence often accessible through theory.

We conclude that the success of the COHSEX2 ap-
proximation comes primarily from the GW?2 approxima-
tion. However, the static approximation is an additional
convenience because of its close physical association with
static polarization effects on the charge density. This pic-
ture is evidently most applicable near the center of the
HOMO-LUMO gap, but limited dynamical corrections
are possible via Eq. (3.5) if X, (r,7';w) is known.

It is also interesting to note the connection between the
generalized COHSEX approximation [Eq. (3.5)] and
Sham and Kohn’s 1966 density functional for the self-
energy.?® Sham and Kohn argued that the self-energy is
a short-ranged kernal with a range on the order of the
Thomas-Fermi wavelength for the local density. They

conclude that for a system with slowly varying density,
2(rre)=3,[r—ro—u+u,(p(ry));plry)] , (3.6)

where r, is the average of r and r’, p(r,) is the charge
density at ry, u is the chemical potential [essentially Eq.

(2.18) in the thermodynamic limit], and the subscript A
refers to the homogeneous electron gas of density p(rg).
Equation (3.6) follows directly from the generalized
COHSEX approximation provided we assume (i) varia-
tions in X, (r,r’;w) dominate variations in y(r,r’) as a

TABLE V. Newton-Raphson corrected ionization potentials
for water. The GW2, M-COHSEX2, and GF2 methods are de-
scribed in the text. Deviations from experiment are given in

parentheses.
Ionization potentials (eV)
Expt. GW2 M-COHSEX2 GF2

H,O Ref. 61

1b, 12.61 11.83(—0.78) 11.58(—1.03) 10.92(—1.69)
3a, 14.73 13.79(+0.78) 13.49(—1.24) 13.01(—1.72)
1b, 18.55 18.86(+0.31) 18.25(—0.29) 18.12(—0.43)
H,0* Ref. 61

1b, 12.61 12.05(—0.56) 12.04(—0.57) 11.19(—1.42)
3a, 14.73 14.32(—0.41) 14.14(—0.59) 13.50(—1.23)
1b, 18.55 18.67(+0.12) 18.25(—0.30) 17.97(—0.58)

2[7s4p1d /3s1p] basis set.
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TABLE VI. Comparison of the static and ‘“‘gap” approximations. Deviations from the SCF

Koopmans’s theorem result in parentheses.

Ionization potentials (eV)

GW2 GF2
Gap Static Difference Gap Static Difference
H,0
1b, 12.26(—1.33) 12.28(—1.31) +0.02 11.40(—2.19) 11.42(—2.17) +0.02
3a, 14.28(—0.91) 14.34(—0.85) +0.06 13.58(—1.61) 13.54(—1.65) —0.04
1b, 19.20( —0.05) 19.42(+0.17) +0.22 18.84(—0.41) 18.95(—0.30) +0.11
H,0°
1b, 12.54(—1.30) 13.00( —0.84) +0.46 11.79(—2.05) 12.46(—1.38) +0.67
3a, 14.95(—0.91) 15.37(—0.52) +0.42 14.31(—1.55) 14.78(—1.08) +0.47
1b, 19.40(—0.15) 19.86(+0.31) +0.46 19.01( —0.54) 19.46( —0.09) +0.45
*[7s4p1d /3s1p] basis set.
function of density and (ii) zero self-energy for first row (nitrogen—fluorine) hydrides
if good agreement with experiment is required.>® As a re-
X (r,r0)=X;[r—1;0;p(r,)] . (3.7) 8 s b E

Condition (i) is that the density matrix is slowly varying
when the density is slowly varying. Condition (ii) is
equivalent to assuming that the dynamical polarization
depends only on the local density. These assumptions
seem plausible for a slowly varying electron gas (but not
for a small molecule).

C. Generalized overlaps

Scattering amplitudes and transition moments are a
more interesting and demanding test of any approxima-
tion for the self-energy. For this reason, we also report
results for the spherically averaged momentum distribu-
tions (MD’s) of the outer valence generalized overlaps for
water. The close relationship between such MD’s and
the scattering cross sections measured by electron
momentum [formerly called (e,2e)] spectroscopy under
certain kinematic conditions®’ ~>° has prompted many
studies of this quantity at the Koopmans’s picture (zero
self-energy) level (usually referred to as the frozen orbital
approximation). The insufficiency of this approximation
has necessitated the inclusion of what amounts to a non-

sult, high-quality generalized overlap MD’s have been
calculated for water’® and appear as the 109GTO SCF
and configuration interaction (CI) calculations referred to
in the present paper. Comparison of MD’s calculated us-
ing the COHSEX2 and related approximations with the
109GTO CI MD’s provides an interesting test of the
quality of these approximations for the off-diagonal ele-
ments of the self-energy [Eq. (3.2)].

The MD is calculated by integration of the Fourier
transformed generalized overlap over the solid angle

np)= [ l¢(p)dQ,

, (3.8)
#(p)=2m) " [ $(r)e’Pdr ,

for the generalized overlap normalized to one. The MD’s
for the three outer valence generalized overlaps of water
look very similar. They all have roughly the shape ex-
pected from the asymptotic position space behavior of an
atomic p orbital,®

2
«—>P
(é—Z _+_p 2 )4
Changes in the MD’s with different self-energy approxi-

I(p) (3.9)

TABLE VII. Spectroscopic factors for water. 109GTO refers to the CI result. GW2 (u) refers to us-
ing the GW?2 self-energy evaluated at the center of the HOMO-LUMO gap. This “gap” approximation
and the GW2, M-COHSEX2, COHSEX?2, and GF2 approximations are described in the text.

Spectroscopic factors

109GTO GW2 GW2 (u) M-COHSEX2 COHSEX2 GF2
H,O Ref. 56
1b, 0.869 0.936 0.968 0.916 1.000 0.879
3a, 0.882 0.940 0.959 0.916 1.000 0.881
1b, 0.888 0.956 0.956 0.925 1.000 0.899
H,0* Ref. 56
1b, 0.869 0.906 0.954 0.868 1.000 0.868
3a, 0.882 0.912 0.942 0.873 1.000 0.875
1b, 0.888 0.930 0.935 0.887 1.000 0.895

*[7s4p1d /3s1p] basis set.
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TABLE VIII. Heights of spherically averaged momentum distributions for generalized overlaps of
water calculated using the [7s4p1d /3s1p] basis set. For the overlap wave function normalized to uni-
ty. Deviations from the SCF result in parentheses. The 109GTO heights are roughly +0.1X107% a.u.
or better. The [7s4p 1d /3s1p] heights are known more accurately. Calculations were not performed in
the M-COHSEX?2 approximation (see text). GW2 (u) refers to using the GW?2 self-energy evaluated at
the center of the HOMO-LUMO gap. This “gap” approximation and the GW2, COHSEX2, and GF2

approximations are described in the text.

Momentum distribution heights (1072 a.u.)

1b, 3a, 16,
109 GTO SCF 6.28 6.43 6.13
109GTO CI 6.30(+0.02) 6.84(+0.41) 6.62(+0.49)
SCF 6.31 6.42 6.11
GF2 6.83(+0.52) 7.51(+1.09) 7.38(+1.27)
GW2 6.46(+0.15) 7.15(+0.73) 6.96(+0.85)
GW2 (1) 6.42(+0.11) 6.84( +0.42) 6.64(+0.53)
COHSEX2 6.25(—0.06) 6.63(+0.21) 6.37(+0.26)

mations are manifested primarily in the magnitude of the
maximum (i.e., height) of the curve.’* MD heights calcu-
lated using the various approximations are given in Table
VIII. Our calculations were performed using the
[7s4p 1d /351d] basis set described earlier and this is ex-
pected to be adequate for our purposes. In particular,
this basis set includes diffuse functions which are absent
from the 4-31G set, but which are essential for the quan-
titative description of MD’s.® The 109GTO and
[7s4p 1d /35 1d] SCF MD’s are nearly identical.

The heights in Table VIII show much the same trends
already observed with the ionization potentials. In par-
ticular, the GW2 and COHSEX2 approximations gives
significantly better results than does the GF2 approxima-
tion. However, the COHSEX?2 approximation underesti-
mates the MD heights by about as much as the GW2 ap-
proximation overestimates the heights, and the ‘“‘gap”
calculation [GW?2 ()] and the COHSEX?2 approximation
give somewhat different heights. Nevertheless examina-
tion of the height corrections to the frozen orbital ap-
proximation (MD height minus the SCF MD height) in
Table VIII and the calculated IP corrections to
Koopmans’s theorem in Table VI show that, although
the magnitude of the self-energy appears to be
significantly in error in the COHSEX approximation, it
does remarkably well at reproducing trends. In the case
of IP’s, this was sufficient to correct the ordering of the
IP’s by introducing a correction in the right direction. In
the case of MD’s, the underlying physics of the COHSEX
approximation predicts that the correction to the frozen
orbital approximation will be most important for orbitals
lying primarily in polarizable parts of molecules. This is
consistent with what is observed in electron momentum
spectroscopy studies.’® It is also evident in the water re-
sults in Table VIII once it is recognized that the 15, and
3a, orbitals correspond to the lone pairs lying in the
outer more polarizable portion of the molecule, while the
1b, orbital is a bonding orbital located in the inner less
polarizable part of the molecule.®°

IV. CONCLUSION

Hedin’s Coulomb-hole and screened-exchange approxi-
mation has been considered for application to small mole-

cules. Mathematically, the COHSEX approximation is
an approximation for the self-energy which results from
applying the static approximation to the GW approxima-
tion. Physically, the COHSEX approximation is a
Hartree-Fock-like approximation which incorporates po-
larization but not dynamical effects (especially not inner-
valence poles or multichannel effects). The primary com-
putational advantage of the COHSEX approximation is
that no summations over virtual orbitals are required
once the static polarization is known. Since the polariza-
tion effects arise from the linear response of the charge
density to an external local potential, the COHSEX ap-
proximation is formally a density-functional approxima-
tion. Moreover, the static polarizabilities can be calculat-
ed from the (ground-state) Kohn-Sham density-functional
theory.”>** When combined with the COHSEX formal-
ism, this would provide a (nonlocal) density functional for
the self-energy and place the COHSEX approximation
firmly in its role intermediate between the conventional
Green-function and density-functional approaches to the
self-energy. Obviously, one limit of the accuracy of a
combined density-functional COHSEX approximation is
the quality of the COHSEX approximation itself.

This paper has assessed the quality of the COHSEX
approximation (without further density-functional ap-
proximations) for the calculation of outer valence ioniza-
tion potentials and generalized overlaps for small mole-
cules. Although several approximations were used (e.g.,
the G°W approximation, and evaluating W only to
second order in the bare interaction), we expect our con-
clusions to generalize to more elaborate treatments. Our
numerical examples suggest that the COHSEX?2 approxi-
mation is superior to Koopmans’s theorem and is often
superior to the popular full second-order approximation
(GF2). In fact, the COHSEX2 approximation for small
molecules is rather similar in quality to the COHSEX ap-
proximation for solids. It provides a rough semiquantita-
tive and physically interpretable approximation for the
self-energy adequate for obtaining the correct order of
ionization potentials in small molecules and correct
trends in generalized overlap spherically averaged
momentum distributions. The success of the COHSEX2
approximation for molecules has been traced to
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significant improvements in the GF2 approximation
when the exchange diagram is neglected (GW?2 approxi-
mation). The inclusion of the exchange diagram is
equivalent to an inconsistent mixing of the screened in-
teraction in the GW approximation with the bare interac-
tion in the GWGW term of Hedin’s exact expansion.
Thus, the GF2 approximation should overestimate the
GWGW term. The COHSEX2 approximation is only a
crude approximation for the GW?2 self-energy, but is still
superior to the GF2 self-energy. The static approxima-
tion provides only a very rough approximation to the
self-energy at the center of the HOMO-LUMO gap but
this identification can be extended to yield a generalized
COHSEX approximation [Eq. (3.5)] which is a significant
improvement over the conventional COHSEX approxi-
mation when used in a linearized form. The generalized
COHSEX approximation appears consistent with the
classic result of Sham and Kohn?® in the limit of a slowly
varying electron gas. Several opportunities arise in ion-
ization potential applications for fortuitous cancellation
of errors. This does not appear to be true when applied
to the calculation of generalized overlaps, but neverthe-
less generalized overlap spherically averaged momentum
distributions calculated with the COHSEX2 and related
approximations reflect most of the other characteristics
observed in the ionization potential calculations. A par-
ticularly interesting implication of the COHSEX approxi-
mation is the prediction that orbitals lying in polarizable
regions of molecules should have generalized overlaps
which differ more significantly from SCF orbitals than
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would orbitals lying in less polarizable regions. This is
very much in line with previous empirical conclusions
based upon electron momentum spectroscopy measure-
ments.

We conclude that the limit of accuracy of a COHSEX-
based density-functional approximation for the self-
energy is likely to be significantly better than both
Koopmans’s theorem or the GF2 approximation. Nu-
merically, we find the COHSEX2 approximation to be
particularly good for the first IP while modifications
based upon the GW2 approximation are recommended
for the other outer valence IP’s. At the same time, a
COHSEX-based density-functional approximation for the
self-energy is expected to be inferior to more sophisticat-
ed Green-function approximations.
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