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ABSTRACT: We calculate the excitation energies of finite 1D Hubbard chains with a variety of different St

Hartree

site energies from two perspectives: (i) the physics-based Bethe—Salpeter equation (BSE) method and (ii) clcton
the chemistry-based configuration interaction (CI) approach. Results obtained from all methods are Tine:
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compared against the exact values for three classes of systems: metallic, impurity-doped, and molecular o )

(semiconducting/insulating) systems. While in a previous study we showed that the GW method holds
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comparative advantages versus traditional quantum chemistry approaches for calculating the ionization LR

potentials and electron affinities across a large range of Hamiltonians, we show now that the BSE method sremned

l
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outperforms CI approaches only for metallic and semiconducting systems. For insulating molecular Ineracion

systems, CI approaches generate better results.

1. INTRODUCTION

In the past few decades, great efforts have been made to explore
the excited state properties of various systems via both
experimental techniques and computational approaches. Accu-
rate excited state energies are necessary for interpreting
electronic spectra, constructing optically active molecules, and
designing interfaces between optically active molecules and solid
state materials.' "

Obviously, calculating exact excitation energies is impossible
for large systems because the Coulomb interaction between
electrons makes it exponentially difficult to diagonalize an N-
body Hamiltonian. As such, we are usually left with approximate
schemes. If one is treating isolated molecules, usually the best
accuracy is obtained with multireference methods, especially
multireference configuration interaction (MRCI)."*™"” That
being said, multireference methods are not terribly practical for
solid state systems; for solids, single-reference methods are used
almost exclusively.

In the literature today, within the context of molecular
chemistry, there is a large variety of single-reference methods for
excited states. One approach is to use time-dependent density
functional theory (TD-DFT) to capture dynamic correla-
tion."”'” A second approach is to extend configuration
interaction singles (C18).*° Even though CIS is unreliable for
ordering excited states, CIS is inexpensive and the CIS wave
functions are often qualitatively correct. To go beyond CIS,
several options exist, a few of which we list here:

e Time-dependent Hartree—Fock (TDHF): effectively a
full version of CIS that includes electron correlation to the

first order.”!
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e CIS(D): a second-order perturbative correction to CIS
that is applicable to nondegenerate cases”*

e CC2: the approximate coupled-cluster singles and doubles
model that iteratively determines the singles and doubles
substitutigrzlgs as the poles of a true linear response

e ADC(2): algebraic diagrammatic construction through
second order”®’

e CIS(D,): a family of quasi-degenerate second-order
perturbative corrections to CIS*®

These single-reference approaches can very often yield
qualitatively correct results.

Now, in the context of solid state physics, the methods above
have not been considered, either because the starting point for
solids is always DET (and not HF)'***™** or because the
methods above were considered too expensive. That being said,
in recent years, there has been an explosion of interest in
correlated excited state methods based on a Green’s function
many-body perturbation theory (MBPT)."*** The basic idea is
to treat correlated electrons (holes) as approximately independ-
ent quasiparticles and address all electron—electron correlation
effects through the self-energy of the quasiparticle.”” >’ Within
MBPT, one can calculate charged excitations with high precision
using, for example, Hedin’s GW approximation”® and neutral
excitations through the Bethe—Salpeter equation (BSE).”

In a recent study, for the case of electron attachment and
detachment energies, we benchmarked GW calculations against
configuration interaction (CI) approaches for a set of 1D
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Hubbard chains.”” In the present paper, we will now go one step
further. For the same model systems, we will benchmark neutral
excited state energies as calculated by both the BSE approach
(which is popular in the physics community) and a set of CI
approaches (which is common in the chemistry community).
Exact excitation energies are obtained using direct diagonaliza-
tion of the full Hamiltonian so that the approximate results can
be evaluated for accuracy.

An outline of this paper is as follows. In section 2, we review
BSE theory by deriving the relevant equations using standard
quantum chemistry notation (section 2.A). Then we review the
relevant CI theory (section 2.B) and our choice of model system
(section 2.C). In section 3, we present the excitation energies
predicted by these different methods. In section 4, we discuss
various factors that influence the performance of the BSE
methods. In section 5, we conclude.

Unless otherwise specified, we use lowercase latin letters to
denote spin molecular orbitals (MOs) (a, b, ¢, d for virtual
orbitals, i, j, k, I, m for occupied orbitals, p, g, r, s, w for arbitrary
orbitals) and Greek letters (a, 3, 7, 5, 4, 6, , V) to denote atomic
orbitals (AOs). Position is denoted by r, and position/spin
together are denoted by x = (r,0). Thus, the notation ¢,(x)
signifies an one-electron spin wave function indexed by “a”,
where the spin of ¢, equals the spin of x. The electronic excited
states obtained within the random-phase approximation (RPA)
are denoted by ¥; or ¥, (with uppercase latin indices I, ).

2. THEORY

We will now review both BSE theory and the relevant CI theory.
Because BSE is less common in chemistry than is CI, we will
focus especially on deriving the relevant equations for BSE
(which takes some time) using the standard quantum chemistry
notation. We will assume only basic familiarity with Green’s
function formalisms, though we will assume some of the basic
results of ref 40 (which summarizes the GW approach in the
language of quantum chemistry). For BSE, we will follow
Strinati’s paper (ref 41) in detail and make a flowchart to make
the process easily repeatable. Note that Strinati’s paper derives
the BSE working equations only in the Tamm-—Dancoff
approximation, and thus, we will modify the derivation slightly.
Below, we will also highlight the three key assumptions of BSE
theory.

2.A. Bethe—Salpeter Equation. 2.A.1. Two-Particle
Correlation Function and Its BSE. BSE is derived using standard
MBPT and the language of Green’s functions. We suppose that |
N) is the exact fully interacting ground state of the N-body
electronic system. Our final result agrees with Louie’s result in ref
35. We define the one- and two-particle Green’s function as

G,(1, 1) = —i/aNITIP()¥ (1) IN) 1)

G,(12; 12) = (=i/R)*NITIP ()P )¥ 2)¥ (1))
)
Here we use the simplified notation for the indices (xy, t;) = (ry,
o, t) = (1), (% ) = (1, 05, 1) = (2), ice,, (1) and (2) denote
both space and time. We use the standard notation
/ dx, = ) / dr,. T denotes time-ordering. The two-particle

. L 41
correlation function is defined as

L(12; 1'2) = G(1, 1)G)(2,2)) — G,(1,2; 1,2)  (3)

Now, invoking a well-known trick in Green’s function theory,
we imagine applying a one-particle potential #i(x, x’; t) to the
electronic system. According to well-known functional derivative
identities,*" one can show that (for t', = t, + §)

5G(1, 1)
Sii(x,, x5; t,) (4a)
See Appendix A for a proof of this identity. Furthermore, if we

define the quantity u(x,, t;; X, t,) = #i(x, X5; t,)5(t; — t,), we can
also take a formal derivative of G with respect to u, and we find

5G,(1,1')
ou(2,2) (4b)

L(12;1'2) =

L(12; 1'2') =

See again Appendix A.

Although eq 4b is applicable only when t, = t;, a diagrammatic
analysis shows that the BSE (as presented in eq 12) is in fact
applicable for t, # t;.*' That being said, for the present paper, we
note that we will eventually set t, =¢t, + & (after eq 26); we will use
eq 4b only as a formal tool to manipulate L and derive the BSE
more quickly. Thus, applying the matrix identity

62: = —A_I%A_l, we can rewrite L(12; 1'2') as
5G(3,3")
L(12; 12') = —f/d3d3’ G,(1,3) 22"/ G (3, 1’
( ) (1, 3) w2, 2) (35 1)
(%)

We must now evaluate eq 5. When using Green'’s functions,
one always distinguishes between the Green’s function for the
interacting Hamiltonian and the Green’s function for the
noninteracting Hamiltonian (which can be easily distinguished).
The relationship between the noninteracting Green’s function
G{* and the exact Green’s function G, is

Gri(1,2) = G071, 2) — u(1, 2) — (1, 2) 6)

where X(1,2) denotes the self-energy (which is defined by eq 6).
For BSE, the first approximation (Approximation #1) is to invoke
GW theory for single particles, so that the self-energy in eq 6
contains the contribution from two parts

(1, 2) = 2%(1, 2) + 2V(1, 2) (7)

Here

H(1,2) = 8(1, 2)[—ihfd3 v(1, 3)G,(3, 3+)] )
denotes the Hartree contribution (i.e., the mean-field Coulombic
effect of all electrons together), and

=V(1, 2) = ihG,(1, 2)W(TF, 2) )

captures the correlated motion of an individual electron in a sea
of other electrons that results in the electronic screening of the
mean-field potential; the screening potential W is computed
approximately via a GW calculation. The notation A(17, 2)
signifies that time t; should be replaced by ¢, + 8. In eqs 6—9, we
note that for nonzero matrix elements, we require that (1) and
(2) should have the same spin.
At this point, we plug eq 6 into eq 5, and we find
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L(12; 12) = / d3 d3’ G,(1, 3)[5(2', 3)6(2,3") +

= G(1,2)G,(2, 1) + [[[/d3 d3’ d4 d4’ G,(1, 3)G,(3/, 1)

=G(1,2)G,(2, 1) + [[[/d3 d3’ d4 d4’ G,(1, 3)G,(3/, 1')

Equation 12 is the BSE for L. If we define the electron—hole
interaction kernel K as*'

52(3, 3")
5G,(4, 4) (13)

the BSE for L can then be written as

K(34; 3'4) =

L(12; 1'2") = G((1, 2")G,(2, 1')
+ [[Jfd3 d3’ d4 d4’ G,(1, 3)G,(3', 1))K(34'; 3'4)L(42; 42")
(14)
If one plugs eq 7 into eq 13 (with the help of eqs 8 and 9) and
neglects the derivative of the screened interaction W with respect

to G (which constitutes Approximation #2 for BSE), K can be
rewritten approximately as

K(34'; 3'4) = —ihd(3, 3')6(4%, 4')v(3, 4) (15)
+ih8(3, 4)6(3', 4 )W (3, 3/)

= K*(34; 3'4) + K%(34'; 3/4) (16)

In a confusing twist of notation, the first term K, which results
from the Coulomb potential in eq 13, is usually called the
exchange term, while the second term K% which results from the
screened-exchange self-energy in eq 13, is usually called the
direct interaction term.

2.A.2. Eigenvalue Problem for BSE. The derivation of the
effective eigenvalue problem for BSE starts from the analysis of
the four time variables in the two-body Green’s function G(12;
1'2") (ie. the second term in L(12; 1'2") in eq 3). To begin this
analysis, one considers a change of variables to

L=t -t T, =t — by T=hH-1 (17)

where £ = %(t1 + t)and £, = %(l‘2 + t,.). The particle—hole

Green'’s function contains six classes as follows (with the order of
the time variables for each class of the Green’s function shown in
Figure 1)

GI(12; 1) = (=i/RXNITIP ()P (1N TP @) ) IN)-

1 1
9(1 - EITI' - Elle) (18)

Gl(12; 1'2') = (=i/AP(NITIP )P @) T () (1)]IN)-

1 1
Ol -7 — =gl — =zl
( 20 22

(19)
(125 112') = —(=i/AP>(NITIP )Y (11T () (21))IN)-
43_3_%_+3+2_1‘ 4 z]
2 2 2 ’ 2 2 2 2 2
(20)

52(3,3)
Su(2’,2)

]Gl(% 1) (10)

52(3, 3') 6G,(4, 4)
5G,(4, 4) su(2',2)
562(3,3")
5G,(4, 4)

(11)

L(42; 42') (12)

GV(12; 1'2) = —(—i/R)XNITIY ()% )T ) (1) IN)-

9(3_2_1_,+3+3 _1‘T+z+ﬁ)
2 2 2 2 2 2 2 2
(21)
GY(12; 1'7') = (=i/AX(NIT[P()P )T )% (1) ]IN)-
9(3+2_1‘ L2 n _1‘ +2_3)
2 2 2 2 2 21 T2 2
(22)
6 (12; 17) = (—i/mP(NIT(E ()% (1) TE() P (2)IN)-
9_3_2_1‘ 2_3_1‘1 z_fl)
2 2 2 2 2 2 2 2
(23)
o o G,
‘ 1,1} 2.2}
o o GY
t {2,2} {1,1}
o o G
t {21} {1,2%}
e *—o Gy
t {1,2} {2,1}
e e Gy
t {1,2} {21’}
e e GY!
t {21} {1,2}

Figure 1. Schematic graph of the time ordering for the two-body
Green’s function. Note that the time order for the electrons and/or
holes within the same curly brace is random. Each class of the Green’s
function therefore has four different time combinations, making a total
of 24 terms in the two-body Green’s function. The time increases from
right to left.

It is clear that from the combination of the creation and
annihilation operators that G5 ™V correspond to the electron—
hole portion of the two-body Green’s function (i.e., one electron
and one hole are being propagated in the N-body system). Gy
and GY' correspond to the electron—electron and hole—hole
portion of the two-body Green’s function, respectively, which do
not involve the excitation energies of the N-body system (but
rather the (N + 2)-body system). Thus, to locate the excited
states of the N-body system, one needs to consider only G5 V.

To construct the eigenvalue equation for BSE, one performs a
Fourier transform on both sides of eq 14. Here we take G4(12;
1'2’) as an example to compute the Fourier transform results.
First we define the right- and left-hand electron—hole amplitudes
as
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h
)(ge (Xp X5t — tz)

= (NIT[P()W' (2)INg) expli(Es — Eg)(t, + £,)/2h)
(24)

~eh
)(ge (xp, X5 ) = 1)

= (NJTIP(1)¥ (2)INY expl—i(Es — Eg)(t, + £,)/2h)

where INg) denotes the Sth excited state of the N-body system.**
Then G5(12; 1'2’) can be rewritten as

Gi(12; 1'2') = (=i/h)* Y. expli(Ey — Eo)e/hly (x, x5 7)
N

~eh 1 1
X Fo (% Xy55 12)~€(7: - EITII - ElTZI) (26)

Second, upon setting t, = t, + 5(8 — 0) (which gives 7, = —§
and 7 =%, — t,) and Fourier transforming the variable £,, the result

(25) given by G3(12; 1'2') can be evaluated as
+o0 X +o0 . - 1 . y_
f dt, e Gl(12; 112) = / dt, e—l‘"fz(—i/h)ze(t1 -t - Ew) x Y BB x s 1) 7 (3, %y —6) (27)
—00 —00
s
—i\? ,A-(1/2)k ) , .
= (?1) / l l dt, e7% x Z e‘(EO‘Ethl—tl)/h)(Seh(xl, X5 Tl)fseh (x5, X575 —6) (28)
—00
s
i eh(x, x5 7P (%, Xy5 —5)
= _Le—i[wﬂ—(hw—Es+Eo)(|rll/zn)],Z X X X1 T)xg X X555 (29)
h hw — (Es — E,) + i

S

An imaginary infinitesimal has been included in the
denominator of eq 29 to ensure the convergence of the integral.
Performing the same transformation for G ", one finds that the

eh
L7(xy, X5 X Xp 8, £ @)

h

i o—iEs=Ep)Inl/2h{ —iw(f-(151/2)),

electron—hole correlation function (eq 3) in the frequency
domain L°"(x;, x,; X;;, Xt;, t;; @) contains only the
contributions from GL(12; 1'2) and G¥(12; 1'2").** Thus

+o0 i
—f dt,-e72[Gy(12; 1'2) + Gy'(12;5 1'2')] (30)
—0o0

(31)

eh ~eh
Z X (% X5 Tl))(s (%), X555 —6)
S

hw — (Es — E,) + in

eh ~eh
_ e—iw(Fl+(|‘:1|/2)).E X5 (% X5 )7 (30 x5 —71)
S hw + (Eg — E,) — in

Note that the first term in eq 3, the product of one-body
Green’s functions, does not contribute because its transform
vanishes when @ is nonzero. Thus, eq 31 gives the Fourier
transform for the left-hand side of eq 14. Performing the same
Fourier transform on the right-hand side of eq 14 gives‘% (with
> ty+ 1
£, = 4*2' 4

%///f d3 d3’ d4 d4’ G,(1, 3)G,(3/, 1')K(34; 3'4)e (Es~Eo)lul/2h

andz,=t, — t;)

eh ~eh
e_iw({4_(\r4|/2))'z Xs (X4; Xy 74)}(5 (XZ; Xy _6)
S hw — (Eg — E,) + i

ho + (Eg — Ey) — in

eh ~eh
_e‘iw(?4+(lr4l/2>).z X (% %05 )" (x4 X5 _74)]
s (32)

Evaluating the residue of eqs 31 and 32 at a particular pole Aim
= (Eg — E,) = Q, one has

eh —iQf, /7
X (x, X5 7)e 1

= [[[[d3 d3' d4 d4’ G,(1,3)G,(3', 1')
X K(34; 3'4)5" (x,, xy5 75)e S0 (33)

We now perform a series of transformations upon eq 33 in

order to get the final working equations:
1. Plug the expression of K (eq 15) into eq 33, which gives

2" (0, x5 7)e MV = ih [ d3 43 d4 44’ Gy(1, 3)G,(3', 1)[=8(3, 3)5(4", 4)u(3, 4) (34)
+ 5(3; 4)5(3l) 4/)W(3+; 3,)])(;}1 (X4, X5 1_4)e—i§25t4/h
= _ih ff d3 43’ G,(1, 3)G,(3,1)0(3, 3 )" (xy xy5 —8)e /" (35)

+ ifz/de 43 Gy(1, 3)G,(3', 1)W(3", 3 ) (xy xy5 75)e X/
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Here we have used the fact that v(3, 4) is local in time, i.e., v(3, 4)

= v(ry — 1,)8(t; — ty).
2. Plug the quasiparticle expression for the single-particle
Green’s function in the time domain

G x,t—t)= _é[z P )P (x)0(t — ¢)e e t=t)/h

- 2 AR - t)e‘“fm’““')”’]

into eq 35, where ¢¥ stands for the quasiparticle energy of
orbital s. Here we assume that ¢, and ¢, (and x and x’) have the
same spin, i.e,, 6 = ¢’ After plugging in, we multiply both sides of

eq 33 by ¢¥(x;)¢;(x;/) and integrate over f/dxl dx, . Setting t,/

(36) =t, + 6(6 = 07), we find
. o h(x;); (x3) . i
‘/]ldxl dxlfqﬁi(xlf)gba*(xl);(sh(xp x,; —6)e /M = / dx, dx ,ﬁv(rs r3/);(sh(x3/, Xy —6)e KA
S ]

¢(X3 )¢ (X3)

+/fdxdx
Qg —e +€QP

eh —iQdf,/h
X g (X3 X5 T3)e 1

To derive eq 37, we have performed a few integrations over time.
On the right-hand side, in the first term, the only relevant terms
require ¢; > t; = ty; in the second term, the only relevant terms are
t) > t3, t3. To tackle the second term, we change integration
variables from t,, t; to 73, £;, where

- 1 .
=16+ —7 tyy =t — —T
3 3 23 3 3 23

+
f dr, Wiry ty; 737) X (0(z,)e ™ HO/DN 4 g yeinle=(@s/2)/y

(37)

P 1
For the case 7; > 0, the relevant terms satisfy f; < t; — S73; for

the case 7; < 0, the relevant terms satisfy £, < t; + %13.
3. Multiply both sides of eq 37 by Qs — e + £ and drop the

—iQ s
common factor e 1/ We find

(@ = &2 + &%) [ ax, dx o ) Gy x5 —0) = ] ey iy OBl — 10" (s 335 =)

oo ir,(e ¥ iry(e ¥ - el
* ‘//dx3 dxy/ 45,("3)45,;*("3)/_ dzy W(ry, 135 73) X (0(z3)e (TR 0(-13)e e (QS/Z))/h)Xsh(Xy X35 T3)

4. Make the ansatz that y§"(x, x’; 7) can be expanded into an
incomplete MO basis set that contains only the occupied—virtual

h
X% (xx;1) =

(38)

and virtual—occupied parts with simple time dependence. This
ansatz corresponds to Assumption #3 of the BSE approach

—e MY [((N1A3,INg) o, () (x) + (NI, BN (x)h, () x(O(2)e ™0 /" + O(=)e ™™ /M (39)
jb

= VI (X, (1) + T GOIX @)™/ 4 o(=r)e ™M) (40)
b

where Xh and YS;, are defined as X,, = (NIaT&bINS) and
(Nlaha ING).

5 By deﬁmtlon, ¢; and ¢, have the same spin in
eq 38, i.e, x; and x have the same spin on the left-hand side of
eq 38 (inside of the integral). Now, we plug eq 40 into
eq 38 and Fourier transform the screened potential
w(z) = if_o; dw e W(w). Next, we perform the integral

over 7; and add an infinitesimal imaginary amplitude e~ with
> 0 to force the integration over 7; to converge. Repeat the exact
same analysis for 79'(x, x'; 7). The generalized eigenvalue
problem for BSE finally reads

: J

v (41)

A5 B XS
[—ES —As][YS) &

for electron—hole excitation amplitudes X* and ¥* and excitation
energy Qg for BSE excited state S. A® and B have the following
matrix elements

1S P
Aiajb = 61']'61117(8(1 Q) + Klﬂ]b (42)
5S S
By, = K (43)
where
x d
Kzab] I<iabj + Kiubj(QS) (44)

K= [[drar g@h@a@)a,e e x)  (49)

= (ialjb) (46)
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K@) = = [ e ax’ p @, @h6 ()

i i 1
X —/da} e W(r, v, ) X
27 B Q — ho — (62 - &%) +1iy

1
+
Qs+ ho — (¥ - &¥) + in] (47)

In eqs 45 and 46, ¢, ¢,, ¢;, and ¢, are spin orbitals that we have
assumed to be real valued. Furthermore, in eq 45, we require only
that 6; = 6, and ¢; = 0}, such that same spin and opposite spin
cases are allowed; in eq 47, we require complete spin alignment,
0;=0,=0;= 0, The factor e s included in eq 47 to remind us
only that, if we seek to evaluate the integral over a complex, that
contour must run below the real axis.

2.A.3. Quasiparticle Energies from the GW Approximation.
To evaluate eq 47 in practice, we require a GW calculation on top
of a Hartree calculation to extract the quasiparticle energy.”’ To
avoid a self-consistent calculation, the standard approach is to
apply a linear expansion for the real part of the correlation part of
the self-energy X(w)

Gw H ¢( H
Re ZC(SSGW) ~ Re ZC(SSH) + & & OReX (Es )
h ow

(48)
which leads to

eV~ el + Z Re X(eM) + 27 (49)

S

where e} denotes the Hartree orbital energy and £" denotes the
GW orbital energy. The quasiparticle renormalization factor Z is
given by

S T =€)
Jdw

o =[(3 2ol )]

I

(50)

where X' and Y’ correspond to the TDH excitation amplitudes of
excited state I with excitation energy QP .

In terms of MOs, if the perturbing potential is independent of
spin and of the form uy(t)(aja; + aja,), one finds that the

response function is

I

Miujh
){iajh (0)) = Z

+
T Q" + ho —in QY - ho — i
(s8)

I
Miajb

where
I Iyl I+1 Iy1 Iyl
Miajb = Xx‘aij + Xianb + Yianb + Yiqub (59)

In real space

](YI

z 1 X (x! YI)+;Y
2| O 4 ol y! O | x

In ref 40, for a finite Hubbard model, we found that the Z-
factor values for orbitals other than the HOMO and LUMO were
usually far from unity with correspondingly large errors
compared to exact attachment—detachment energies. As a result,
in this work, we calculate Z, Re Z°(¢!?) for only the HOMO and
LUMO. After adding in the exchange part of the self-energy X7,
we shift all of the virtual (occupied) orbitals by Z;,,., Re Z(efino)
(Zhomo Re Zc(gkl;lomo) )) ie.

GW H H

& R g + Zlumo Re Z:C(Elumo) + ZZ (51)
GW H H

& ~ & + Zhomo Re z“c(ghomo) + th (52)

2.A4. Matrix Elements for the Electron—Hole Interacting
Kernel. After the approximate quasiparticle energy ESW is
obtained, the next step is to build the electron—hole interaction
kernel K. The matrix elements of K*(35, 46) (in the MO basis)
are simply given by eq 46. In order to obtain the matrix elements
of K% we recall the expression for the screened Coulomb
interaction W*"**

W(r, t'; w) =v(r, ') + /dr” dr” v(x, ")y (x", v, w)v (53)
(r///l 1'/)
=v(r, r') + W, r'; w) (54)

where W¥(r, r'; @) is defined as

WP (e, v'; w) = fdr” de” v(x, ")y (r”, v”, @)v(r”, t')
(85)

Here y(r", r”, @) is the time-dependent Hartree (TDH)
polarizability in the frequency domain and is computed via the
following sum-over-states expression46 in a MO basis

(56)

X' )] (57)

PR AOEDIWOTIOVICONCD

I iajb
1 1
x Miajb + Miujh
QP+ hw —in QM - ho — i
(60)

For this paper, we assume that the ground state of the system is
a closed-shell singlet so that all up-spin and down-spin orbitals
have the same spatial components. Thus, in eq 60, one can sum
over the spin components and produce a spatial M; matrix

~ I
Miajb = Z Miajb
0=0,0=0, (61)

We can then rewrite eq 60 as follows
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250, 0) = 2 X hGE ), ()

I iajb
~ T o T
Miajb Miujb
Q"+ ho — i QY — o — i

(62)
where )’ denotes a sum over only spatial orbitals. Note that only
singlet states contribute to the sum-over-states in eq 62; all triplet
contributions cancel exactly.

Finally, using eq 55, the matrix elements for W? in real space
are

Wo(r, v, w) =

PP OO ICAIACS

T iajb
M, M,
X ialke) (jblld keld + keld
é( ) )[ Q" + hw — i QY - ho - i
(63)
The matrix elements in a spatial MO basis are
My
Wy, = > D (ialke) (jblid) P —
I keld + ho — i
~ T
Mkcld
Q?DH — hw — in (64)
and the matrix elements in an AO basis are
;41/16 Z C/lbcm of m;b
iajb (65)

Equation 47 is now ready to be evaluated with the help of eqs
54, 64, and 65. Obviously, if one neglects the polarizable part of
the screened Coulomb interaction W in eqs 54, one will recover
TDHEF exactly from BSE (eqs 41—43).

2.A.5. Frequency-Independent Electron—Hole Interaction
Kernel. In many cases (e.g., in most semiconductor crystals), the
excitations in state W) are mainly composed of electron—hole
pair configurations |®?) whose transition energies (¢Z — £¥)
are close to the resulting excitation energy £, which means that
Qg — (62 — e¥) is much smaller than QP> In such cases, eq
47 can be approximated by

Ky = = [[de de' gD, (66)
X W¥(r, v, = 0)

= z C Clbcm o; u/l(r(w - 0) (67)
uvic
where
;wia(w - 0) Z/ C;mclbcm 6}2 Z (mlkc)(]blld)
iajb I ked
~ 1 ~ 1
o | Micta Mg
QM —in P~y (68)

2.A.6. Summary. The derivation of BSE (eqs 41—43)
reviewed above is summarized in Figure 2. BSE can be solved
either directly (without further approximation, i.e., the random
phase approximation (RPA)) or within the Tamm—Dancoff
approximation (TDA), which sets the matrix B = 0. In this work,
we will test both versions. We also will study the self-consistent

Ground State
Hartree Calculation

7&

Time-Dependent
Hartree (TDH)
Calculation

l

TDH Polarizability y
(Eqn.57)

l

Screened Coulomb
Interaction W
(Eqn.53)

I

Electron-Hole
Interaction Kernel K
(Eqns. 44-47)

Green’s Function G°
(Egn. 11 of Ref. 191)
|

Self-Energy X
(Eqn. 33 of Ref. 191)

I

Quasiparticle
Energy from GW
(Egns. 51-52)

\/

BSE
(Eqns. 41-43)

Figure 2. Flowchart for how to calculate BSE energies in practice.

(usmg eq 47 for K%) and the non-self-consistent (using eq 66 for
K%) versions of BSE. This completes our (tedious but
comprehensive) derivation of the BSE approach.

2.B. Configuration Interaction Approaches. Our goal in
this paper is to compare BSE with CI approaches. For
completeness, we now review the relevant quantum chemistry
approaches.

2.B.1. CIS/TDHF. The simplest CI method, CIS, includes only
the single-excitation manifold. The matrix elements of the CIS
Hamiltonian are

Agy = (QIAIDY) = 5,6,(e, — &) + (ajllib) (69)

where (gjllib) = (ajlib) — (ajlbi) is the two-electron integral. The
CIS wave function can be written as

L ) o
ia 70

where £ is the excitation coefficients for CIS excited state I. With
low computational cost, CIS is applicable to very large systems.
However, in general, CIS only gives qualitatively correct results.
The same qualitative features apply equally to TDHF, which is
a slight generalization of CIS. According to TDHF, which is a
response theory based on top of a HF (not Hartree) ground
state, the excitation energies are computed by diagonalizing

ATDHF  pTDHF
_pIDHF _ ATDHF 1)
where A};ﬁHF g}IE and B?;ﬁHF = (abllij). Like CIS, TDHF is

usually not accurate quantitatively.”*

2.B.2. CIS(D). CIS(D) serves as a nondegenerate perturbative
second-order correction to CIS that approximately introduces
effects of electron correlation and double-excitations for the
excited states in a noniterative scheme.”” In CIS(D), MP2 theory
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is employed in order to include electron correlation in the
ground state. The original unperturbed Hamiltonian H, is
chosen as the Fock operator. Then, with perturbation V, the total
Hamiltonian becomes

H=H,+ 1V (72)

and performing second-order time-independent perturbation
theory, one recovers the MP2 correction to the ground-state
energy

0" = (DI VT, ID,) (73)

(D, IVIDsbY >

= ——2 — (74)

Wb 8a+€h—8i—8j

_ _lz (ijllab)I* (79)

4i;’ub £t e —&—§

where T, is the double-excitation operator that yields the double-
excitation manifold |<I>f}b) with the effective excitation coefficients

A1 Fatan
T, = —Z d;bﬁa aJaiaj (76)
ijab
(@71

==y — 1" (77)

jab g t+e —&—¢

7
(ijllab)
_Z _\han (78)
jav & +& —&—¢g

Note that the single-excitation manifold does not appear in the
MP2 energy because of Brillouin’s theorem.

Now, CIS(D) is consistent with MP2 theory performed on
CIS excited states and includes the corrections to the CIS

(PSS = Y (4 YV Tif)

excitation energy from three sources: single- and double-
excitations with respect to the CIS wave function and again the
MP2 correction to the ground-state energy. Therefore, we may
write

wCIS(D) <\PCIS|VT|\PCIS> + <TCIS|VT |1PCIS> _ 600
(79)

Overall, the single-excitation operator acting on the CIS state
in the first term gives an overall double-excitation

)

CIS
t]ub€+8b—€—£' Q; (80)

q)ab><q)ub|

A

Plugging eq 80 into eq 79, one finds that the first term in eq 79
finally yields

aby\2
. 1 (s;
(PEVTIPES) = —= (81)
! t ‘.}.ubea+£b—ei—gj—QICIS
s = (PP (82)
Z DIV I (83)
= D [abllg)t — (abllci)t] (84)

N D [(kallifyt® — (kblijyel]
k

The second term in eq 79 gives a triple-excitation with respect
to the ground state. Note that in CIS(D), the double-excitation
operator that acts on CIS excited states T, remains the same as
the operator acting on the ground state in MP2 theory, i.e,, the
corresponding excitation coefficients d}j—b are not changed.
Therefore, the second term in eq 79 finally yields

(85)

kled
= (QVTID,) + 2 D (kllled) (£°dg" + t;°di + 2t (86)
ia kled
= o™ + Z H Y (kllled) (81 + 6y + 265d;7) (87)
ia kled

Note that the MP2 correction energy cancels within CIS(D)
and the final CIS(D) correction for CIS state I can be
represented as

(ubZ

1 ij
wICIS(D) __1 j

41}ab &, +8b

+ Z 1“2 (kllcd)(tkd,d + thgde 4 oleqad
(88)

CIS(D) is a second-order nondegenerate perturbation

P QS’s

method on top of CIS and requires no extra diagonalization
beyond the CIS Hamiltonian.

2.B.3. CIS(D,). To generalize CIS(D) to the near-degenerate
case, there is a well-known family of quasi-degenerate second-
order perturbation theories known as CIS(D,).”® Within
CIS(D,), one diagonalizes a perturbed Hamiltonian that
contains only single- and double-excitations to second order

HO + HY HY

HOSD) _
(HEY  HY) (89)
where
(Hég))ia/‘h = ((I)fIIflol(I)I;) (90)
(Hé?)iujb = <¢?|VT2|CD?> (91)
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a1 be
(Héé)))ia,jbkc = (D{IVID) (92)
b\ £ d
(Hg)r)))iajb,kcld = (@} IFIdy (93)

Note that the ground -state response is taken into consid-
eration through the HY sub-block by including the double-
excitation operator T, from ground-state MP2 theory. Note also
that a zeroth-order approximation is applied to the H{) sub-
block so that only the diagonal elements appear in this sub-block.
Thus, the H{%) block can be formally inverted, leading to a much
smaller, energy-dependent Hamiltonian matrix (and a corre-
sponding self-consistent energy-dependent eigenvalue equation)

HESC ) = 1 + 1) — HO(HS - o7 (1)
(94)

Note that (Hg})) — @)~ can be written as an expansion
(Hfp — )" = (HE) (1 = &) (95)
= HD 1+ A+ A+ ) (96)

where Ais defined as

w(HS)™ (97)

The CIS(D,,) hierarchy at level  is defined as the method that
results from truncating the expansion after the A” term. As a
result, the eigenvalue problem for CIS(D,) simply becomes

(HE + HE ~ H(HE)™ (H) ™)
- QICIS(DL))|\.PICIS(DU)> (98)
where we define the CIS(D,) Hamiltonian H P s

HEO) = HY + HY - Hy (5 () (99)

CIS(D, _
H 1S(D,) 5= 5ij§ab(e

iaj

— &) + (jallbi)

+ = Z (jkllbe) (8,d5 + 6,d5 + 2d;
- = Z Gallbey bl + ) (Gkllibybit]
cdl dkl
(100)
where d is defined in eqs 77 and 78 and bgﬁ‘ is defined as
e Sabllci)sy — (ablici)sy + (kbllij)a,. — (kallif)5,,
ik =
Ete—&6—¢
(101)
The effective CIS(D,) Hamiltonian HSD) 5 efined as
F{CIS(D) = g=1/24CIS(D,) g-1/2 (102)
where
S =1+ HYHQ2HDY (103)
s - 3. Gallbe)bi® + 3 (llib) by
iajb —
/ 2(e, + & — & — 8.) (104)

Finally, the full CIS(D,) Hamiltonian given by eq 94 (without
truncating (Hpp ) corresponds to the CIS(D,)
Hamiltonian. Solving the resulting energy-dependent eigenvalue

equation of the CIS(D,,) Hamiltonian (eq 105) self-consistently
gives the CIS(D,,) excitation energies

ﬂCIS(DW)(w) |1F?IS(DN)> — w|1P§?IS(Dm)> (105)

2.B.4. Relation between CIS(D,) and CC2 and ADC(2).
Although in this paper we will focus exclusively on the CIS(D,)
suite of excited states, it is important to recall that the CIS(D.,)
Hamiltonian is nearly identical to several other excited-state
Hamiltonians that are common in the literature.”*~*”** Among
them, the CC2 model, which is also know as the approximate
coupled-cluster singles and doubles model, iteratively determines
the singles and doubles substitutions as the poles of a true linear
response function.”**>**

Let us now remind the reader briefly of a few relevant details
pertaining to CC2. In standard second-order coupled-cluster
theory (CCSD) for the electronic ground state,* one performs a
similarity transformation to the unperturbed Hamiltonian such
that

I:I _ e_(TICC+ TZCC)ﬁe(TICC+ TZCC) (106)

where T¢C and TSC are first- and second-order coupled-cluster
operators

ZCC1A

(107)

jiab (108)

The corresponding coefficients £ and tqab are determined via
the CCSD amplitude equations

I Y DAIDy;) = 0
; (109)

D oA DPHID) = 0
ijab (110)

In CC2, the similarity transformation is approximated by

A CC ~CC

(T +1,%) ~ el (1 + TZCC) (111)
and then one determines a ground-state CC2 energy and wave
function in the same spirit as a CCSD calculation. Now, to
determine excited-state energies, with CC2, a standard equation-
of- motron calculation is performed on top of the CC2 ground
state.”

With this background in mind, we remind the reader that, as
shown by Hattlg, the only essential difference between CC2
and CIS(D,,) is that the double-excitation amplitudes are solved
via ground-state MP2 theory in CIS(D,,), while they are solved
via approximated coupled-cluster theory as the ground-state
cluster amplitudes in CC2

Hw) = HY + AF - HYHS) - o) (HY)Y
(112)
~ a175~CC
(AR = (@AVE, 100h) (113)

Similarly, the model of algebraic diagrammatic construction
through second order (ADC(2)) is effectively the symmetric or
the Hermitian part of the CIS(D,,) model. More precisely, note
that HY) in eq 94 gives rise to a nonsymmetric form for the
CIS(D,,) Hamiltonian. The ADC(2) Hamiltonian is just the
symmetrized form of the CIS(D,,) Hamiltonian®®*"**
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Figure 3. Errors for the excitation energy of the first (left, ;) and second (right, S,) excited singlet states for the metallic system (V) = 0 for all sites 4, 7 =
1.0). All errors are relative to the exact diagonalization. None of these methods gives perfect results. All of the CI methods underestimate the energy
while the BSE-TDA method generally overestimates the energy (except for U= 0.7). BSE-RPA is accurate for small Us but underestimates the energy for

large Us.
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Figure 4. Errors for the excitation energy of the first (left, S;) and second (right, S,) excited singlet states for the doped system (with V = —0.5). All
errors are relative to the exact diagonalization. Results in this doped system are very similar to those in the metallic system.

FHAPCO) () = %((WCIS(DW)(GJ))-I- + HOS®())

(114)

2.C. Model System. The Hubbard model offers one of the
simplest ways to get insight into how the interactions between
electrons can give rise to insulating, doped, and conducting
effects in a solid. In this work, we take a finite 1D Hubbard model
(without periodic boundary conditions) as our testing system,
which is described by the Hamiltonian

H=1), (ala

(uv)

+ UZ a;_;aﬂaﬂ
u

where y denotes the site of the system; 7 is the hopping integral
between neighboring sites, V, is the on-site energy (for site y1),
and U is the repulsion energy between two electrons of opposite
spin occupying the same site y. (Here we keep the repulsion
energy the same for all sites.) A bar indicates spin down. Note
that for all of the calculations below, we calculate only the
excitation energy of the first and second excited singlet states and
we set 7 = 0 in eq 64. Note also that, for this model problem,
WE(x, r') (eq SS) is replaced by W2, b (eq 65).

+aa)+VZ(aa +aa

(115)

3. RESULTS

We apply the theory above to an eight-site 1D Hubbard model,
and we assume half-filling with eight electrons. The hopping
integral between neighboring sites 7 is set to be 1.0 for all

systems, while the electron repulsion energy U is varied. All
quantities will be calculated in au henceforward. The exact
excitation energies are obtained by diagonalizing the Hamil-
tonian with direct diagonalization.

3.A. Metallic System. We first study metallic systems. In
metallic systems, every site has the same on-site energy (V, =0
for all sites 4¢).”" The electron repulsion energy Uis varied from 0
to 0.7. Results are shown in Figure 3. One can see that for this
system none of these approximated methods gives perfect
results. For both excited states, all of the CI methods
underestimate the energy, and TDHF gives the largest negative
errors here. Note that CIS generates larger negative errors
compared with correlated CI methods. We believe that this
failure is really a failure of the HF calculation, which
overestimates the ground-state energy: the difference between
the exact ground-state energy and the answer given by HF is as
large as 0.08. In general, CIS is known to overestimate the
excitation energy.’”>” Pertubatively including the double-
excitations gives slightly better results but still with an error as
large as —0.02. Although the BSE-TDA method generally
overestimates the energy (except for U = 0.7), this method gives
relatively smaller errors compared to CI methods. The BSE-RPA
method generates the most accurate results for small U values but
underestimates the energy when U gets larger (e.g.,, when U= 0.6
and 0.7 for S; and U = 0.7 for S,).

3.B. Doped Impurity Systems. By lowering the energy of a
single site in the metallic system, one can model an impurity. This
dopes an otherwise metallic system®' and can influence the
overall photoactivitiy or electrical properties of the total system.
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Figure S. Errors for the excitation energy of the first (left, S,) and second (right, S,) excited singlet states for the “molecular” system (V. = —0.5, Vg4 =
0, 7= 1.0). All errors are relative to the exact diagonalization. BSE-TDA maintains the same tendency and provides the smallest error when U reaches its
maximum. BSE-RPA underestimates the energy too much for large U. Higher-level CI approaches give worse results compared to CIS.
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Figure 6. Errors for the excitation energy of the first (left, S,) and second (right, S,) excited singlet states for the “molecular” system (V,
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0,7 = 1.0). All errors are relative to the exact diagonalization. CIS overestimates the energy for S, but gives the most accurate results for S,. BSE-TDA is
only better than CIS(D) and BSE-RPA, which generates the largest error in this case.
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Figure 7. Errors for the excitation energy of the first (left, S,) and second (right, S,) excited singlet states for the “molecular” system (V,
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0, 7 = 1.0). All errors are relative to the exact diagonalization. Both BSE methods underestimate the energy, while CIS and TDHF overestimate the
energy. CIS(D,,) gives the best results for S;, and yet CIS(D,) generates the best results for S,.

In Figure 4, we calculate results for electron repulsion energies U
between 0 and 0.7. Here the on-site energy V/, is set to be —0.5. It
can be seen in Figure 4 that the results are roughly identical to the
metallic case: All of the CI methods underestimate the energy
while BSE-TDA overestimates the energy (except for U = 0.7)
for both excited states. The BSE-TDA method again yields a
smaller error compared to CI approaches. BSE-RPA is accurate
for small U values but gives large errors when U gets larger. The
same conclusion holds for the case V,, = —1.0 (where the on-site
energy is comparable with the hopping integral).

3.C. Molecular (Semiconducting/Insulating) Systems.
To simulate a “molecular” Hubbard model, we construct an
alternating Hamiltonian, whereby V..., is significantly lowered

relative to V44 = 0. In doing so, we expect that orbitals with lower
energies will be doubly occupied and well separated from virtual
orbitals. Thus, by creating an energy gap, we should be simulating
closed-shell insulators and/or semiconductors (depending on
the gap size).

For “molecular” systems with a small energy gap (V,en =
—0.5), the electron repulsion energy U is varied from 0 to 0.8. As
shown in Figure S, the error given by the BSE-TDA method is
further reduced, while the error of BSE-RPA increases. For the CI
approaches, we find a very unusual result: the CIS energy
outperforms the correlated methods. Clearly there is a
nonintuitive cancellation of error in these calculations.
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For “molecular” systems with an energy gap equal to the
hopping integral (Vi,., = —1.0), Figure 6 demonstrates that our
results are very different than all previous cases. Though CIS(D)
still generates a large negative error, the CIS(D,) approaches
behave much better now. Interestingly, CIS(D,) gives the best
results in this case (and not CIS(D,,)). The performance of the
BSE-TDA method is no longer as good, though it is slightly
better than CIS(D). The BSE-RPA is the worst and generates the
largest error. Finally, CIS performs poorly for S, but quite well for
S,; again, there must be a nonintuitive cancellation of errors here.

Finally, we consider the final, extreme “molecular” case
whereby the on-site energy difference is now twice as large as the
hopping integral (V,,., = —2.0). As Figure 7 shows, for S, CIS
and TDHF generate quite large errors (as large as 0.05) as U
increases from 0 to 1.2, overestimating the energy. CIS(D) and
CIS(D,) give smaller errors compared with the BSE methods as
the latter underestimate the energy. CIS(D,,) gives the most
accurate results for S;; however, surprisingly, CIS(D,) provides
the most accurate results for S,. For S,, CIS and TDHF also
overestimate the energy, but the errors are smaller compared
with S;. BSE methods are not as reliable as CI methods in this
case.

Overall, clearly BSE methods perform best for metallic and
semiconducting systems, and CI methods perform best for
insulating systems. That being said, though, there is no obvious
pattern for identifying the exact performance of each specific

algorithm.

4. DISCUSSION

The results above (in section 3) have compared CI methods
versus BSE methods for calculating the excitation energy of the
first and second excited singlet states. For all of the cases studied,
we did not find a universally optimal approach that can generate
relatively small errors for every system, though it is clear that the
BSE-TDA method behaves better for metallic and semi-
conducting systems and gradually loses its advantage when the
system becomes more “molecular”. Here we analyze several
aspects that affect the performance of BSE: (i) the reliability of
the GW approximation, (ii) the influence of the screened
correlation strength, and (iii) the effect of the non-self-consistent
approximation (i.e., ignoring the frequency dependence of W¥)
for BSE.

4 A. GW Approximation: Strengths and Weaknesses. In
ref 40, we demonstrated that the GW method holds comparative
advantages versus traditional quantum chemistry approaches for
calculating the ionization potentials and electron affinities across
a large range of Hubbard-like Hamiltonians. However, the same
conclusion did not hold for all orbitals (unpublished); in fact, we
found that GW can generate accurate orbital energies only for
HOMO and LUMO for these model systems. To demonstrate
this state of affairs, we consider the metallic system as an example
and plot the Z-factor for the metallic system in Figure 8a. One
can see in Figure 8a that only the HOMO and LUMO Z-factors
are consistently very close to 1, indicating that the GW
approximation works well for these two orbitals. For other
orbitals, however, the Z-factor in some cases is much smaller than
1, which implies that a non-self-consistent G,W, calculation
cannot be reliable. To further demonstrate this, we plot the
frequency dependence of the self-energy for HOMO and
HOMO-3 at U = 0.7 in Figure 8b. According to ref 40, we
express the dynamic part of the self-energy for HOMO and
HOMO-3 as

Metallic system, Va”=0.0

—X * * —
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(a)

Metallic system, Va“=0.0, U=0.7

-0.15r

023 om0-3

Figure 8. (a) Z-factors (eq S0) for the metallic systems and (b) the
dynamic correlation part of the self-energy ¢ (eq 116) as a function of @
for HOMO and HOMO=-3 at U = 0.7. In (a), only the HOMO and
LUMO Z-factors are consistently very close to 1 for any repulsion
energy. In (b), i o(®) is very flat and smooth at @ = &, while
X omo—3(@) is very sharp at @ = &,,,_3, indicating that GW (or, really,
GoW,) will be meaningful for the HOMO but not for HOMO—-3 when
U=0.7.

50-L2(2;

jbke 1

(iplib)Giplke)
o + Q}DH —ef -y

1

Ly () ek ]M

jbk
hw — Q?DH - SaH + in T (116)

a
where p = HOMO or HOMO-3. (Note that Q" in eq 116
corresponds to positive TDH eigenvalues.) It can been seen from
Figure 8b that Xf...(@) (blue line) is very flat and smooth at @ =

ORe Z(gft
[0)

Ehomoy SIVING rise to a very small derivative ). According

to eq 50, the Z-factor for HOMO is therefore very close to 1. In
contrast, Xi.o_3(@) is very sharp at @ = €y4n0_3 leading to a
very small Z-factor (~0.2 from Figure 8a), and indicating the
failure of the GW approximation for HOMO=3 at U = 0.7. The
same conclusion holds for doped and molecular systems.

In summary, the GW approximation works well when the
quantities —Q{ " + e and QPH + ¢! are far away from the
Hartree orbital energies, which is true only for the HOMO and
LUMO in our tested systems. (See eq 116.) Thus, as a
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Figure 9. Dynamic screening effects for various 1D Hubbard chains. Here we plot W%, (o = 0) (eq 68). U = 0.7 for all systems. Note that the more
insulating the system is, the less screening it shows. The screening of the extreme molecular system (bottom-right) is only one-third in strength

compared to the metallic and doped systems.

compromise, we shifted the orbital energy by the same amount
(egs 51 and 52) when performing all BSE calculations. The BSE
results might be improved in this paper if we can find more
accurate quasiparticle energies.

4.B. Screened Correlation Effects. The strong perform-
ance of BSE-TDA for the metallic and the semiconducting
systems in Figures 3—7 is consistent with the fact that BSE is

popular in the solid-state community where screening is
essential. To visualize screening, in Figure 9, we plot the dynamic
screening interaction VV,’;”W
energy to U = 0.7. As shown in Figure 9, the metallic system and

for all systems, setting the repulsion

doped systems (left panel) show more screening effects than the
molecular systems (right panel), especially when the HOMO/
LUMO gap is large. The effective screening for the extreme
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molecular system (bottom-right) is only one-third in strength
compared to that of the metallic and doped systems. This
decrease in screening must degrade the performance of the BSE-
TDA method. Future work must investigate whether this
preliminary conclusions holds up for ab initio calculations or
model problems with long-range Coulombic electron—electron
repulsion energies (i.e, beyond the local interaction U of the
Hubbard model).

4.C. Self-consistent and nonself-consistent BSE. Finally,
a few words are in order about self-consistency. In this work, we
have performed a non-self-consistent calculation for BSE by
ignoring the frequency dependence of W7, i.e., expressing K” via
eq 66. Alternatively, one can take the frequency dependence of
WF into account and apply the full expression of K* (eq 47) to
solve the BSE equation self-consistently. To compare the results,
we have in fact performed several self-consistent calculations, and
we find that for both TDA and RPA the self-consistent version
and the non-self-consistent version of BSE generate almost
exactly the same results. Thus, any BSE errors reported here are
not from a lack of self-consistency.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have reviewed BSE theory as well as a few widely
used CI theories and we have systematically compared their
performances for the calculation of the first two excitation
energies for several finite 1D Hubbard chains. While BSE-RPA
always underestimates the excitation energy for systems with
large repulsion energy and behaves poorly compared with CI
methods, BSE-TDA slightly outperforms the CI methods for
metallic and semiconducting systems. For insulating molecular
systems, BSE-TDA is not as accurate as CIS(D) and CIS(D,,). To
explain these differences, the most obvious reason would be the
choice of initial orbitals and orbital energies, Hartree or Hartree—
Fock. Note that in this study our starting point is a direct Hartree
calculation without any DFT functionals, and we have shown in
ref 40 that these Hartree orbitals can be unreliable without any
correction. Thus, there is always the question of whether BSE
would be improved if more accurate quasiparticle energies can be
obtained in some other fashion; recall that our GW calculations
yield meaningful orbital corrections only for the HOMO and
LUMO. We intend to address this question shortly.

In the future, several other questions must also be addressed.
First, in order to make contact with the solid-state and materials
literature, it will be essential to work with larger model systems.
In such a case, in order to push finite Hubbard models beyond
eight sites and recover exact excitation energies, one will need to
implement a more sophisticated eigensolver, e.g., a density
matrix renormalization solver.”® Alternatively, it will also be
crucial to implement periodic boundary conditions.

Second, as we have already demonstrated, the performance of
BSE (relative to quantum chemistry CI methods) is inextricably
tied to the strength of the screening tensor (i.e,, how well one
electron’s charge is screened by the other electrons). For such a
quantity, one may question whether the Hubbard model is the
correct starting point for our analysis. How will our results
change when we apply BSE and CI methods to truly ab initio
calculations or model problems with long-range Coulombic
forces, where the screening tensor may look very different from
the present article?

Both of these outstanding questions will be addressed in a
future publication.

B APPENDIX A

Here we give a brief derivation of eq 4a starting from eq 3. To
derive eqs 4a and 4b, we first apply an external time-local one-
electron potential #i(x,, x}; t). In the formulation of second
quantization, assuming a Schrédinger representation, this
potential takes the form

I:Ism(tz) = /dxlz /dxz @T(Xz)ﬁ(xv X t2)‘i‘(xé) (A1)

Vice versa, if we define a quantity u(x,, t; x}, t5) = fi(x,, x5;
t,)8(t, — t5), we may write

7y eX ’ e AN T
A7) = [axg fax, [ag ¥ tute, b x, 5)P()
(A2)
For shorthand, as usual, we will now denote u(2,2") = u(x,, t,; x5,
t).

Now, the total Hamiltonian is H,,.; = H + ™, where H is the

standard time-independent electronic Hamiltonian that includes
all Coulomb interactions. In the interaction picture, the external
applied Hamiltonian becomes

() = Mg e (A3)
/ syt NG(er

= [ax, [ax [a 90, 0)u, 208, 1) (a4)

At this point, if we invoke the adiabatic Gell-Mann and Low

theorem,” we find that the one- and two-particle Green’s
functions can be written as

i (NITSP¥ (1IN

G(1, 1) = — k
(1, 17) f (N,IT[S]IN,) (A5)

G,(12;1'2) = (_i)z (TSP (D) )% (1)1IN)
AT h <N0|T[§]|NO)

(a6)

Here we have replaced IN) (the true many-body ground state) by
ING) (the ground state without any applied perturbation). The
function § is defined by

S= expli—% / dt, PIf’“(tz)] (A7)

_ exp[—% [ : 29 (2)u(2, 2’)@'(2)] (A8)

In all expressions above, T denotes time ordering.

Finally, it is straightforward to derive eq 4a in the paper. From
eqs AS and A6, it is clear that the functional differential of G,(1,
1) is

i (NOIT[5§‘i‘(1)‘i‘T(1’)]INO)

8Gy(1, 1) = —— (NI T[STING)
- Gy, 1y T
(NI TISTING) (49)

A

Furthermore, to evaluate 55, we differentiate eq A8 and find

58

ot f & &2 ¥ (2)su(2, 2))8(2, 2)¥(2)
(A10)
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and therefore
6G,(1,1') = fdz d2' 6u(2, 2')[-G,(12; 1'2'")

+ G,(1, 1)G,(2, 27)] (A11)

Note that we have added a positive sign to the #; time index to
ensure the correct ordering of field operators. The functional
derivative of G,(1, 1) with respect to u(2, 2') is thus

6G(1,1')

=-G,(12; 121 + G,(1, 1)G,(2, 2
5u(2, 2) ,(12; ) (1, 1)Gy(2,27)

(A12)

which completes the derivation of eq 4b. Finally, to derive eq 4a,
we simply insert the definition u(2,2") = u(xy, t,; %5, ;) = it(x,, %5;
£,)8(t, — t;), integrate over £, and take the derivative

85G,(1, 1)

5ﬁ(x2, X5; tz) '
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