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ABSTRACT: We present the formalism and implementation
of quasi-particle self-consistent GW (qsGW) and eigenvalue
only quasi-particle self-consistent GW (evGW) adapted to
standard quantum chemistry packages. Our implementation is
benchmarked against high-level quantum chemistry computa-
tions (coupled-cluster theory) and experimental results using a
representative set of molecules. Furthermore, we compare the
qsGW approach for five molecules relevant for organic
photovoltaics to self-consistent GW results (scGW) and
analyze the effects of the self-consistency on the ground
state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant
improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives.

1. INTRODUCTION
The sufficiently accurate prediction of photoionization
processes is still a serious computational challenge. The main
workhorse for medium and large sized systems is the Kohn−
Sham density functional theory (KS-DFT).1,2 As is very well-
known, using KS-DFT eigenvalues (especially using semilocal
functionals) for computational spectroscopy has, however,
various fundamental and practical limitations. Moreover ΔSCF
ionization energies, which are more accurate, are in general only
applicable to obtain the first ionization energies.3−5 An
approach promising better accuracy for the calculation of
single particle excitations is the GW-method. Its central object
is the Green’s function G.6−9 It is calculated by solving the
Dyson equation that relates the full (interacting) Green’s
function to a known noninteracting reference one, G0, via a self-
energy Σ. Depending on the starting point, G0, Σ adds or
corrects exchange and (dynamical) correlation. In GW theory Σ
is approximated evaluating the Fock diagram, however
employing a screened interaction W. Since the Green’s
function, G, exhibits (complex) poles that describe the
(charged) excitation energies (and their lifetimes),10,11 GW
theory represents a simple and transparent framework for the
investigation of ionization processes.
Since GW comes with a substantial computational effort, a

great variety of simplified flavors of GW are in use, the most
common being so-called G0W0 approximation.9 It treats the
self-energy Σ as a first order (i.e., nonselfconsistent)
perturbation acting on a KS or Hartree−Fock (HF) reference
system. It produces sizable corrections, in particular to the
energies of the frontier orbitals, at moderate computational

cost; thus medium sized molecules can be treated efficiently.
These advantages are reflected in an increasing number of
applications in quantum chemistry.12−50

However, the lack of self-consistency in G0W0 implicates
undesirable shortcomings: Both, G and the polarization P, that
enter the calculation are imported without change from the
underlying reference calculation (KS or HF). As a consequence,
G0W0 depends on the choice of the reference systems, e.g., the
exchange-correlation (XC) functional of KS-DFT calculation.
Furthermore, there is no update in the spatial shape of the
orbitals, so the ground state density of G0W0 reproduces the
one of the reference theory.
These limitations are overcome by imposing self-consistency.

However, due to the fact that fully self-consistent GW (scGW)
is computationally expensive,25,34,51−59 it is highly desirable to
explore the potential of partially self-consistent schemes. In this
work we follow a procedure toward partial self-consistency that
is numerically still tractable and gives promising results: the
quasi-particle (QP) self-consistent GW (qsGW). For solids
there is already encouraging experience with this ap-
proach,60−67 and first applications to atoms36 and small
molecules59 also seem promising. Here it is adapted for use
in a general quantum chemistry code. Our results indicate that
the starting point dependence, observed at the G0W0 level,
which can easily exceed 1.0 eV,25,38,40,52,59,68−75 is completely
removed in qsGW.
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Our calculations suggest that the effects of orbital updates
can be often neglected in comparison to the correction coming
from the shifts in the pole positions of the Green’s function.
Therefore, we also implement and investigate a simplified
version of qsGW in which the orbitals are kept fixed at the
reference (DFT of HF) result, and only the QP-energies are
updated (eigenvalue only GW, evGW). Also this and similar
schemes have been successful already in implementations for
solids76−78 and first applications in molecular geometries.26,41,49

It is an approximation especially beneficial for larger systems
since it is computationally less demanding than scGW (and
qsGW). An important aspect of our work is that we present a
systematic comparison between qsGW and evGW providing a
validation of evGW. In particular we find that in evGW the
starting point dependence is strongly reduced as compared to
G0W0.
An important aspect of testing a new methodology is

comparison with other approaches. A generally popular
reference are experimental values. This commonly adopted
practice can however be misleading in the case of ionization
energies. One difficulty is that the experimental ionization
energies are often adiabatic, whereas those calculated within the
GW scheme are always vertical. In addition intrinsic effects
originating from zero-point vibrations and relativistic effects
(beyond those that enter via the reference calculation) are
usually not included and are also not in our current approach.
(We mention that at the G0W0 level a two component
extension has been implemented recently to account for spin−
orbit effect for closed shell molecules.47) Therefore, a
comparison to more accurate theoretical results would be
more reliable. In this work, we make use of the possibility to
compare our results to coupled-cluster singles and doubles
augmented by a perturbative treatment of triple excitations
(CCSD(T))79,80 employing the same atomic structure and
basis set.81 Doing so rules out experimental uncertainties,
temperature and zero-point renormalization effects, etc., but
also basis set errors to a large part.
Our paper is organized as follows: In section 2.1 we present

the formalism that is used within our implementation of qsGW.
Section 2.2 explains the details of the implementation. The
third section validates the qsGW method. First, our
implementation is tested for internal consistency (section
3.1), i.e. we test the convergence behavior with the basis set and
the number of iteration cycles. Second, the qsGW method is
assessed using first ionization potentials (IP) of a set of 29
representative molecules (section 3.2).40,52 Third, we compare
higher IPs with experimental data (section 3.3) and with results
using the scGW implementation within the FHI-AIMS software
package52 (section 3.3). Furthermore, we evaluate the ground
state densities and the dipole moments in section 3.5. In
section 4 we compare the results of qsGW to those of G0W0.
In section 5 we investigate two different approaches of partial

self-consistency. We first introduce and benchmark our
implementation of the evGW method (self-consistency in the
poles positions of G and the response function) versus qsGW
and CCSD(T). In section 5.2 we test the GevW0

49 approach
(self-consistent only in the poles positions of G) versus qsGW.
Finally section 6 contains an analysis of the computational
performance and scaling behavior of the presented methods.

2. METHOD
2.1. qsGW Approximation. We are aiming at an

approximate self-consistent solution of the Dyson equation

= − − Σ −G E E H G G( ) ( [ ] [ ]) 1 (1)

Here, H[G]denotes the Hartree contribution incorporating the
external potential (respectively the ions), the kinetic con-
tribution, and the Hartree potential. The latter depends on the
charge density and hence is considered as a functional of G.
In the GW-approximation9 the self-energy is given in terms

of the causal Green’s function

∫ω π ω ω ω ωΣ ′ = ′ ′ + ′ ′ ′ ηω′i G Wr r r r r r( , , )
2

d ( , , ) ( , , )ei

(2)

and the screened Coulomb interaction W. η denotes a positive
infinitesimal. W is obtained from the following equation

∫ ∫ω ω ω′ = ′ + ″ ‴ ″ ″ ‴ ‴ ′W v v P Wr r r r r r r r r r r r( , , ) ( , ) d d ( , ) ( , , ) ( , , )

(3)

with v(r, r′) = e2|r − r′|−1 denoting the bare Coulomb kernel.
Ignoring vertex corrections (consistent with the construction of
Σ) the polarization P is calculated within the random phase
approximation (RPA)

∫ω π ω ω ω ω′ = − ′ ′ + ′ ′ ′ ηω′iP G Gr r r r r r( , , )
2

d ( , , ) ( , , )ei
RPA

(4)

2.1.1. Quasi-Particle Equation and Quasistatic Approx-
imation. A solution of eq 1 is constructed by introducing a
quasi-spectral representation

∑ ψ ψ
ε η ε μ′ = ̅ ′

− + −i
G z

z z

z z z
r r

r r
( , , )

( , ) ( , )

( ) sgn( ( ) )n

r n l n

n n

, ,

(5)

The right and left eigenvectors, ψr,n(r, z), ψl,n(r, z), and
eigenvalues εn(z) represent quasi-particle/hole (QP/QH)
states and energies, μ being the chemical potential. The bar
in ψ̅l,n(r′, z) denotes the complex conjugate. The (complex)
poles z of the Green’s function 5 follow from the pole
condition

ε− =z z( ) 0n (6)

The QP-orbitals as well as the energies are found as solutions of
the QP-equations

ε ψ− − Σ · =z H G G zr( ( ) [ ] [ ]) ( , ) 0n r nH , (7)

ψ ε· − − Σ =z z H G Gr( , ) ( ( ) [ ] [ ]) 0l n n, H (8)

Within qsGW the self-energy 2 is approximated by an
energy-independent, Hermitian matrix. In the literature differ-
ent variants have been proposed for such approximate self-
energies.61,62,82 Here we follow Faleev et al.61

ε εΣ̃ = Σ + Σ′ ′ ′ ′
1
2

( ( ) ( ))nn nn n nn n (9)

This approximation takes into account the quasi-particle part
of the Green’s function and neglects lifetime effects. One of its
merits is that it implies a consistent treatment of the
renormalization factor Z within the calculation of many
observables.61

Removing the energy dependence from the self-energy has
important computational benefits. First, the energy integration
in eq 2 can be performed analytically. Second, the approximate
self-energy takes a Hermitian form hence left and right
eigenvectors coincide
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ε ψ− − Σ̃ · =H G G r( [ ] [ ]) ( ) 0n nH (10)

and the poles are real, reflecting an effective single particle
theory. Consequently, the Green’s function of qsGW takes the
form

∑ ψ ψ
ε η ε η′ = ̅ ′

− + −i
G E

E
r r

r r
( , , )

( ) ( )
sgn( )n

n n

n n (11)

2.1.2. Kohn−Sham Initialization. An iterative procedure of
solving eqs 10 and 11 self-consistently is typically initialized
with a KS Green’s function constructed from the KS orbitals
ψn
(0)(r) and energies εn

(0)

∑ ψ ψ
ε η ε η

′ = ̅ ′
− + −i

G E
E

r r
r r

( , , )
( ) ( )

sgn( )n

n n

n n

(0)
(0) (0)

(0) (0)
(12)

2.2. Implementation. qsGW has been implemented within
a local version of the TURBOMOLE package, building on the
routines for the calculation of the G0W0 self-energy.

40

The solution of eq 10 is organized in an iterative scheme
starting from the KS-initialization eq 12. The QP-orbitals of the
(i+1)th iteration ψn

(i+1)(r) are expressed in the reference orbitals
of the previous iteration

∑ψ ψ=+
̲

+
̲r r( ) ( )n

i

n
n n
i

n
i( 1) ( 1) ( )(

(13)

In the reference basis ψn
(i)(r) eq 10 takes the form of an

eigenvalue problem

∫ ∫∑ ψ δ
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(
(14)

The diagonalization of eq 14 yields updates in εn′
(i+1) and ′

+
n n
i( 1)( .

With the latter new orbitals ψn
(i+1)(r) are constructed via 13.

These are orthonormal by construction due to the hermiticity
of the operators in eq 14.
Since hermiticity gives the present scheme a form similar to

an effective single particle problem we can take advantage of
established (DFT) routines to calculate the Hartree Hamil-
tonian HH[n

(i+1)], n(i+1) = ∑i=1
N |ψ(i+1)

n(r)|2 employing an
updated density.
For the computation of the matrix elements of the self-

energy

Σ = ⟨ |Σ | ̲⟩ + ⟨ |Σ | ̲⟩̲ E n n n E n( ) ( )n n x c (15)

we recall the expressions already derived before in the context
of the G0W0 implementation.40 The expression for the real part
of a matrix element of the correlation part Σc of the self-energy
reads

∑ ∑

∑
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c
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2 2
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2 2
(16)

where ρm and Ωm denote the two particle excitation densities
and energies, and η ̅ is a positive infinitesimal. To express the
exchange part we employ the common notation of the
Coulomb integrals

∫ ∫| = ′ | − ′| ′ ′pq rs p q r sr r r r
r r

r r( ) d d ( ) ( ) 1 ( ) ( )
(17)

p(r), q(r), etc. denoting single particle orbitals, e.g. of QP or KS
type.
The unscreened exchange part of qsGW is identical to the

exchange contribution of HF theory

∑⟨ |Σ | ′⟩ = ̲| ̲ ′n n nn nn( )x
n

occ

(18)

where the sum is over all occupied (QP-)orbitals.
Employing the quasi-spectral representation, eq 5, the new

self-energy is calculated from the updated pole positions εn′
(i+1)

and orbitals ψn
(i+1)(r). This uses the established routines from

the G0W0 implementation, taking into account all changes, i.e.
in both G and W.
After the approximation eq 9 is applied, the next iteration is

started by solving again eq 14. This procedure is continued
until a self-consistent solution is achieved.

2.2.1. Convergence Criteria. In terminating the self-
consistency cycle different convergence criteria are conceivable.
An obvious choice would consider the change of the QP
energies from one cycle to the next. However, motivated by
earlier work,52 we check for the norm of the differences of the
Green’s functions

∑

∑

Δ = | = − = |

= | = − = |

̲ ̲
−

−

N
G E G E

N
G E G E

1 ( 0) ( 0) (19)

1 ( 0) ( 0) (20)

n n
n n n n

i

n
nn nn

i

Orbitals
2

,

( 1)

Orbitals
2

( 1)

The last step is valid when Gn,n is diagonal, i.e. given in the
orthonormal eigenstates of the QP-equation. Typically the
iteration is stopped if Δ < 10−7 is achieved. This corresponds to
orbital energies being converged to within 1 meV.

2.2.2. Linear Mixing. The iterative approach introduced
above does not always converge into a fixed point solution. To
improve stability and also rate of convergence we introduce a
linear mixing scheme that mixes into the updated Green’s
function a contribution of the previous one to decrease the step
width between two iterations in a similar manner as done for
iterative procedures for the HF or DFT ground state.
Therefore, strictly speaking we do not solve eq 14, but

ε λ λ ε ψ− + Σ + − =+ +H G G[ ( ( [ ] [ ]) (1 ) )] 0n
i i i

n
i

n
i( 1)

H
( ) ( ) ( ) ( 1)

(21)

Our tests indicate that λ = 0.3 is a reasonable choice which
converges all studied molecules and, on average, speeds up the
convergence by factor 4 as compared to no mixing. As an
example Figure 1 shows the convergence using different mixing
parameters for BF.

3. VALIDATION OF qsGW
In this section we will first confirm the internal consistency of
the implemented qsGW method. Second, we will benchmark,
for a test set of 29 representative molecules, qsGW versus
ΔCCSD(T) first IPs and experimental results of higher IPs of 5
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organic molecules. Finally the results of qsGW are compared to
full self-consistency GW (scGW) literature results to validate
the accuracy of qsGW and to shed light on the internal features
of the quasi-static approximation.
3.1. qsGW Internal Consistency. We investigate the basis

set dependence of the implemented qsGW method and extract
a basis set which yields a good trade-off of computational cost
and accuracy. Furthermore, we will show that the results of
qsGW are independent of the chosen initial functional in the
initializing calculation.
3.1.1. Basis Set Convergence. We start the study of the basis

set dependence of the qsGW IPs by a comparison for three
small molecules, water, nitrogen, and methane. The results
obtained using the def2-SVP, def2-TZVP, def2-TZVPP, and
def2-QZVP basis set series are shown in Figure 2.83,84 The
results are plotted against the inverse of the size of the basis set.
We take the ordinate offset of the linear extrapolation (the
dashed lines in Figure 2) of the def2-TZVP and def2-QZVP as
an estimate for the extrapolated complete basis set limit (CBS)
result. This same approach has been used and tested in two of

our previous studies for G0W0 comparing also to other basis
sets.40,48 In these studies it turned out to have an estimated
error typically within 50 meV for G0W0. Since the same physical
quantities enter in qsGW as in G0W0, it is reasonable to assume
that the same holds for qsGW as well. Indeed for these three
molecules we observe the same rate of convergence as for
G0W0.

40 We therefore use this approach also for qsGW, at least
as long as thoroughly tested extrapolation schemes as known
for Hartree−Fock or coupled-cluster energies are not available.
In a similar manner as shown in Figure 2, we have performed

a survey over a larger subset of our test set of molecules and
calculated the CBS limit for each individual molecule; the
overall convergence behavior is indicated in Figure 3. For the

def2-SVP basis set we find a maximum error larger than 0.8 eV.
Furthermore, the largest deviations are seen for systems with
strong polar covalent bonds (H2O, LiH, and NH3). (This has
already been observed for G0W0 in ref 40). Our interpretation is
that the def2-SVP basis set is not flexible enough to describe
the high charge accumulation at one of the bond partners in
ionic bonding situations. Therefore, the def2-SVP results have
been excluded from the procedure to obtain the CBS limit.
Overall we find that the def2-TZVP basis shows a maximal

deviation of roughly 0.4 eV. With the higher polarized def2-
TZVPP basis set, for most molecules the deviation drops below
0.3 eV. Previously we have shown that for larger molecules the
error actually is smaller.48 Beyond def2-TZVP the quality of the
GW results mainly depends on the total number of basis
functions, not necessarily the quality of the basis functions at
the individual atoms. Moreover, the CCSD(T) results are
available in the def2-TZVPP basis set, making those the ideal
candidate for an accurate and unbiased comparison. We hence
take the def2-TZVPP basis set as a reasonable compromise for
the current study, with an uncertainty due to the basis set of
maximally a few hundred meV. For highly accurate calculations
def2-QZVP basis sets are however recommended. Using these
for self-consistent calculations routinely, however, requires
further parallelization of the response and GW routines in
TURBOMOLE.

3.1.2. Starting Point Dependence. A major advantage of
self-consistent GW schemes is that the fixed-point found in the
iteration scheme is for the commonly used starting points

Figure 1. Flow of the convergence of the norm of the difference of the
Green’s functions from two iterations with the qsGW iteration for the
BF. The termination criterion is indicated by the solid line.

Figure 2. Convergence test of the qsGW-ionization potential with
respect to the basis set (using, from left to right, the def2-QZVP, def2-
TZVPP, def2-TZVP, and def2-SVP basis sets) of water, nitrogen, and
methane. For the nitrogen dimer def2-TZVP and def2-TZVPP are
identical. The intersection of the linear extrapolation of the def2-TZVP
and def2-QZVP points with the ordinate gives an estimate for the
complete basis set limit (CBS).

Figure 3. Change of the qsGW-ionization potential ϵ with increasing
size of the basis set (using the def2-SVP, def2-TZVP, def2-TZVPP,
and def2-QZVP basis sets)83,84 using the complet basis set limit (CBS)
ϵ ̅ as reference. The CBS is obtained from a linear interpolation over
the inverse of the number of basis functions, see also Figure 2.
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(largely) independent of the initialization.85 This is true also for
qsGW, as is illustrated in Figure 4. The convergence of the

HOMO energy with increasing cycle number starting from
different Kohn−Sham XC-functionals is shown for the example
of benzene. In this work we explore the LDA,86 PBE,87 PBE0,88

and PBE0(X%) (PBE0 with X % exact exchange). The iterative
procedure converges into exactly the same solution, independ-
ent of the starting point.
3.2. First Ionization Potential: Comparison to ΔCCSD-

(T). As a first quantitative test we calculate the ionization
energies/potentials (IP) for a test set of 29 molecules ranging
from H2 to tetrathiafulvalene.89 We focus on IPs since (i) they
are an important indicator to understand charge transfer
processes, (ii) experimental reference data is available, and (iii)
one has access to results using more accurate theories (at least
for small size molecules). The first IP is trivially extracted from
the calculated data being the (negative) energy of the highest
occupied molecular orbital (HOMO). These and all following
results have been calculated using the def2-TZVPP basis
set.83,84

The G0W0 results have been calculated initialized from DFT
using the PBE functional, denoted G0W0@PBE. In the
calculation of the correlation part of the self-energy the positive
infinitesimal η was chosen so that all (orbital-)energies are
converged within 1 meV. Typically η = 1 meV was used. For all
calculations the RI approximation was used. It has been shown
previously that the errors introduced by RI, applying the
standard auxiliary basis functions,84 are, except for very small
systems like He, Ne, and H2, below 100 meV.48 The parameters
for the qsGW calculations were chosen to converge the pole-
positions within 1 meV.
The obtained IPs are compared to results obtained by

employing the coupled-cluster method in the CCSD(T)
approximation,81 using the same atomic structures and same
basis set as were used in the GW calculations (def2-TZVPP).
The deviations in the calculated HOMO energies using the

different flavors of GW to ΔCCSD(T) IPs are displayed in
Figure 5. Together with the experimental (vertical) IPs the
calculated IPs are reported in Table 1. The data shows an

improved agreement of qsGW with ΔCCSD(T) in comparison
to the G0W0@PBE results, by up to 1.41 eV. The mean
absolute error (MAE) improves by 0.40 eV, see Table 2, from
the single-shot G0W0 to the self-consistent qsGW estimates.

Figure 4. Convergence of the HOMO energy for benzene with the
qsGW iterative cycle using the def2-TZVPP basis set. In this example
the self-consistency cycle was initialized with a KS-DFT Green’s
function calculated employing LDA, PBE, and PBE hybrid XC-
functionals with an exact exchange contribution of 25% (PBE0), 50%,
75%, and 100%. For comparison also the G0W0, the experimental, and
ΔCCSD(T)81 results are shown.

Figure 5. Deviations of the HOMO energies using G0W0@PBE and
qsGW with IPs from ΔCCSD(T)81 calculations. The corresponding
numerial data is provided in Table 1, and statistical evaluation of the
deviations is shown in Table 2.

Table 1. Calculated (Minus) HOMO Energies from qsGW
and G0W0 (Initialized from DFT Employing the PBE
Functional Using the def2-TZVPP Basis Set) as well as
Experimental (Vertical) Ionization Potentials and Estimates
from ΔCCSD(T)81b

molecule exp. ΔCCSD(T)81 G0W0 qsGW

H2 15.42 16.21 15.57 16.04
Li2 5.11 5.20 4.95 5.30
Na2 4.89 4.92 4.78 4.99
Cs2 3.70 3.58 3.40 3.57
F2 15.70 15.46 14.55 15.91
N2 15.58 15.54 14.69 15.86
BF 11.00 11.14 10.43 11.17
LiH 7.90 7.93 6.47 7.98
CO2 13.78 13.67 12.96 14.06
H2O 12.62 12.61 11.87 12.95
NH3 10.85 10.85 10.24 11.11
SiH4 12.82 12.70 12.11 12.96
SF4 12.30 12.62 11.88 13.03
Au2 9.50 9.10 9.84 9.12
Au4 8.60 7.67 7.45 7.62
methane 14.35 14.36 13.79 14.46
ethane 12.00 13.12 12.22 12.95
propane 11.51 12.13 11.54 12.31
butane 11.09 11.58 11.39 11.90
isobutane 11.13 11.68 11.26 12.00
ethylene 10.68 10.70 10.24 10.68
acetone 9.70 9.71 8.84 10.08
acrolein 10.11 10.20 9.23 10.55
benzene 9.24 9.34 8.87 9.40
naphthalene 8.09 8.04 7.68 8.22
thiophene 8.85 8.96a 8.48 9.02
benzothiazole 8.75 8.70a 8.24 8.83
1,2,5-thiadiazole 10.11 10.09a 9.65 10.18
tetrathiofulvalene 6.72 6.42a 5.98 6.56

aThis work. bAll values are in eV, and all calculated results are
obtained with the def2-TZVPP basis set.
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Furthermore, the increasing trend in the discrepancy is cleared
within qsGW.

3.3. Higher Ionization Potentials: Comparison to
scGW and Experiment. In this section we discuss the
accuracy of qsGW for the calculation of higher IPs. The higher
IPs are difficult to access via CCSD(T). For the first ionization
energy the total energy difference between the neutral and
cationic ground state has to be calculated. Calculating the latter
correctly is already delicate. For the higher ionization energies
excited states of the cation have to be calculated. This makes
these calculations very cumbersome (sometimes impossible).
We therefore fall back to experimental values as references.90

We extended our test with five organic molecules that are
candidates for optical devices and for which also experimental
data is available. These molecules have already been
investigated with scGW by Caruso et al.52,57 We will compare
the G0W0, qsGW, and scGW spectra to experimental results.
The results are shown for naphthalene in this section; the
results on three more molecules (thiophene, benzothiazole, and
1,2,5-thiadiazole) are available in the Supporting Information.
In Figure 6 higher IPs using G0W0 and qsGW as well as

scGW are compared to the experimental (vertical) IPs for

naphthalene. The G0W0 and qsGW methods show similar
behavior as described in the previous section. Furthermore, IPs
from qsGW and scGW give similar agreement with experiment.
qsGW clearly outperforms scGW for the lowest ionization
energies, but for the higher ionization energies scGW becomes
better. Both self-consistent methods, qsGW and scGW, remove
most of the energy dependence in the error of G0W0. Actually,
we find a rigid shift of about 0.5 eV for all energy levels between

qsGW and scGW for nearly all molecules investigated. A similar
picture is observed for the three further molecules where we
compare the higher ionization energies between qs and scGW
(see the Supporting Information). For these rather similar
aromatic systems we observe in all cases a shift ∼0.5 eV.
Whether this holds for a broader class of molecules needs
further systematic investigation, especially since the molecules
in this comparison exhibit very similar bonding situations.
The shift can be understood by recalling the split of the

Green’s function into a quasi-particle part and an incoherent
part

= + ̅G ZG GQP (22)

In qsGW the Z-factor is unity and the incoherent part G̅ is
neglected, while in the scGW both are taken into account. We
suggest that G̅ is only weakly energy dependent, so that its
contribution Σ̅ = iG̅W to the self-energy is also a relatively flat
function of energy. The current data, and the results by Koval
et al.,59 show that for molecules the effect of the quasi particle
approximation however has the opposite sign as in solids.
Vanschilfgaarde and co-workers argue that calculating the
response from the full green function, as in scGW, would lead
to underscreening and hence overestimation of the ionization
energies.62 This is indeed what one would conclude from
results on the homogeneous electron gas.91 In the present
results on molecules scGW underestimates and qsGW over-
estimates. A systematic study aiming to understand this
inversion including many more molecules, exhibiting different
kinds of bonding, is currently in progress.

3.4. Comparison to qsGW Literature Results. Recently
Koval et al. also compared qsGW and scGW for a set of
molecules.59 Their work employs a spectral function technique
on an equidistant energy grid to calculate the convolution of G
and W. Their method ’A’ is the same as the approach used in
this work, Bruneval’s implementation in molgw,36 and the
original implementation by Faleev et al.61 for solids.92

To make a definite test for the agreement between the three
different implementations of qsGW for molecules, we calculate
the helium atom using the basis set employed in the works by
Koval et al. and Bruneval, the correlation-consistent basis sets.93

The results are compared in Table 3. We observe an excellent

agreement with Brunevals results at the meV level. In contrast,
we observe a deviation to the ’A’ method of Koval et al. that is
quite substantial, in the tens of meV range. For comparison
Table 3 also lists the results from the approximate ’B’ method.

3.5. Densities and Dipole Moments. A self-consistent
solution of the GW equations introduces corrections in the
spatial shape of the QP-orbitals in addition to shifts of the pole
positions of the Green’s function. Hence, corrections to the
ground state density as compared to the reference density can
arise.

Table 2. Statistical Measures of the Difference of the
Calculated IP from G0W0 and qsGW to the reference
ΔCCSD(T) IP Accumulated over the Test Seta

G0W0 qsGW

ME 0.57 −0.16
MAE 0.59 0.19
σ2 0.08 0.02
MaxAE 1.49 0.45
MinAE 0.14 0.01

aAll values are in eV.

Figure 6. Deviation of the QP-energies between G0W0, qsGW, and
scGW52 (FHI-AIMS) from experimental ionization energies for
naphthalene. The dashed line indicates the deviation of ±0.5 eV.

Table 3. HOMO Energies for Atomic Helium from qsGW,
Literature Comparisona

basis qsGW B59 qsGW A59 qsGW36 qsGW (this work)

cc-pVDZ 24.346 24.350 24.359 24.359
cc-pVTZ 24.554 24.340 24.320 24.320
cc-pVQZ 24.668 24.751 24.766 24.767
cc-pV5Z 24.705 24.799 24.825 24.826

aAll values are in eV.
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Figure 7 shows the differences between the calculated
electron densities of benzene for DFT(PBE), DFT(PBE0), and

qsGW, showing that the qsGW orbitals are slightly more
localized. This localization is caused by the cancelation of a
large part of the spurious self-interaction of the approximate
DFT functionals. The part of the self-interaction that is caused
by self-screening is not canceled in qsGW.94 Removing this as
well would require the inclusion of more diagrams.95

The enhanced tendency toward localization displays clearer
looking at an ionic molecule like HF, see Figure 8; we observe a
more localized density around the fluoride atom. Furthermore,
the amount of charge on the nonbonding side of the hydrogen

atom is slightly reduced. The trend seen here for qsGW agrees
with the observations of Caruso et al. for scGW.57

An experimentally easily accessible observable characterizing
the ground state density is the dipole moment. The comparison
is given in Table 4. To also be able to compare to scGW we will
present here the systems used by Caruso et al.

While HF typically overestimates the dipole moment of these
molecules, DFT typically slightly underestimates it. In the range
of hybrid functionals the most accurate dipole moments are
obtained from the PBE0 functional. scGW performs com-
parable to PBE0. In contrast, qsGW yields better agreement
with an overall mean absolute error (MAE) of 0.03 D. To make
a definitive statistically sound statement discriminating between
the qsGW and scGW is however not possible due to the small
number of systems. In conclusion, our results support the
general impression that self-consistent GW is a promising tool
to investigate the charge-transfer in molecular interfaces and
other (nanoscale) heterostructures.96

Comparing the differences between sc and qs GW for on one
hand the ionization energies and on the other hand the dipole
moments, we observe a different degree of agreement. The
dipole moments tend to agree better between the two methods
than the ionization energies. We assume this to be related to
the rigid shift we observed between two respective spectra.

4. COMPARISON OF qsGW AND G0W0

Given the qsGW results for the IPs from the previous sections,
we nextevaluate next how well the traditional G0W0 (G0W00th)
is capable of reproducing them if one employs an improved
DFT starting point. One can do so by using parametrized
functionals derived from the PBE0 hybrid functional. In
addition, the G0W0 second order approach49 (G0W02nd),
which takes into account off-diagonal elements of Σ in the QP-
equation and hence an influence of orbital corrections, is also
tested.

4.1. First Ionization Potentials. The HOMO energies
obtained from G0W00th@PBE (traditional G0W0 with a PBE
starting point) have a mean absolute error 0.75 eV and show a
clear correlation between the error and the actual value. With
increasing energy, the error, as compared to qsGW, systemati-
cally increases. Employing a PBE0 starting point improves the
overall agreement with qsGW down to a mean absolute
deviation of 0.42 eV, see Figure 9 and Table 5. Best agreement
is achieved employing the PBE-hybrid based starting point

Figure 7. Diagonal: Ground state electron density of benzene as
obtained from DFT(PBE), DFT(PBE0), and qsGW. Off-diagonal
upper right: Difference in the ground state electron densities: PBE−
PBE0, PBE-qsGW, and PBE0-qsGW, horizontal cut. Off-diagonal
lower left: Same differences, vertical cut. The positions of the atoms
are indicated by the black (carbon) and white (hydrogen) crosses. The
results from the qsGW calculation show a slightly stronger localized
density (blue area) around the H−C pairs in comparison to the
DFT(PBE) calculations.

Figure 8. Difference between the calculated DFT (PBE) density and
the qsGW density normalized on the (initial) DFT density for
hydrogen flouride. The fluoride atom is denoted by a green cross; the
hydrogen atom is denoted by a gray cross.

Table 4. Comparison between Experimental97 and
Theoretical Dipole Moments (Debye), from PBE, PBE0,
PBE0(75%), PBE0(100%), HF, scGW52 (FHI-AIMS), and
qsGWa

LiH HF LiF CO ME MAE

exp. 5.88 1.82 6.28 0.11
PBE 5.60 1.80 5.99 0.24 −0.12 0.18
PBE0(25%) 5.77 1.85 6.18 0.11 −0.05 0.06
PBE0(75%) 6.01 1.93 6.45 0.14 0.11 0.11
PBE0(100%) 6.10 1.97 6.54 0.26 0.20 0.20
HF 6.03 1.95 6.50 0.26 0.16 0.16
scGW52 5.9 1.85 6.48 0.07 0.05 0.07
qsGW 5.83 1.84 6.29 0.07 −0.02 0.03

aFor all calculations the experimental equilibrium bond length was
considered, and the calculations of this work are performed in the
def2-TZVPP basis set.
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employing 75% exact exchange. For this starting point, the
correlation between the error and ionization energy disappears.
Our data also confirms a trend that already appeared in our
earlier work: G0W00th and G0W02th give similar results. This
suggests that off-diagonal elements of Σ give negligible
contributions to the QP-energies.49

4.2. Higher Ionization Potentials. Figure 10 displays the
QP-energies from G0W00th and G0W02th relative to qsGW for
different PBE0 based starting points for naphthalene. In our
example we find best agreement, with qsGW, employing the
starting point with a higher contribution of exchange
(PBE0(75%)). Furthermore, we see in the calculation
initialized from PBE0(75%) no energy dependent trend in
the error, while the trend persists in both G0W00th and
G0W02nd employing a PBE or PBE0 starting point.

5. VALIDATING PARTIAL SELF-CONSISTENCY
Even though computationally more affordable than typical
coupled cluster approaches, qsGW is still too expensive for
systematic screenings over large ensembles of intermediate
sized molecules. Thus, motivated, in this section we test
simplified flavors of qsGW. Our aim is to find an approximation
scheme that captures the dominant contributions included in
qsGW and hence is capable of reproducing results of qsGW, at
a lower computational cost.

5.1. qsGW with Fixed Orbitals: evGW. Our studies of the
charge density for qsGW suggest that orbital updates tend to be
small. Therefore, we next ignore orbital updates in the self-
consistency cycle and take into account only the update in the
pole positions: eigenvalue only GW (evGW).26

5.1.1. Method evGW. Within the methodology described in
section 2.1 turning qsGW into evGW is straightforward, one
only needs to suppress the update in the orbitals between
consecutive qsGW iterations. In other words the machinery
operates solely with the initial set of QP-orbitals ψ(0)(r) and the
orbital update from eq 13 is skipped. In all equations the
orbitals ψ(i)(r) are replaced with ψ(0)(r). Furthermore our
treatment of the quasiparticle equation in evGW neglects off-
diagonal elements of Σ. Finally we discard the static
approximation and restore in the QP-equation the energy-
dependent self-energy Σ. Then, for each pole the QP-equation
is solved self-consistently. Computationally this introduces the
benefit that the Coulomb exchange integrals, see 18, do not
need to be re-evaluated. For instance, the full exchange part of
the self-energy Σx, see 18, needs only one single evaluation.

5.1.2. Comparison to qsGW - First IPs. For the set of
molecules specified in Table 1, the differences between the
evGW estimates of first IPs and the qsGW results are shown in
Figure 11 (see Table 6 for the statistical evaluation). Because
evGW is not self-consistent in the orbitals there is a residual
starting point dependence, which is clearly visible in Figure 11.
It is however significantly reduced as compared to, e.g., G0W0.
In contrast to the findings from the G0W0 before we find best
overall agreement with the qsGW by employing the PBE0
functional (and not anymore the PBE0(75%) hybrid with 75%
exact exchange). Even for pure PBE the overall agreement with
qsGW is better than with PBE0(75%).

Figure 9. Deviation of HOMO energies obtained from G0W00th and
G0W02nd to qsGW. Results are shown for calculations initialized from
DFT, employing PBE and PBE hybrid XC-functionals with an exact
exchange contribution of 25% (PBE0) and 75% (PBE0(75%)). On
average best agreement is achieved employing the PBE0(75%) starting
point, see Table 5.

Table 5. Statistical Measures over the Data from Figure 9a

@PBE @PBE0 @PBE0(75%)

G0W0 0th 2nd 0th 2nd 0th 2nd

ME 0.70 0.67 0.42 0.41 0.11 0.19
MAE 0.75 0.72 0.42 0.41 0.18 0.26
σ2 0.20 0.18 0.05 0.04 0.05 0.23
MaxAE 1.46 1.41 0.90 0.87 0.85 2.41
MinAE 0.17 0.14 0.12 0.10 0.01 0.01

aEvaluated is the difference of the calculated G0W0 and G0W02nd
HOMO energies to the qsGW HOMO cumulated over the test set.
Three different DFT based starting points have been employed. On
average, best agreement is achieved with the PBE hybrid XC-
functionals with a contribution of exact exchange of 75% as the starting
point (PBE0(75%)). All values are in eV.

Figure 10. Comparison of the QP-energies from G0W00th and
G0W02nd with qsGW for naphthalene. Three different DFT based
starting points employing the PBE and the PBE hybrid functional with
25% (PBE0) and with 75% exact exchange (PBE0(75%)) were chosen.
The best agreement, with qsGW, yields the calculation with the
PBE0(75%) starting point.
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5.1.3. Comparison to qsGW - Higher IPs. A comparison of
QP-energies from evGW and qsGW is given in Figure 12 for
naphthalene. The results confirm the findings for the first IPs.
The starting point dependence is strongly reduced, and we find
that the trend in the energy dependence of the error, which was
present in G0W0, is not present anymore for all starting points.
All in all, self-consistency in the poles by itself already produces
very good agreement with qsGW QP-energies for all starting
points.
5.1.4. Comparison to ΔCCSD(T) - First IPs. To further

substantiate the accuracy of evGW we present a comparison to
ΔCCSD(T)81 first IPs over the full test set, see Figure 13. The
statistical analysis, see Table 7, shows that the overall error is
not larger than the error from qsGW. In fact evGW results
exhibit an even better agreement with ΔCCSD(T), especially
when starting from PBE0. Starting from PBE0(75%), PBE0
with 75% exact exchange introduces various spurious outliers.
Summarizing, evGW seems to be a promising alternative to
qsGW leading in practice to results very close to the

ΔCCSD(T) reference, with a typical deviation of a few 100
meV.

5.2. Comparison of GevW0 versus qsGW. So far, our
results indicated that orbital updates have a minor effect on the
pole positions of qsGW. The next question is whether the QP-
energies are as sensitive to the pole positions of W as they are
to the pole positions of G in Σ. To this end we recall an
approximate scheme, GevW0, which we introduced before.49 It
keeps the screened interaction based on the starting point
calculation W0 and introduces self-consistency only at the pole

Figure 11. Comparison of HOMO energies using evGW initialized
from DFT calculations with the qsGW HOMO energies for the test
set. The evGW starting point was constructed from PBE and PBE-
hybrid calculations. The results of evGW show only weak dependence
on the amount of exact exchange in the functional of the initial DFT
calculation.

Table 6. Statistical Evaluation of the Data from Figure 11a

evGW @PBE @PBE0 @PBE0(75%)

ME 0.09 0.12 0.12
MAE 0.17 0.15 0.20
σ2 0.03 0.02 0.06
MaxAE 0.39 0.36 0.85
MinAE 0.01 0.03 0.00

aThe deviation from calculated evGW HOMO energies (from
different PBE and PBE-hybrid starting points) to the qsGW HOMO
cumulated over the test set. With evGW we find best agreement with
qsGW if the PBE0 starting point is employed. All values are in eV.

Figure 12. Deviation of the QP-energies from evGW from different
PBE and PBE-hybrid starting points to qsGW for naphthalene.

Figure 13. Comparison of the HOMO energies using evGW initialized
from different DFT(PBEλ) starting points and qsGW calculations to
the ΔCCSD(T)81 IP energies.

Table 7. Statistical Evaluation of the Data Shown in Figure
13a

evGW

qsGW @PBE @PBE0 @PBE0(75%)

ME −0.16 −0.07 −0.04 −0.04
MAE 0.19 0.15 0.12 0.18
σ2 0.02 0.01 0.01 0.06
MaxAE 0.45 0.47 0.46 1.17
MinAE 0.01 0.02 0.01 0.01

aThe evGW approach shows better agreement with the ΔCCSD(T)
reference than the qsGW approach, for all considered starting points.
Best agreement of evGW with ΔCCSD(T) is achieved by employing
the PBE0 functional in the starting point for the DFT calculation. All
values are in eV.
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positions of the Green’s function. The computational cost of
GevW0 is the same as traditional G0W0 (within our
implementation).
5.2.1. First Ionization Potentials. Figure 14 shows the

difference of the HOMO energy obtained as from GevW0 to the

qsGW HOMO energies for the full test set. The statistical
measures are reported in Table 8. The first IPs from GevW0

show a reduced starting point dependence in comparison to the
single-shot G0W0 and the G0W02nd results. However, the
starting point dependence is much stronger than in the case of
evGW. Furthermore, GevW0 shows improved agreement with
qsGW if one employs the PBE or PBE0 starting point. If one
employs the optimal PBE0(75%) starting points the plain G0W0
and the GevW0 are comparable close to the qsGW results.
Comparing the optimal staring point we find for the three

different approximate GW flavors, G0W0, evGW, and GevW0,
there are some interesting remarks to make. In evGW the

differences are rather small with a small preference of PBE0,
which is in agreement with PBE0 having the best dipole
moment of the various starting points. The results are
comparable to those of qsGW. The exact shape of the orbitals
hence does not impact the results that much. However, if W is
kept fixed there is a clear preference for a PBE0(75%) starting
point. This indicates that, given the relatively small spread in
orbitals obtained in the range from PBE to HF, it is primarily
important to have an accurate screening. The quality of the
orbitals is only of secondary importance. This is also reflected
in the small orbital corrections obtained in qsGW.

5.2.2. Higher Ionization Potentials. In Figure 15 the QP-
energies from GevW0 are compared to the ones from qsGW for

naphthalene. The spectrum based on GevW0 shows a slight
overestimation of the QP-energies for all starting points.
Furthermore, we find that the shift on the poles from the self-
energy due to the QP-correction corrects to poles toward the
full qsGW solution. Regarding the starting point dependence
we find again that the PBE0(75%) gives best agreement with
the qsGW results.

6. COMPUTATIONAL PERFORMANCE
The total computational effort needed for one GW iteration
comprises the calculation of the response function and the self-
energy part. Under the latter we understand the construction of
the self-energy and the solution of the quasi-particle equation.
The time needed for the construction of the response function
is for all considered approximations identical. The time needed
for the self-energy part varies depending on the treatment of
the QP-equation. Figure 16 displays the computational cost for
the different (approximate) GW flavors within our implemen-
tation.
The G0W00th approach is by far the fastest and shows the

best scaling with the number of basis functions of only ∼N3 for
the self-energy part. The computational cost for G0W00th
calculations are hence dominated by the construction of the
response function, which has a scaling of ∼N4. However, this is
only true for comparably small molecules. In the exact
evaluation, one has to calculate all excitations, and a matrix of
range ∼N2 has to be diagonalized. This is a hard ∼N6-step but

Figure 14. Difference of calculated HOMO energies using GevW0 to
DFT(PBEλ) starting points to the qsGW HOMO energies. With
increasing exact exchange contribution in the PBEλ starting point
improves the agreement with qsGW. Nevertheless, we find for all
starting points an error which increases with energy. The statistical
evaluation is reported in Table 8.

Table 8. Statistical Measures of the Difference of the
Calculated GevW0 HOMO Energies from DFT(PBEλ)
Starting Points to the qsGW HOMO Accumulated over the
Test Seta

GevW0 @PBE @PBE0 @PBE0(75%)

ME 0.39 0.29 0.13
MAE 0.43 0.30 0.21
σ2 0.09 0.03 0.06
MaxAE 1.18 0.66 0.83
MinAE 0.04 0.04 0.01

aBest agreement is achieved employing the PBE0(75%) starting point.
All values are in eV.

Figure 15. Deviation of the QP-energies from GevW0 to QP-energies
from qsGW for naphthalene. Three different DFT based starting
points employing the PBE and the PBE hybrid functional with 25%
(PBE0) and with 75% exact exchange (PBE0(75%)) were chosen. The
best agreement, with qsGW, yields the calculation with the
PBE0(75%) starting point.
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with a small prefactor and still less than a ∼N7 scaling for
CCSD(T) in conventional implementations.
Similar to G0W0, evGW approach operates solely on the

diagonal part of the QP-equation. Hence, it has the same
scaling behavior as (diagonal only) G0W00th, but, to find a self-
consistent solution, typically six iterations are necessary until
convergence is achieved. Hence, the total time needed for
evGW is that of G0W0 plus six times that of the response
calculation.
Both, with G0W02nd and the qsGW approach, which

diagonalize the quasi-particle equation (eq 10), the self-energy
part shows a scaling with the number of basis functions N of
∼N5, worse by a factor of N2 as compared to G0W00th and
evG0W0. Still we find that the computational time needed for
the majority of the molecules within our test set is dominated
by the construction of the response function. Only for systems
requiring more than 340 basis functions, the self-energy part
begins to dominate the computational cost. An actual
optimization for best performance within the GW is still an
open task within our implementation. Especially in the qsGW
implementation we expect room for improvement.
Note that all self-energy parts of our implementation have

been designed for parallel computation. We find for all
approaches a nearly perfect scaling with the number of cores,
i.e. the typical setup of 8 core nodes gives a typical speedup of
7.94. Hence, due to very good parallel scaling larger scale
systems are tractable.

7. SUMMARY
Considering the first IPs, we confirm for a set of 29
representative molecules that all flavors of the GW method
strongly improve agreement with experiment and CCSD(T)
results as compared to the underlying DFT calculation.
Moreover, the self-consistent qsGW improves agreement with
the CCSD(T) by an order of magnitude as compared to
G0W00th using a semilocal starting point (see Figure 5). Also,
we find that qsGW has a better agreement with experiment in
ionization spectra as compared to results based on G0W0 using
a semilocal starting point by typically 500 meV. Using an
optional staring point, i.e. PBE0(75%) for G0W0 and GevW0 and

PBE0 for evGW, gives results very close to qsGW. Comparing
qsGW and scGW, we observed a rigid shift toward stronger
binding in qsGW, in the favor of qsGW for both dipole
moments and ionization energies. The small number of
molecules however prohibits to make a final claim on the
ultimate accuracy difference between sc and qsGW for
molecules. A study comparing the two using the GW100
set48 is currently under way.
The qsGW introduces only minor corrections on the spatial

shape of the QP-orbitals and ground state density as compared
to the KS-reference. Comparing calculated dipole moments to
experimental results we find that the qsGW improves
agreement to experiment compared to a traditional method
like the Density Functional Theory (DFT) using a PBE
functional and the Hartree−Fock (HF) approach (see Table 4).
Based on this result we conclude that for the partially self-

consistent flavor of qsGW updating only the orbitals, eigenvalue
only qsGW (evGW) is an efficient alternative. The evGW is
able to reproduce the (first) IPs from qsGW very well and
showed a strongly reduced dependence on the choice of the
functional in comparison to G0W0.
If system size is prohibiting even evGW we find the best

alternative to be G0W0@PBE0(75%). The increased amount of
exact exchange is reasoned to mainly be necessary to improve
the screening. Since the standard PBE0 orbitals turn out to be
in general closest to the qsGW results and also give best dipole
moments as compared to experiment, one could even envision
a hybrid approach. This would use the orbitals from PBE0 but
perturbatively correct the eigenvalues using 75% exact exchange
before calculating the response function.

8. OUTLOOK
The full solution of Hedin’s equations gives access not only to
the quasi-particle (qp) energies but also to charge neutral,
particle-hole (ph) type excitations. A characteristic feature that
all variants of the GW theory share is that the energy of a ph-
excitation is estimated neglecting the interaction between the
particle and the hole, so that there is a tendency to overestimate
the energy cost for creating ph-pairs, i.e. excitons.98 As a result
the Coulomb interaction is underscreened, which leads to an
underestimation of the magnitude of the correlation part of the
self-energy. Thus, the HOMO energy is typically under-
estimated (i.e., the ionization potential is overestimated) as also
observed in our results.
There is no real consensus about the consequences of

underscreening for the qp-energies. A widespread belief is that
underscreening in the effective interaction W (denominator)
does not affect these energies, because it is fully canceled by the
explicit vertex corrections (Γ, nominator) appearing in the self-
energy diagrams. Rigorous arguments in favor of the
cancellation have not been given; so far, the existing evidence
supporting cancellation relies on explicit calculations for a
number of test systems, such as, e.g., homogeneous electron
gases99 and bulk silicon.100

Our results indicate that when applying qsGW to single
molecules, HOMO energies and ionization potentials are
typically underestimated. In our opinion, a natural explanation
is underscreening of the Coulomb-interaction in W; we hence
propose that the cancellation of vertex-terms is not efficient in
molecular matter.
To account for the binding-energy of excitons in the

polarization function, one has to go beyond the GW-
framework, i.e., include vertex corrections. A common means

Figure 16. Computational time needed for the construction of the
response function and the time needed for a single iteration GW-
proper over the number of basis functions. In evGW every full iteration
consists of a response step and a G0W00th step. In GevW0 only the first
iteration has a response step, subsequent steps are computationally
equivalent to a G0W00th step, and times are almost the same for both
procedures.
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to this end is solving the Bethe-Salpeter equation (BSE).101

This is computationally challenging, however, and can be done
only by employing suitable approximation schemes.102

On the simplest level (RPA-X) one modifies the calculation
of the polarization function by adding an exchange-matrix
element to the Coulomb-matrix element of conventional RPA.
The resulting theory would reproduce the time-dependent
Hartree−Fock approximation if it were not for the correlation
part of the self-energy. Following our philosophy of exploring
the potential of static approximations, this step would be the
most natural one to try next for us.
Indeed, several groups have already employed the GW+BSE

method to molecular systems in order to investigate the effect
of vertex corrections for charge-neutral excitations. We only
mention two very recent works benchmarking the approach
against TDDFT for small molecules.103,104 We would like to
consider these results as an indication that vertex-corrections
are indeed significant for predicting and understanding
molecular spectra. These studies also indicate that BSE-
calculations inherit the starting point dependency of the
underlying G0W0-calculations.

103 To eliminate this artifact of
G0W0, self-consistent calculations on the qsGW-level have been
employed; they can achieve a numerical accuracy comparable to
TD-PBE0 calculations.104

As promising as it is, the combination of GW and BSE adds
vertex corrections only to the response function still neglecting
them when constructing Γ for the self-energy Σ. The
approximation thus obtained is not conserving. Moreover, if
indeed large system classes exhibit a cancellation between
vertex terms in W and Γ, then these systems cannot be treated
with the present technology. Therefore, we consider it very
likely that a general method to be applied successfully to
molecules and metals has to treat vertex corrections inW and Σ
on the same footing.
In principle, also the study of strongly correlated electron

liquids relies on solving Hedin’s equations−at least to the
extent that perturbative methods are being employed−even
though the respective community does not usually think about
it in this way. In this context, a new method has been devised in
recent years, the functional renormalization group method
(FRG)105,106 Unlike GW+BSE, FRG includes vertex correc-
tions to W and Σ in a consistent way. Its success for strongly
correlated matter originates from its capability to reliably
signalize the existence of new phases with a broken symmetry,
such as magnetism. From a conceptual point of view, FRG is
very appealing because it can predict phase transitions in an
unbiased manner; in principle, an apriori guess about what
phases are likely to appear is not required.
Similar to qsGW, also FRG is typically formulated employing

a static approximation for the self-energy and the interaction
vertex. Like traditional BSE-calculations, also the FRG focuses
on the simplest subset of diagrams for the vertex. However, in
contrast to traditional BSE, the FRG solves these (approxi-
mated) Hedin equations in a self-consistent manner. This is
how FRG goes beyond the GW+BSE-scheme.
The enhanced complexity requires a solution strategy that

differs from the conventional iteration scheme to self-
consistency still underlying, e.g., qsGW. The strategy of FRG
is to reformulate the self-consistency problem in terms of a set
of (nonlinear) differential matrix equations. The main idea may
be understood as follows: In traditional self-consistency solvers,
an initial guess gradually transforms (“flows”) into the fixed-
point solution under the action of the iteration routine. Now,

FRG replaces this “iterative flow” by another flow along an
artificial coordinate, Λ, that plays the role of a cutoff energy
familiar from the renormalization group. By construction, Λ
connects a known trivial solution of Hedin’s equations at Λ =
∞ with the exact solution at Λ = 0. The advantage of this
formulation as compared to the traditional self-consistency
routines is that it is known exactly how to initialize the flow
equations; a starting guess for the Green’s function, self-energy
and interaction vertex is not required. If instabilities occur along
solving the differential equation, then these can be interpreted
as “runaway flow” indicating a nearby phase with broken
symmetry.
Applications of FRG to molecules do not yet exist. A first

step into this direction has been made recently by two of us
who formulated the FRG for systems without translational
invariance.107 Since vertex functions are kept explicitly, FRG
comes with a computational complexity that might prohibit its
use for intermediate sized molecular systems in the near future.
Nevertheless, for benchmarking GW+BSE and high precision
calculations for smaller molecules, FRG could have a significant
potential that we believe is worthwhile to explore in future
research.
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