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ABSTRACT: The GW method is routinely used to predict
charged valence excitations in molecules and solids. However,
the numerical techniques employed in the most efficient GW
algorithms break down when computing core excitations as
measured by X-ray photoelectron spectroscopy (XPS). We
present a full-frequency approach on the real axis using a
localized basis to enable the treatment of core levels in GW.
Our scheme is based on the contour deformation technique
and allows for a precise and efficient calculation of the self-
energy, which has a complicated pole structure for core states.
The accuracy of our method is validated by comparing to a fully analytic GW algorithm. Furthermore, we report the obtained
core-level binding energies and their deviations from experiment for a set of small molecules and large polycyclic hydrocarbons.
The core-level excitations computed with our GW approach deviate by less than 0.5 eV from the experimental reference. For
comparison, we also report core-level binding energies calculated by density functional theory (DFT)-based approaches such as
the popular delta self-consistent field (ΔSCF) method. Our implementation is optimized for massively parallel execution,
enabling the computation of systems up to 100 atoms.

1. INTRODUCTION

Core-level spectroscopy is a powerful tool to study adsorption
processes at surfaces and to investigate the chemical structure
of complex materials, molecules, or liquids.1,2 Atomic core
levels are sensitive to the atomic environment, such as covalent
bonding, hybridization, or the oxidation state.3−5 The binding
energies of the core electrons can be measured by X-ray
photoelectron spectroscopy (XPS). Since the energetic differ-
ences (chemical shifts) between atomic core levels of the same
type are often smaller than the experimental resolution, a
fitting procedure is required to resolve hidden and overlapping
peaks.6,7 Peak fitting is an increasingly sophisticated and error-
prone task for large molecules.8 Accurate simulation tools to
reproduce XPS spectra are thus important to support the
interpretation of experimental results. To distinguish 1s
excitations of second-row elements in different chemical
environments, the accuracy needs to be generally better than
0.5 eV. For carbon 1s, in particular, an accuracy of the order of
0.1 eV is often required; see, for example, refs 9−11 for typical
chemical shifts in organic molecules.
Currently, computational XP core-level spectroscopy is

based almost exclusively on Kohn−Sham density functional
theory (KS-DFT).12,13 Although computationally efficient,
DFT-based approaches are often not accurate or consistent

enough to resolve XPS spectra. The workhorse of electronic
structure simulations, KS-DFT, fails to reproduce the
spectroscopic properties of solids14−16 and molecules.17,18

For the highest occupied molecular orbital (HOMO), the first
ionization potential (IP) can be rigorously assigned to the
negative of the KS orbital energy.19,20 This is not the case for
the other KS states. However, it is common practice, because
of their conceptual similarity21,22 to their Hartree−Fock (HF)
counterparts that fulfill Koopmans’ theorem.23 The observed
deviations of the KS eigenvalues from experiment are in the
range of several eV for the valence states,24 but increase to 10−
30 eV for core excitations.25

Relating the IPs directly to the orbital energies neglects
orbital relaxation effects upon the removal of an electron.
These orbital readjustments can be included by means of the
delta self-consistent field (ΔSCF) approach,26 which is the
state-of-the-art method for core excitations.27 In ΔSCF, the
excitation energy is calculated as the energy difference between
the neutral and the ionized system. Generally, the predicted
relative core-level binding energies (BEs), i.e., the shifts of the
BEs with respect to a reference molecule, agree well with

Received: May 11, 2018
Published: August 9, 2018

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society A DOI: 10.1021/acs.jctc.8b00458
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

J.
 C

he
m

. T
he

or
y 

C
om

pu
t. 

D
ow

nl
oa

de
d 

fr
om

 p
ub

s.
ac

s.
or

g 
by

 K
A

O
H

SI
U

N
G

 M
E

D
IC

A
L

 U
N

IV
 o

n 
08

/2
7/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.8b00458
http://dx.doi.org/10.1021/acs.jctc.8b00458


experiment. The deviations from the experimental shifts are of
the order of 0.2−0.3 eV for small molecules,28 which is well
within or close to the chemical resolution required to resolve
most XPS spectra. The computed relative BEs show also little
variation with respect to the exchange-correlation (XC)
potential.28 However, absolute core-level BEs computed with
the ΔSCF approach depend considerably on the choice of the
XC functional and can deviate from experiment by up to 2
eV.29 The accurate calculation of absolute core excitations is
important to support the alignment of complex spectra of large
molecules, where peak fitting procedures become fairly biased
and are based on a multitude of assumptions, such as the total
number of fitted peaks.
To describe core excitations in ΔSCF, the core hole must be

constrained in a particular state, which can be difficult,30−33 in
particular, when relativistic effects become important, e.g., for
p-electrons.34 In addition, the ΔSCF method has several
conceptual problems limiting its applicability. One of them is
how to treat systems with periodic boundary conditions, such
as molecules on surfaces, where retaining a zero net charge in
the calculation is a necessity. In this case, the ΔSCF approach
can only be applied in an approximate manner, e.g., by
introducing a compensating background charge or employing
pseudopotential-based approaches.35−37 For systems with
localized charges, the ΔSCF approach cannot be applied at
all. An example are organic salts such as ionic liquids. When
generating a core hole at the cation, the negative charge at the
anion would be displaced during the SCF and neutralize the
core hole at the now-doubly charged cation.
A promising method to improve upon the shortcomings of

ΔSCF is the GW approximation to many-body perturbation
theory.38 The central object of the GW method is the Green’s
function G, where the poles of G correspond to the
quasiparticle (QP) excitation energies as measured in photo-
emission experiments. GW is based on a perturbative
expansion in the screened Coulomb interaction W, as
formulated by Hedin in the 1960s,39 and accounts for nonlocal
frequency-dependent screening between the electrons. Green’s
function theory in the GW approximation has become the
method of choice for the computation of addition and removal
energies of valence electrons in solids40−51 and is now
increasingly being applied to the valence excitations of
molecules.24,52−59 For the latter, average deviations of less
than 0.2 eV from the coupled cluster singles, doubles, and
perturbative triples [CCSD(T)] reference values have been
reported.60,61 Mean absolute errors for the first IP are even
below 0.1 eV when comparing vibrationally resolved GW
spectra to experiment.62 For core excitations, we are only
aware of two exploratory GW studies for solids that report
partly promising agreement with experiment.63,64 However, a
recent investigation using the established GW procedures for
valences states found large deviations (up to 10 eV) for
molecular core levels.25

This motivated us to advance the GW method for molecular
core excitations within first-order perturbation G0W0. The
requirements for a core-level implementation are 2-fold:

(1) The core electrons have to be described explicitly.
Localized basis sets are the best choice for this task since
they can be tailored to model the rapid oscillations of
the wave function in the vicinity of the atomic nuclei.
Many GW implementations,46,65−67 however, employ
plane wave expansions of the electronic density in

combination with frozen core approximations prohibit-
ing assessment of core excitations by design.

(2) The self-energy, which describes the electron−electron
interactions in GW, has a more complicated structure in
the core than in the valence region, which we will
demonstrate in this work. Therefore, it is crucial to
compute the self-energy in a numerically stable manner.

In this work, we account for both requirements (1) and (2) by
an efficient and accurate full-frequency implementation on the
real frequency axis using atom-centered basis functions.
This paper is organized as follows. After briefly introducing

the G0W0 approach and recalling the basic equations for
computing G0 and W0, we summarize the equations for the
resolution-of-the-identity (RI) approach in section 3. We then
apply the RI approach in section 4 and derive the working
expressions used in our implementation and introduce the
spectral function in section 5. Implementation and computa-
tional details are described in sections 6 and 7. We discuss self-
energy structures and spectral functions and the accuracy of
our implementation for small- and medium-sized molecular
structures in section 8. After reporting the computational
efficiency we finally draw conclusions in section 9.

2. QUASIPARTICLE ENERGIES FROM G0W0

Introducing GW by analogy to DFT, the XC potential vxc of
DFT is replaced by a self-energy Σ. The KS equations then
transform to a set of self-consistent quasiparticle equations,
which can be solved iteratively. In practice, GW calculations
are often performed on top of an underlying DFT or HF
calculation. Such single-shot perturbation calculations are
referred to as G0W0. The corrections to the KS-DFT orbital
energies ϵn of a molecular orbital (MO) ψn are then given by

vRe ( )n
G W

n n n
G W

n
xc0 0 0 0ϵ = ϵ + Σ ϵ − (1)

where we introduced the (n, n)-diagonal matrix elements of
the exchange-correlation potential, vn

xc = ⟨ψn|v
xc|ψn⟩, and the

self-energy,

( ) ( )n n nω ψ ω ψΣ = ⟨ |Σ | ⟩ (2)

Note that the spin has been omitted for the sake of simplicity,
but can easily be reintroduced. The self-energy is given by68

i
d G W ir r r r r r( , , )

2
( , , ) ( , , ) exp( )0 0∫ω

π
ω ω ω ω ω ηΣ ′ = ′ ′ + ′ ′ ′ ′

(3)

where G0 is the noninteracting KS Green’s function, W0 the
screened Coulomb interaction, and η a positive infinitesimal.
The KS Green’s function is given by

G
i

r r
r r

( , , )
( ) ( )

sgn( )m

m m

m m
0

F
∑ω

ψ ψ
ω η

′ =
′

− ϵ − ϵ − ϵ (4)

where ϵF denotes the Fermi energy. In eq 4, the sum includes
all occupied and virtual KS orbitals ψm with the corresponding
KS orbital energies ϵm. The screened Coulomb interaction at
the random phase approximation (RPA) level is defined as

W d vr r r r r r r( , , ) ( , , ) ( , )0
1∫ω ε ω′ = ″ ″ ″ ′−

(5)

with the dielectric function ε and the bare Coulomb
interaction v(r, r′) = 1/|r − r′|. The dynamical dielectric
function is
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d vr r r r r r r r r( , , ) ( , ) ( , ) ( , , )0∫ε ω δ χ ω′ = ′ − ″ ″ ″ ′
(6)

where the real-space Adler−Wiser representation69,70 of the
irreducible polarizability χ0 reads

68

i i

r r r r r r( , , ) ( ) ( ) ( ) ( )

1
( )

1
( )

i a
a i i a

a i a i

0

occ virt

l
moo
noo

|
}oo
~oo

∑ ∑χ ω ψ ψ ψ ψ

ω η ω η

′ = ′ ′

×
− ϵ − ϵ +

+
− − ϵ − ϵ +

(7)

The index i refers to an occupied MO and a refers to a virtual
one.
The self-energy Σ = Σc + Σx has a correlation contribution

Σc and an exchange contribution Σx. The latter is not
dependent on the frequency and is given by

vr r r r r r( , ) ( ) ( ) ( , )
i

i i
x

occ

∑ ψ ψΣ ′ = − ′ ′
(8)

The QP energies ϵn
G0W0 calculated from G0W0 are dependent

on the reference ground state encoded in G0 and W0.
71

Different methods to optimize the DFT starting point have
been successfully employed to obtain accurate valence
excitations.72,73

3. RI APPROXIMATION
The four-center electron repulsion integrals (4c-ERIs) are of
central importance for the calculation of W0 and are defined as

nm kl d d vr r r r r r r r( ) ( ) ( ) ( ) ( ) ( , )n m k l∫ ψ ψ ψ ψ| = ′ ′ ′ ′
(9)

The MOs {ψn} are expanded in localized atom-centered
orbitals {ϕμ},

Cr r( ) ( )n n∑ψ ϕ=
μ

μ μ
(10)

where Cμn are the MO coefficients obtained from KS-DFT. We
employ the RI approximation with the Coulomb metric74 (RI-
V) to refactor the 4c-ERIs in two- and three-center integrals,

nm kl nm P V Q kl( ) ( ) ( )
PQ

PQRI V
1∑| = | |−

−

(11)

which is exact in the limit of a complete auxiliary basis set
{φP}. Note that the auxiliary functions P and Q are also local
and atom-centered. The two-center (2c) integrals, or,
equivalently, the Coulomb matrix elements VPQ are given by

V P Q d d vr r r r r r( ) ( ) ( ) ( , )PQ P Q∫ φ φ≔ | = ′ ′ ′
(12)

and the three-center (3c) integrals are defined as

nm P P C C( ) ( ) n m∑ μν| = |
μν

μ ν
(13)

P d d vr r r r r r r( ) ( ) ( ) ( ) ( , )P∫μν ϕ ϕ φ| = ′ ′ ′ ′μ ν (14)

The integral over the atomic orbitals, (μν|P), is obtained by
analytic or numeric integration, depending on the functional
form of the basis functions {ϕμ}.
We introduce the quantity

M R V( )P
R

RP
1/2∑ μν= |μν −

(15)

and its transformation in the MO basis

O M C CP
nm

P n m∑=
μν

μν
μ ν

(16)

to reformulate the RI expression for the 4c-ERIs in a more
compact form,

nm kl O O( )
P

P
nm

P
kl

RI V ∑| =−
(17)

The RI-V method is a well-established technique in quantum
chemistry, because of its accuracy and fast convergence, with
respect to the number of auxiliary functions,75−78 and is also
commonly used in GW implementations.24,53,79,80 In RI-V, we
minimize the Coulomb repulsion of the residual, with respect
to the expansion of the basis pairs ϕμϕν in auxiliary functions.
Compared to RI with the overlap metric, the error in the
residual is quadratic instead of linear.81−83

4. EVALUATION OF THE SELF-ENERGY
In this section, we start by briefly reviewing the popular
analytic continuation (AC) method. We then derive the
equations for calculating the self-energy with the contour
deformation (CD) technique, which is the method that we will
employ to calculate core-level excitations. In the following, we
refer to G0W0 calculations with the first approach as AC-G0W0
and to calculations with the second approach as CD-G0W0.

4.1. Analytic Continuation (AC). On the real-frequency
axis, Σ exhibits a complex structure with many poles, whereas it
has a smooth form on the imaginary axis.84,85 To avoid the
complicated behavior for real frequencies, a common approach
is to evaluate the self-energy in the imaginary frequency
domain, where Σ is given by

i d G i i W ir r r r r r( , , )
1

2
( , , ) ( , , )0 0∫ω

π
ω ω ω ωΣ ′ = − ′ ′ + ′ ′ ′

−∞

∞

(18)

The experimental observables like QP energies and spectral
functions are measured for real frequencies. This implies that
Σ(iω) must be analytically continued to the real axis to
compute these quantities. An analytical form is obtained by
fitting the matrix elements Σn

c(iω) to a multipole model such as
the popular Pade ́ approximant, which is employed in several
state-of-the-art GW implementations.52,67,86 The approximant
is given by

i
a a i a i

b i b i
( )

( ) ( )

1 ( ) ( )n
N

N

N
N

0 1 ( 1)/2
( 1)/2

1 /2
/2ω

ω ω

ω ω
Σ ≈

+ + ··· +

+ + ··· +
−

−

(19)

where N is the number of Pade ́ parameters. In practice, we
calculate the N-point Pade ́ approximant using Thiele’s
reciprocal difference method. There, the unknown complex
coefficients ai and bj are computed recursively from a set of
imaginary frequencies {iω} and the corresponding values
Σ(iω). We refer to ref 87 for details. The self-energy in the
real-frequency domain is finally obtained by substituting (iω)
by ω in eq 19.
It has been demonstrated that the AC reproduces the

structure of the self-energy well for valences states52,84 yielding
reliable results for the corresponding IPs.18,52,53,88−90 In
particular, benchmark studies52 showed that the Pade ́
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approximation produces more accurate results than less-flexible
models such as the “two-pole fit”.84

4.2. Contour Deformation (CD). An alternative method
to compute the self-energy is to calculate the integral along the
real-frequency axis in eq 3, employing the integral along the
contour; see Figure 1. Using the CD technique,91−95 we obtain

the self-energy directly on the real-frequency axis, avoiding the
fitting procedure described in section 4.1. At the same time, we
circumvent the numerical unstable integration on the real-
frequency axis, where the poles of G0 andW0 are located. Since
the integrals along the arcs vanish, eq 3 transforms to

i
d G W

d G i W i

r r r r r r

r r r r

( , , )
2

( , , ) ( , , )

1
2

( , , ) ( , , )

0 0

0 0

∮
∫

ω
π

ω ω ω ω

π
ω ω ω ω

Σ ′ = ′ ′ + ′ ′ ′

− ′ ′ + ′ ′ ′
−∞

∞

(20)

where the first term is the entire contour integral and the
second term is the integral along the imaginary axis. For the
following discussion, we introduce the notations

R
i

d G Wr r r r( )
2

( , , ) ( , , )0 0∮ω
π

ω ω ω ω≔ ′ ′ + ′ ′ ′
(21)

I d G i W ir r r r( )
1

2
( , , ) ( , , )0 0∫ω

π
ω ω ω ω≔ ′ ′ + ′ ′ ′

−∞

∞

(22)

The contour integral R(ω) is calculated from the residues of
the poles enclosed in the contours, i.e., in the subset of the
complex planes DΓ+ and DΓ− encircled by Γ+ and Γ−,
respectively. The poles of W0 never fall inside the contour.
However, depending on ω, some poles of G0(ω + ω′) can
enter DΓ+ or DΓ−. Recalling the expression for the Green’s
function on the real axis in eq 4, we directly find that the poles
of G0 are located at the complex frequencies

i sgn( )m m F mω ω η′ = ϵ − + ϵ − ϵ (23)

For ω < ϵF, the poles ωm′ can only enter DΓ+ as shown in
Figure 1. These poles stem from occupied states. For ω > ϵF,
the situation is reversed and poles of the unoccupied states can

shift into DΓ−. Employing the residue theorem, we obtain for
the contour integral defined in eq 21

R G W

G W

r r r r

r r r r

( ) Res ( , , ) ( , , ),

Res ( , , ) ( , , ),

D
m

D
m

0 0

0 0

m

m

∑

∑

ω ω ω ω ω

ω ω ω ω

= − { ′ + ′ ′ ′ ′}

+ { ′ + ′ ′ ′ ′}

ω

ω

′ ∈

′ ∈

Γ+

Γ−

(24)

where the residues are given by

G W

G W

W

r r r r

r r r r

r r r r

Res ( , , ) ( , , ),

lim ( ) ( , , ) ( , , )

( ) ( ) ( , , )

m

m

m m m

0 0

0 0

0

m

ω ω ω ω

ω ω ω ω ω

ψ ψ ω

{ ′ + ′ ′ ′ ′}

= ′ − ′ ′ + ′ ′ ′

= ′ ′ ′

ω ω′→ ′

(25)

By inserting the third line of eq 25 in eq 24 and using eq 23, we
obtain for the diagonal matrix elements of R(ω)

R n R n f W( ) ( )n
m

m nm∑ω ω≔ ⟨ | | ⟩ =
(26)

W nm W i mnr r( , , sgn( ))nm m m0 Fω η≔ ⟨ | ′ ϵ − + ϵ − ϵ | ⟩
(27)

where the contribution of the residues is determined by fm:

f

1 if

1 if

0 else
m

m

m

F

F

l
m
ooooo

n
ooooo

ω

ω=
+ ϵ < ϵ <

− < ϵ < ϵ

(28)

From eq 28, we directly see that the residues do not contribute
to the self-energy for ϵHOMO < ω < ϵLUMO, where ϵHOMO and
ϵLUMO are the KS orbital energies of the HOMO and lowest
occupied molecular orbital (LUMO). Therefore, the residue
term is zero for frequencies within the band gap.
To obtain an expression for Wnm in eq 27, we evaluate the

irreducible polarizability χ0 given in eq 7 at ϵm − ω + iη for ω <
ϵm < ϵF and ϵm − ω − iη for ω > ϵm > ϵF. It is easy to show that

i i

i i

( ) ( )

( ) ( )

m m m

m m m

0 0 F

0 0 F

χ ω η χ ω η ω

χ ω η χ ω η ω

ϵ − + = |ϵ − | + < ϵ < ϵ

ϵ − − = |ϵ − | + > ϵ > ϵ
(29)

After inserting eqs 5−7, eq 29, and the RI approximation (eq
17) into eq 27, we obtain the following expression for the Wnm
matrix elements:

W O i O1 ( )nm
PQ

P
nm

m PQ Q
mn1∑ ω η= [ − Π |ϵ − | + ]−

(30)

where the representation of the polarizability in the auxiliary
basis is given by

O
i

i
O

( )
1

( )

1
( )

PQ
ia

P
ia

a i

a i
Q
ia

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑÑ

∑ω
ω η

ω η

Π =
− ϵ − ϵ +

+
− − ϵ − ϵ + (31)

We turn now our attention to the evaluation of the integral
along the imaginary axis I(ω) defined in eq 22. The expression
for G0 given in eq 4 remains unchanged, except that we
substitute ω′ by iω′. The same holds for W0, ε, and χ0, where
we replace ω by iω in eqs 5−7. Analogously to the derivation

Figure 1. Contour of the integration used to evaluate Σ(ω). The
integration contours Γ+ and Γ− enclose only the poles of G0, but never
the poles of W0.
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of Rn(ω), we use again the RI approximation as formulated in
eq 17 to obtain the diagonal matrix elements of I(ω) by using
eqs 4−7:

I n I n

d
i i

O i O

( ) ( )

1
2

1
sgn( )

1 ( )

n

m m m

PQ
P
nm

PQ Q
mn

F
1

∫∑

∑

ω ω

π
ω

ω ω η
ω

≔ ⟨ | | ⟩

= ′
+ ′ − ϵ − ϵ − ϵ

× [ − Π ′ ]
−∞

∞

−

(32)

The self-energy Σn is obtained by inserting eq 30 into eq 26
and then eqs 26 and 32 in eq 20. We finally compute the
correlation self-energy Σn

c by subtracting the exact exchange
energy Σn

x (eq 8) from Σn. The latter is equivalent to
subtracting the bare Coulomb interaction v from the screened
interaction W0. This yields the correlation parts Rn

c and In
c of Rn

(eq 26) and In (eq 32),

R f W i( ) ( )n
c

m
m nm

c
m∑ω ω η= |ϵ − | +

(33)

with

W i

O i O

( )

1 ( )
nm
c

m

PQ
P
nm

m PQ PQ Q
mn1∑

ω η

ω η δ

|ϵ − | +

= [[ − Π |ϵ − | + ] − ]−

(34)

and

I d
W i

i i
( )

1
2

( )
sgn( )n

c

m

nm
c

m mF
∫∑ω

π
ω

ω
ω ω η

= ′
′

+ ′ − ϵ − ϵ − ϵ−∞

∞

(35)

with

W i O i O( ) 1 ( )nm
c

PQ
P
nm

PQ PQ Q
mn1∑ω ω δ= [[ − Π ] − ]−

(36)

Equations 33 and 35 complete the ingredients to compute the
(n, n)-diagonal elements of the self-energy,

R I( ) ( ) ( )n n
x

n
c

n
cω ω ωΣ = Σ + − (37)

which is used to compute the G0W0 quasiparticle energies from
the QP equation (eq 1). The correlation self-energy Σn

c ≔ Rn
c −

In
c is a complex quantity and only its real part is required to
solve eq 1. However, for the computation of other observables,
such as the spectral function introduced in section 5, the full
complex self-energy is required. Therefore, it is important to
note that, in a rigorous derivation of the CD equations, also the
frequency integral term In

c has a minor contribution to the
imaginary part of Σn

c . This is discussed in more detail in section
8.1.

5. SPECTRAL FUNCTION
The Green’s function G for interacting electrons has its poles
at the QP energies and the imaginary part of G is expected to
have peaks at these energies.68 Therefore, the spectral
information can be directly retrieved from G by computing
the spectral function or density of states A(ω):

A d G

G

r r r( )
1

lim Im ( , , ) sgn( )

1
Tr Im ( ) sgn( )

r r
F

F

∫ω
π

ω ω

π
ω ω

= − ′ − ϵ

= − [ − ϵ ]

′→

(38)

Employing the Dyson equation, G = G0 + G0ΣG, with the
G0W0 self-energy Σ and omitting off-diagonal elements of Σ,
we diagonalize G in the basis of KS eigenstates m,

G
G v

( )
1

( ) ( )m
m m m
0 1 xcω

ω ω
=

[ ] − [Σ − ]−
(39)

Using the eigenvalues Gm of G to compute the trace in eq 38
and using eqs 4 and 37 yields

A G

v

( )
1

Im ( ) sgn( ) (40)

1
Im ( ( ) )

sgn( )

(41)

m
m

m
m m

c
m
x

m
xc

F

1

F

∑

∑

ω
π

ω ω

π
ω ω

ω

= − − ϵ

= − [ − ϵ − Σ + Σ − ]

× − ϵ

−

Note that we need the full complex correlation self-energy
Σm
c (ω) for the evaluation of A(ω), whereas only its real part is

required for solving the QP equation (eq 1). However, the
spectral function yields the full spectral information and shows
next to the main peaks, which correspond to the QP
excitations, also smaller peaks and satellite structures due to
a variety of collective phenomena.68

6. IMPLEMENTATION DETAILS
The CD-G0W0 approach has been implemented in the all-
electron code FHI-aims, which is based on numerically
tabulated atom-centered orbitals (NAOs).96 In FHI-aims, the
MOs are expanded in the NAO basis {ϕμ}, with basis functions
of the form

u r

r
Yr( )

( )
( )lmϕ = Ωμ

μ

(42)

where uμ(r) are radial functions and Ylm(Ω) spherical
harmonics. The functions uμ are not restricted to any particular
shape, but are numerically tabulated on dense grids. Other
popular local basis functions, e.g., Gaussian-type orbitals can be
considered as special cases of the general form.
The pseudocode for our CD-G0W0 implementation is shown

in Figure 2. We start by computing the 2c and 3c RI integrals
VPQ and (μν|P). The auxiliary functions P and Q are NAOs
that are generated from products of the primary basis
functions; see ref 79 for details. The 2c integrals are calculated
in Fourier space as described by Talman,97,98 employing a
logarithmic Bessel transform,99 while the 3c integrals are
computed by numerical integration using overlapping atom-
centered spherical grids; see ref 79 for a comprehensive
description. We then get the orbital energies {ϵn} and the MO
coefficients {Cμn} from an electronic structure optimization at
the KS-DFT level. The RI integrals are not only used to
expand the self-energy in the MO basis, but are already
employed in the SCF procedure of the DFT calculation. This
is the case for hybrid functionals when an efficient evaluation
of the exact HF exchange is required.79

The QP energies are obtained by solving eq 1 iteratively; see
Figure 2. To compute the self-energy, we must re-evaluate the
residue term Rn

c and the integral term In
c at each step. The latter

is calculated by numerical integration using a modified Gauss-
Legendre grid79 with {iω} grid points. In

c is constructed by
integrating over the matrix elements Wnm

c (iω). Since these
matrix elements are not dependent on the QP energies, they
can be precomputed once when the QP cycle is initialized. The
computational cost for the calculation of Rn

c is for core states
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significantly higher than for valence states. The reason is that
the matrix elements Wnm

c (|ϵm − ω|) must be calculated at each
QP cycle step for each pole (ϵm − ω) of G that enters the
contour and therefore contributes as residue. The number of
residues depends on the KS state n for which the G0W0
correction is calculated; see eq 28. We have typically only one
residue for the HOMO. However, for the energetically lowest
core state, the number of residues increases to Nelec/2, where
Nelec is the number of electrons. Therefore, the computational
complexity for core-level excitations is one order larger than for
valence states.
An alternative to the iterative procedure is the graphical

solution of eq 1. For the latter case, the self-energy matrix
elements are computed and plotted on a fine grid of real
frequencies {ω} in the region where the solution is expected.
The QP energies are then obtained by graphically finding the
point where the self-energy and the straight line ω − ϵn + vn

xc −
Σn
x intersect; see eq 1. The iterative solution is computationally

far more efficient since the self-energy must be calculated only
for a few frequencies, i.e., for one frequency per step.
Therefore, in the following, the graphical solution is not
used for production calculations of QP excitations, but is used
exclusively for an in-depth discussion of the solution behavior
of eq 1; see section 8.2.
The CD-G0W0 approach is parallelized using a standard

message passing interface (MPI). The matrix elements OP
ia are

distributed over the pairs of occupied and virtual orbitals ia to
compute the polarizability in the auxiliary basis ΠPQ(ω). The
latter is then redistributed over the auxiliary functions P and Q.
The subsequent parallel matrix operations are performed with
ScaLAPACK. We have chosen another parallelization strategy

for the evaluation of the spectral function A(ω). The
computation of A(ω) with a sufficient spectral resolution is
only feasible for small molecules, since one frequency point
requires the calculation of Σn

c for all KS states n. In favor of a
high resolution of A(ω), we apply the distribution to the
frequency points, instead of the matrix elements.

7. COMPUTATIONAL DETAILS
Core-level calculations are performed for small isolated
molecules and medium-sized polycyclic aromatic hydro-
carbons, such as coronene, phenanthrene, and anthrone (see
Figure 3), which are stable in the gas phase. Core excitations

are computed from KS eigenvalues, the ΔSCF method, and
G0W0 QP energies. The KS eigenvalues {ϵi

KS} and QP
excitations {ϵi

G0W0} are related to the binding energies (BEs)
for state i by

BE BEi i i
G W

i
G WKS KS 0 0 0 0= −ϵ = −ϵ (43)

In ΔSCF, core-level excitations are computed as the difference
between the total energy for the neutral system Etot(N) and
ionized system Etot,i(N − 1):

E N E NBE ( 1) ( )i i
SCF

tot, tot= − −Δ
(44)

where N is the number of electrons. For the computation of
Etot,i(N − 1), one electron is removed from state i and the
occupation numbers are constrained accordingly during the
SCF cycle.
Except for ΔSCF, all calculations are performed with the

FHI-aims program package.79,96,100 We have obtained the
ΔSCF results from the CP2K101,102 software suite, where the
all-electron KS equations are solved in the Gaussian and
augmented plane waves (GAPW)103−105 scheme. Both codes
expand the MOs in local basis functions. In GAPW, however,
Gaussian-type orbitals are employed instead of NAOs.
All molecular structures have been optimized at the DFT

level using NAOs of tier 2 quality96 to represent core and
valence electrons. The Perdew−Burke−Ernzerhof (PBE)106

functional is used to model the XC potential, and dispersion
interactions are taken into account by employing the
Tkatchenko−Scheffler van der Waals correction.107

Figure 2. Pseudocode for the CD-G0W0 method. Displayed is the
computation of the QP energy ϵn

G0W0 for state n. Figure 3. Molecular structures of (a) coronene, (b) phenanthrene,
and (c) anthrone. Color code: orange, C; white, H; red, O. The labels
indicate chemically nonequivalent carbon atoms.
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BEs, self-energy matrix elements Σn(ω), and spectral
functions A(ω) have been evaluated using the def2
quadruple-ζ valence plus polarization (def2-QZVP)108 basis
sets. The def2-QZVP basis sets are all-electron basis sets of
contracted Gaussian orbitals, which are treated numerically in
FHI-aims to be compliant with the NAO scheme. For
comparison to experiment, BEs obtained from G0W0 have
been extrapolated to the complete basis set limit to account for
the slow convergence with respect to basis set size previously
reported in the literature.52,53,109−111 Following the procedure
described in refs 25 and 52, the extrapolated results are
computed from the def2-TZVP and def2-QZVP results by a
linear regression against the inverse of the total number of
basis functions. Here, def2-TZVP denotes a Gaussian basis set
of triple-ζ quality.108

BEs from KS eigenvalues and ΔSCF are calculated using the
PBE0112,113 hybrid functional. For G0W0, we utilize the PBE-
based hybrid (PBEh)114 functionals with an adjustable fraction
α of HF exchange for the underlying DFT calculation. In
PBEh(α), the XC energy Exc is given by

E E E E(1 ) 0, 1xc x
EX

x
PBE

c
PBEα α α= + − + ∈ [ ]

(45)

where Ex
EX denotes the HF exchange energy. Ex

PBE and Ec
PBE are

the PBE exchange and correlation energy, respectively. For the
evaluation of {BEi

G0W0}, we set α = 0.5, which is discussed in
section 8.3.
We calculate {BEi

G0W0} and the spectral functions A(ω) with
our CD approach. We perform AC-G0W0 and CD-G0W0
calculations to compare self-energy matrix elements. For
both approaches, AC-G0W0 and CD-G0W0, the integrals over
the imaginary frequency axis are computed by using a modified
Gauss−Legendre grid79 with 200 grid points. For the analytic
continuation, the same set of grid points {iω} is used to
calculate Σn

c(iω), which is fitted to the Pade ́model.87 The Pade ́
approximant contains at least 16 parameters. The frequency
grid is accordingly increased if more parameters are used.

8. RESULTS AND DISCUSSION
We first discuss numerical parameters of the CD-G0W0
approach, the structure of the self-energy and strategies to
obtain obtain numerical stable QP solutions for core
excitations. The water molecule is used as a representative
example for this purpose. We then proceed by comparing core-
level BEs of small and larger molecules to experimental data.
The computational efficiency of the CD-G0W0 approach is
finally assessed using acenes as benchmark systems.
8.1. Broadening Parameter η. The CD-G0W0 method

contains the convergence parameter η; see eqs 33−37. The
self-energy is broadened with increasing η, which eventually
affects the QP solutions. This is demonstrated in Figure 4a,
where the convergence of the BE of the O1s state of H2O, with
respect to η, is displayed. Errors larger than 3 eV are observed
for η > 0.5 a.u. However, the BE converges quickly with η. For
η = 0.001 a.u., the error is <10−4 eV. We set this value as the
default for the computation of BEs to ensure numerical
stability.
The complex parameter iη enters the residue term Rn

c in eq
34 and gives rise to a nonzero imaginary part of the self-energy
ImΣn

c for η ≠ 0. The main contribution to ImΣn
c stems from Rn

c .
However, iη is also present in the integral term In

c , i.e., in the
denominator of eq 35 and in Π(iω) (eq 31). Therefore, a
minor contribution to ImΣn

c is also expected from In
c , which has

been omitted in previous descriptions of the CD method.93

This is a fair approximation if only ReΣn
c is needed, but

neglecting iη in In
c results in a physical incorrect behavior of the

imaginary part. We can easily rationalize this by considering
the situation for frequencies ω within the band gap, where
ϵHOMO < ω < ϵLUMO. In the band gap, no poles enter the
contour and the residue term vanishes. If In

c has only a real part,
ImΣn

c would be zero. A sudden discontinuity or “step” in ImΣn
c

then occurs for ω = ϵHOMO and ω = ϵLUMO. In fact, such
unphysical discontinuities are expected for all frequencies ω =
ϵn. This is demonstrated in Figure 4b, where the matrix
elements ImΣ1s

c are presented for frequencies in the core
region. A discontinuity is observed at ω = −510.35 eV, which
corresponds to the first KS eigenvalue ϵ1. The imaginary part
of Σn

c becomes smooth when taking the imaginary part of In
c

into account. This can be explained as follows. Both terms Rn
c

and In
c have a discontinuity at ϵ1, which exactly cancels when

subtracting In
c from Rn

c , such that Σn
c = Rn

c − In
c is smooth; see

Figure S1 in the Supporting Information (SI).
If the imaginary part of In

c is neglected, the discontinuities in
ImΣn

c propagate to the spectral function; see Figure S2 in the
SI. These “steps” are hardly visible for small η values, but
become very distinct with increasing η. Including iη in In

c is
important when analyzing the spectral function, e.g.,
integrating the QP peaks. However, it has no measurable
effect on the real part ReΣn

c . We found that a larger grid is
required for the numerical integration of the complex
integrand. Since the computation of Wnm

c (iω) is a time-
consuming step, we do not include iη in In

c if only BEs are
calculated.

8.2. Structure of the Self-Energy. The precise
calculation of the self-energy is essential to obtain correct

Figure 4. (a) Convergence of the O1s binding energy (BE) of H2O,
with respect to the broadening parameter η. Displayed is the deviation
from the BE obtained with η = 1 × 10−6 a.u. (b) Imaginary part of the
self-energy ImΣ1s

c = ⟨1s|ImΣc(ω)|1s⟩ showing that iη must be included
in the integral along the imaginary frequency axis In

c to avoid “steps” in
ImΣn

c(ω). The red arrow indicates the frequency that corresponds to
the first KS eigenvalue ϵ1. ΔBE has been calculated at the PBEh(α =
0.5) level and ImΣ1s

c (ω) with PBE.
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QP energies. In Figure 5, we compare the real self-energy
matrix elements ReΣn

c obtained from implementations on the

real and imaginary axis. For the HOMO, AC-G0W0 reproduces
the CD results accurately with a 16-parameter Pade ́
approximant; see Figure 5a. The self-energy for the HOMO
has a smooth structure with a clear single solution for the
valence excitations. This is in agreement with previous results
presented in the GW100 benchmark study52 reporting a single
QP solution for the majority of the systems.
The situation is completely different in the core region. The

self-energy for the O1s state displayed in Figure 5b has a
complex structure with many poles. Moreover, the self-energy
has poles in the region where the QP solutions must be solved,
which gives rise to a pronounced multisolution behavior. As
shown in Figure 5c, the Pade ́ model fails to reproduce the

complicated pole structure. The analytic model function
averages, in the best case (128 fit coefficients), roughly
through the poles. The QP solution deviates by 13 eV from the
exact result, which corresponds to the intersection with the red
dashed line at −523.8 eV. Increasing the number of Pade ́
parameters and fit points {iω} does not necessarily improve
the results. The Pade ́ approximant with 1024 parameters
represents the self-energy even worse. The error of the
corresponding QP solution increases to 20 eV. We can thus
conclude that the fitting procedure employed in the AC
approach is extremely unstable and unreliable for core states.
To validate the accuracy of the CD approach, we compare

our self-energy matrix elements to results from the fully
analytic method implemented in Turbomole.24 The fully
analytic method is based on the spectral representation of the
reducible response function χ(r, r′, ω), which is explicitly
calculated. The screened Coulomb interaction W is then
constructed from χ(r, r′, ω) and the self-energy is computed
by analytically integrating over G and W. The fully analytic
method is also a real-frequency approach, which is numerically
stable for any frequency ω of Σ(ω) and contains, except for the
broadening η and the basis set, no further parameters. Figure
5d shows that the CD and fully analytic approach yield exactly
the same self-energy for the O1s state. The accuracy of our
implementation is further confirmed by Figure S3 in the SI,
where the N1s matrix elements of acetonitrile are displayed.
Also, in this case, we find a perfect agreement. This
demonstrates that the CD parameters, e.g., for the numerical
integration of In

c , are very well under control.
Considering the breakdown of AC-G0W0 in the core region,

we also expect plasmon−pole models,68 which represent W by
a few poles, to face similar numerical problems. Even though
accurate core-level BEs have been obtained for silicon and
diamond with a plasmon−pole approximation,63 the reported
deviation from experiment is significantly larger for SiC. This
might indicate that numerically precise methods to calculate
the self-energy are also required for solid-state systems.

8.3. Identification of the QP Energy. The graphical
solution of the QP equation in Figures 5b and 5c shows many
intersections with the self-energy. Each of these intersections is
a valid solution and, therefore, the identification of the QP
solution is not straightforward for core states. When using PBE
orbital energies and MOs as starting point, the iterative
solution of the QP equation does not converge for any of the
systems that we studied. The convergence can be enforced by
strongly broadening the self-energy. However, this leads to
errors of several eV, as discussed in section 8.1. Circumventing
the convergence problem by linearizing the QP equations85 is
not a good strategy either. For the HOMO levels, the
linearized version yields very similar QP energies. However, we
found deviations of more than 5 eV from the accurate solution
for core levels. The large deviations of GW core levels from
experimental XPS data reported in ref 25 must be partly
attributed to the linearization of the QP equation, but also to
the choice of the starting point discussed below.
A unique QP solution can be obtained by increasing the

amount of exact exchange in the DFT functional. Previous
studies for valence excitations showed that PBEh functionals
with exact exchange fractions of α = 0.35115 or α = 0.4073 are
optimal starting points for the perturbative G0W0 approach.
We employ the same strategy for core states. Using a hybrid
functional as a starting point, the complicated structure of the
self-energy remains, but the pole structure is shifted to deeper

Figure 5. Real part of the self-energy Σc(ω) for a single water
molecule using PBE as a starting point. Diagonal matrix elements
ReΣn

c(ω) = ⟨n|ReΣc(ω)|n⟩ for the (a) HOMO and (b) O1s orbital,
comparing CD and AC. For the latter, the Pade ́ model with 128
parameters has been used. The intersections with the red dashed lines
are the graphical solutions of the QP Equation 1. (c) AC with
different numbers of Pade ́ parameters employing a frequency grid of
5000 points. (d) Comparison of ReΣ1s

c (ω) obtained with our CD-
G0W0 method and the fully analytic approach implemented in
Turbomole (TM).24
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energies and is better separated from the region, where the QP
equations are solved. Indeed, for PBEh(α = 0.5), we obtain a
clear solution, which is confirmed by the distinct QP peak in
the spectral function at −539.30 eV; see Figure 6. This is also

reflected in the iterative QP solution, which now converges
quickly within 10−15 steps. The number of electrons under
the QP peak integrates to 1.43, which adds up to the expected
number of 2 when also integrating the satellite spectrum at
higher frequencies.
Increasing the amount of exact exchange in the underlying

DFT calculation shifts the QP peak to more negative
frequencies. These shifts are for core states in the range of a
few eV when increasing the α value in PBEh from 0 to 1.

Therefore, a careful optimization of the starting point is
necessary. For valence states, the α values have been
successfully optimized by minimization of the deviation from
the straight-line error (DSLE), i.e., the spurious nonlinearity of
the total energy as a function of fractional particle numbers.73

This procedure cannot be transferred to core states because
minimizing the DSLE requires a G0W0 calculation of the N − 1
system. Such a calculation is well-defined when removing an
electron from the HOMO, but not for core holes. This is
evident from eq 7. The irreducible polarizability χ0(r, r′, ω)
contains separate sums over occupied and virtual states, which
are no longer defined when the ordering of occupied and
virtual states is not consecutive. The strategy for optimizing the
starting point for core states requires a detailed assessment of
the specific physics at deep energies. This will be presented
elsewhere, including a discussion of the satellite spectrum
visible in Figure 6. Our first, exploratory study revealed that α
values of ∼0.5 are optimal for core excitations, and we use this
value in the following.

8.4. Core-Level Binding Energies. Core-level BEs for
small molecules with less than 10 atoms are presented in the
upper part of Table 1. We focus in the present work on C1s,
N1s, and O1s excitations, for which relativistic effects can be
neglected. The molecules have been chosen such that different
functional groups are included to represent different chemical
environments. Note that absolute core-level BEs are discussed
in the following.
The BEs obtained from the KS eigenvalues deviate

drastically from experiment by up to 17 eV. Large deviations
are observed for all three excitation types C1s, N1s, and O1s,
which is due to a wrong description of the initial state and the
neglect of final state effects, as discussed in length in the

Figure 6. Spectral function A(ω) of H2O in the core region using
PBEh(α) as starting point for the G0W0 calculation. Here, α is defined
as the fraction of exact exchange in the PBEh(α) hybrid functional.

Table 1. Core-Level Binding Energies (BEs), as Obtained from KS Eigenvalues, ΔSCF, and CD-G0W0 (in eV) and Deviation
from Experimenta

KS ΔSCF CD-G0W0

core level molecule BE Δexp BE Δexp BE Δexp Exp. refexp

C1s CH4 277.69 13.16 290.29 0.56 290.77 0.07 290.84 116
(CH3)2O 279.32 12.85 291.64 0.53 292.43 0.25 292.17 117
HCN 279.83 13.7 292.99 0.5 293.29 0.2 293.5 118

N1s NH3 390.82 14.70 404.90 0.62 405.36 0.16 405.52 118−120
HCN 392.20 14.6 406.12 0.7 406.48 0.3 406.8 118, 120, 121
CH3NH2 390.88 14.29 404.48 0.69 405.12 0.05 405.17 118−120

O1s H2O 522.74 17.0 538.84 0.9 539.05 0.6 539.7 122
CH3OH 522.70 16.18 538.06 0.82 538.55 0.33 538.88 118, 119, 122
(CH3)2O 522.82 15.54 537.59 0.77 538.23 0.13 538.36 118, 119, 122

C1s (C1,C2) coronene 278.85 11.1 289.36 0.5 290.42 0.5 289.9 123
C1s (C3) 278.60 11.0 288.87 0.7 290.11 0.5 289.6 123

C1s (C2,C7) phenanthrene 278.84 11.4 289.50 0.7 290.71 0.5 290.2 123
C1s (C1,C3−C6) 278.52 11.4 289.20 0.7 290.37 0.5 289.9 123

O1s anthrone 522.09 14.66 535.31 1.44 536.46 0.29 536.75 124
C1s (C = O) 280.64 12.8 291.96 1.4 293.18 0.2 293.4 124
C1s (C−C,C-H) 278.83 11.89 289.68 1.04 290.72 0.00 290.72 118

aDeviation from experiment is defined as Δexp = |BEi
theory − BEi

exp|. The KS and ΔSCF values have been computed at the PBE0 level. For CD-G0W0,
PBEh(α = 0.5) is used as starting point, and the BEs have been extrapolated as described in Section 7. The labels for coronene and phenanthrene
are given in Figure 3.
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literature.3,25,29 The absolute BEs obtained from ΔSCF
compare much better to experiment with deviations of 0.5−
1.0 eV. The ΔSCF values depend significantly on the chosen
functional. The PBE0 functional employed in this study is
among the functionals that yield the best results in comparison
to experiment.29 However, the error is still too large to
properly support the absolute peak assignments in experiment.
We obtain the best results with our CD-G0W0 method. The
deviations are smaller than 0.3 eV for C1s and N1s excitations.
Promising results are also found for O1s with deviations of
<0.6 eV.
The BEs of large polycyclic molecules with up to 36 atoms

are shown in the lower part of Table 1. Note that the ΔSCF
values for the molecules with large delocalized π-systems are
difficult to compute. The N − 1 calculations are prone to
variational collapses and converging the SCF is a cumbersome
task. In addition, the deviation from experiment (1.4 eV) is
significantly larger than that observed for the small molecules.
CD-G0W0, in this case, also yields results that agree favorably
with experiment with deviations of <0.5 eV.
A comprehensive assessment of the accuracy of the G0W0

method for core levels is beyond the scope of this work.
Benchmark studies with more than 60 core excitations will be
presented separately.
8.5. Computational Efficiency of CD-G0W0. The

computational cost, scaling, and parallel performance of our
CD-G0W0 implementation is evaluated using acenes with 1−13
and 15 rings as representative benchmark systems. Examples of
these linearly fused benzene structures are shown in Figure 7a.
The execution time, with respect to system size, is reported in
Figure 7b at the def2-QZVP level, including the time spent for
the DFT calculation. The computationally most expensive
steps are the computation of the 3c integrals (μν|P) and the
auxiliary polarization matrices Π(iω) and Π(|ϵm − ω|).
The evaluation of (μν|P) over NAOs is the dominating step

for small systems up to 42 atoms (∼2000 basis functions). The
computational cost scales cubically for small systems, but
shows an asymptotic quadratic behavior with increasing system
size due the sparsity in μ/ν. This reflects in a measured
exponent of 2.58. The computation of ΠPQ(iω) is the key step
for the computation of the integral term In

c and requires
NωNoccNvirtNaux

2 operations, where Nω is the number of grid
points for the integration grid, Nocc the number of occupied
states, and Nvirt the number of virtual states. Naux denotes the
number of auxiliary functions. Since the size Nω of the
integration grid is independent of the system size, this step
scales with N( )4 , which matches the measured exponent.
The scaling of ΠPQ(|ϵm − ω|) is dependent on the number of
residues Nres and thus on the excitation type. The number of
operations sums up to NresNoccNvirtNaux

2 . For the HOMO, Nres
is typically one and independent of the system size. However,
for core excitations Nres equals approximately Nocc. Con-
sequently, the number of operations is N( )4 for valence
excitations and increases to N( )5 for core states, which is one
order lower, compared to the fully analytic frequency
treatment with N( )6 complexity.24 The predicted N( )5

behavior coincides with the measured exponent of 4.96 for the
1s excitation of the deepest core level. The computation of
ΠPQ(|ϵm − ω|) starts to dominate the calculation for the system
with 2250 basis functions (48 atoms).
The parallel performance of our CD-G0W0 implementation

is assessed for acenes with 1, 3, 7, and 13 rings in Figure 7c.

The largest system scales well up to 1536 processes with a
parallel efficiency of ∼70%. With the current implementation,
the core-level calculations are feasible for system sizes up to
4500 basis functions or ∼100 atoms.
For valence states, the scaling of CD-G0W0, with respect to

system size, is the same as for RI-V-based AC-G0W0
implementations,53,79 albeit with a slightly larger prefactor.
This is due to the fact that ΠPQ(|ϵm − ω|) must be evaluated
for one or a few residues at each step of the iterative QP
scheme. CD-G0W0 is the designated method for core and
semicore states, but might also be routinely applied with little
increase in computational cost for valence excitations.

9. CONCLUSIONS
An efficient, scalable, and numerically accurate G0W0 method
has been developed for the computation of core excitations.
The self-energy Σ is calculated for the full-frequency range on
the real axis using the CD technique. Access to the core region
is gained by working in a local basis of NAOs in an all-electron

Figure 7. Performance of the CD-G0W0 implementation using (a)
linear acene structures of 1−13 and 15 rings. The largest system
corresponds to 96 atoms. (b) Execution times with respect to system
size. Dashed lines represent two-parameter least-squares fits of the
prefactor and exponent. The latter is reported in the legend. (c)
Scaling test with respect to the number of processes. The gray dashed
lines indicate the ideal scaling behavior. Execution times are measured
at the def2-QZVP level on a Cray XC40 machine.
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setup. We combine our scheme with the RI-V approximation
to enable an efficient calculation of the 4c-ERIs.
We have shown that the self-energy has a complicated

structure with many poles for molecular 1s core states. Our
CD-G0W0 method computes the self-energy accurately, which
is confirmed by comparing to a fully analytic approach.
Common G0W0 implementations that rely on analytical
continuation clearly fail to reproduce the correct frequency
dependence of the self-energy for core levels.
Our exploratory studies demonstrate that including a

fraction of exact exchange in the underlying DFT calculation
is crucial to obtain a distinct QP solution. The PBEh(α = 0.5)
functional yields a clear QP peak in the spectral function and
has been used to study absolute core-level BEs of small gas-
phase molecules. The BEs from CD-G0W0 compare favorably
to experiment with an error of mostly <0.5 eV and are, in terms
of absolute positions, closer to experiment than the DFT-
ΔSCF values. Our method reproduces also core-level BEs of
large polycyclic molecules within the same error range. The
CD-G0W0 algorithm is computationally efficient and well
parallelized. The current implementation enables core-level
calculations for systems up to ∼100 atoms.
The accuracy of G0W0 for core states will be more

thoroughly assessed for a large benchmark set. However, the
present study indicates that the GW approach has the potential
to become an important computational tool to support the
absolute peak assignment in experimental XPS spectra which is
already cumbersome for molecules such as phenanthrene and
coronene.123 In addition, it yields interesting insights in the
physics and capabilities of GW in the core region. This
includes starting point effects as well as a further investigation
of the obtained satellite spectrum, which might indicate shake-
up and shake-down processes. Most importantly, it paves the
way for the accurate calculation of core excitations of
condensed matter systems, for which ΔSCF approaches
cannot be directly applied. Furthermore, the current
implementation is a perfect starting point for embedding
schemes or fully periodic implementations.
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(27) Viñes, F.; Sousa, C.; Illas, F. On the prediction of core level
binding energies in molecules, surfaces and solids. Phys. Chem. Chem.
Phys. 2018, 20, 8403−8410.
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ESCA investigations of Group IV derivatives. Part III. Binding
energies for methyl substituted disilyl and digermyl chalcogenide
series. Can. J. Chem. 1977, 55, 2957−2961.
(118) Bakke, A. A.; Chen, H.-W.; Jolly, W. L. A table of absolute
core-electron binding-energies for gaseous atoms and molecules. J.
Electron Spectrosc. Relat. Phenom. 1980, 20, 333−366.

(119) Mills, B. E.; Martin, R. L.; Shirley, D. A. Further studies of the
core binding energy-proton affinity correlation in molecules. J. Am.
Chem. Soc. 1976, 98, 2380−2385.
(120) Thomas, T. D.; Shaw, R. W. Accurate core ionization
potentials and photoelectron kinetic energies for light elements. J.
Electron Spectrosc. Relat. Phenom. 1974, 5, 1081−1094.
(121) Finn, P.; Pearson, R. K.; Hollander, J. M.; Jolly, W. L.
Chemical shifts in core electron binding energies for some gaseous
nitrogen compounds. Inorg. Chem. 1971, 10, 378−381.
(122) Siegbahn, K.; Nordling, C.; Johansson, G.; Hedman, J.;
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